
CPSC 420-502: Project 2, Perceptron and Backpropagation

Yoonsuck Choe
Department of Computer Science

Texas A&M University

1 Overview

You will implement perceptron learning from scratch (see
section 3 for details), and train it on AND, OR, and XOR
functions. Then, you will take an existing backpropagation
code (see section 4), train it and test it under different condi-
tions and report your findings. The same three boolean func-
tions will be used for the backpropagation learning. For fur-
ther details on perceptrons and backpropagation, see the lec-
ture slides and also Hertz et al. (1991). Specific submission
instruction will be given in section 5 and section 6.

2 Language and OS

You may use either C/C++, Java, or Lisp. The resulting
code should be able to compile and run on the departmen-
tal unix hosts (unix.cs.tamu.edu, compute.cs.tamu.edu, inter-
active.cs.tamu.edu). You may use a different language with
a permission from the instructor. You will be asked to do a
demo in front of the TA in that case.

To compile your programs other than Lisp (which you already
know), see the following instructions.

• C program file:perceptron.c
to compile:cc -o perceptron perceptron.c -lm
to execute:./perceptron

• C++ program file:perceptron.C
to compile:c++ -o perceptron perceptron.C -lm
to execute:./perceptron

• Java program file:perceptron.java
to compile:javac perceptron.java
to execute:java perceptron

The full paths for the compilers are:

• /usr/local/SUNWspro/bin/cc

• /usr/local/bin/c++

• /usr/local/java/bin/javac

• /usr/local/java/bin/java

3 Perceptron

Perceptron activation is defined as:

Output = step

(
2∑
i=0

W [i] ∗ INP [i]

)
, (1)

wherestep(X) = 1 if X ≥ 0 andstep(X) = 0 if X < 0
(see figure 1).

W[2]W[1]W[0]

−1 X Y

f(X,Y)

INP[0] INP[1] INP[0]

Figure 1: Perceptron. The inputINP [0] is thebias unit, fixed
to −1, and has an associated weightW [0], which is the threshold.
The two inputsX andY are given and the outputf(X,Y ) will be
calculating (or attempting to calculate) a boolean function, one of
OR, AND, or XOR.

Implement a perceptron with two input units (three, including
the bias unit that has a fixed input value -1) and one output
unit. Your program should take 5 inputs from the keyboard
(i.e. standard input):

1. maximum number of epochs to run (integer),

2. learning rate parameterα value (double),

3. function selection string (“and”, “or”, and “xor”).

For example, a typical run would go like this ($ is the unix
prompt):

$ ./perceptron
10000 0.0001 and

1



where in the first line is you run your program, and in the
second line, you type in the parameters. A pseudocode for
perceptron learning is as follows:

1. Initialize weights to random numbers between 0.0 and 1.0.

2. Initialize epoch count to 0.

3. while sum of(teacher − output)2 for all input patterns is
not 0 do:

• for each input-teacher pattern

– present input and calculate output
– calculate theerror = teacher − output
– update the weightsW [i]
• endfor

• increment epoch count

• if (epoch count> max epochs), break from while loop

4. Print out the output for the inputs (0,0), (0,1), (1,0), and
(1,1).

4 Backpropagation

For backpropagation, you will download the following file
(make it one line):

http://faculty.cs.tamu.edu/choe/
src/backprop-1.6.tar.gz

and run it under different conditions. First, you need to unzip
and untar it by running the following:

$ tar xzvf backprop-1.6.tar.gz
$ cd backprop

then read theREADMEfile to learn how to compile and run it.

Running thebp program (which is generated by compiling)
will give you a huge dump on the screen. To selectively view
the data you’re more interested in, use thegrep command.
For example, to view the progression of error:

$ ./bp conf/xor.conf | grep ERR

and to view the actual output values for the inputs:

$ ./bp conf/xor.conf | grep OUT

5 Assignment

This section will detail what you actually have to do and have
to submit. All projects should be turned in using theturnin
command to the folder420-502 .

5.1 Perceptron

Implement perceptron learning algorithm as detailed in sec-
tion 3, and with the program conduct the following experi-
ments, and submit the required material, along with the code
and theREADMEfile as usual.

Experiments:

1. Test AND, OR, and XOR for learning ratesα = 0.001,
and 0.0001. For each Boolean function, run the experiment
with different initial random weights (use the random num-
ber generator function to do this) three times. Discard all
runs that ended in 1 epoch (you will see several of these).
The total number of trial will thus be 18. Set the max epoch
to 10000 for all trials.

2. For each trial, report the following in the README file:

(a) inital weights,

(b) after each epoch, save the the connection weights
W[0]..W[2] for later use,

(c) final weights,

(d) number of epochs taken to complete training if success-
ful (let us call thisn), and

(e) for each epoch, the sum of squared error for all four in-
put patterns.

3. Answer these questions in the README file:

(a) How dependant isn on the initial weights?

(b) Is AND more difficult than OR, or vice versa, or are they
just the same? why? Run many trials and comparen to
get an empirical justification, and then think about why.

(c) XOR will fail inevitably: what are the output to the four
inputs (0,0), (0,1), (1,0), and (1,1) at the end of max
epoch? Is there a consistency for differently initialized
networks? Run many trials and find out the probabil-
ity of different outcomes. There are 16 different output
combinations for inputs (0,0) (0,1) (1,0) (1,1): 0 0 0 0, 0
0 0 1, 0 0 1 0, ..., 1 1 1 1.

(d) Do you think perceptron will be able to learn the boolean
functionf(X,Y ) = ¬(X ∧ Y )? What do you think is
the role of thesignof the weights in this case? What is
the geometric interpretation?

Table 1:Boolean Functionf(X,Y ) = ¬(X ∧ Y ).
X Y ¬(X ∧ Y )
0 0 1
0 1 0
1 0 0
1 1 0

2



4. For the longest run for each trial for AND, OR, and XOR,
with α = 0.0001 generate one graph each (a total of three
graphs) containing the class boundarylines derived from
the connection weights saved from item 2 in the previous
list (report these weights in the README file and the line
equation derived from it). If you hadn epochs, plot 5
lines at an interval ofn5 , including the initial and the final
epochs. For example, if yourn was 800, plot for epochs
0, 200, 400, 600, and 800. Save the plot to any image for-
mat (jpg, gif, png, etc.) and name themp-plot0.jpg,
p-plot1.jpg, etc. and submit them separately. See
figure 2 for an example plot.

0.0 1.0

0.0

1.0 epoch=0
200
400
600

Figure 2: Example Class Boundary Plot. The class boundary
line derived from the weights are shown after four different epochs:
0, 200, 400, and 600.

5.2 Backpropagation

With the provided code, conduct experiments on AND, OR,
and XOR. Note that in thebp.cc code, learning rateα is a
namedeta , just in case you want to take a look inside the
code.

Experiments:

1. Test AND, OR, and XOR for learning ratesα = 0.01,
0.001, and 0.0001, and plot the sum of squared error for
each trial (a total of 9 trials). A total of 3 plots (for
AND, OR, and XOR), with 3 curves each (for threeα’s)
is required. Save the plots in image files and name then
b1-plot0.jpg, b1-plot1.jpg, ... .

2. With learning rateα = 0.001, test AND, OR, and XOR,
with 1, 2, 3, and 4 hidden units, Plot the sum of squared
error for each trial. A total of 3 plots (for AND, OR, and
XOR), with 4 curves each (for four different number of
hidden units) is required. Save the plots in image files and
name thenb2-plot0.jpg, b2-plot1.jpg, ... .

3. For all trials above, count the number of epochs until
the end is reached, and measure the time taken using the
timex unix command:

timex ./bp conf/xor.conf

Report the number of epochs and time spent for each trial
in the README file. How many number of hidden units
was the best in your opinion and why?

6 Submission Details

The due date is by the date of the final exam: 12/17/2002
8am. There will be absolutely no extensions given the time
constraints. Grading criteria will be similar to the previous
projects. You must submit the following:

• source code,

• compiled executable binary,

• README file containing material detailed in section 5,
and

• plots (image files; include a list of image files and a brief
description of each in the README file).

All projects should be turned in using theturnin command
to the folder420-502 by 12/17/2002 8am.

References

Hertz, J., Krogh, A., and Palmer, R. G. (1991).Introduction
to the Theory of Neural Computation. Reading, MA:
Addison-Wesley.

3


	Overview
	Language and OS
	Perceptron
	Backpropagation
	Assignment
	Perceptron
	Backpropagation

	Submission Details

