
Developer’s Guide

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland®

C++Builder™ 6
for Windows®

Refer to the DEPLOY document located in the root directory of your C++Builder product for a complete list of files
that you can distribute in accordance with the C++Builder License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

COPYRIGHT © 1983–2002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

CPE1360WW21001 6E4R0102
02030405-9 8 7 6 5 4 3 2 1
PDF

i

Chapter 1
Introduction 1-1
What’s in this manual? 1-1
Manual conventions 1-3

Developer support services 1-3
Ordering printed documentation. 1-3

Part I
Programming with C++Builder

Chapter 2
Developing applications with
C++Builder 2-1

Integrated development environment 2-1
Designing applications 2-2
Creating projects 2-3
Editing code . 2-3
Compiling applications 2-4
Debugging applications 2-4
Deploying applications 2-5

Chapter 3
Using the class libraries 3-1
Understanding the class libraries 3-1

Properties, methods, and events 3-2
Properties 3-2
Methods 3-3
Events . 3-3
User events 3-3
System events 3-3

Objects, components, and controls 3-4
TObject branch 3-5
TPersistent branch 3-6
TComponent branch 3-7
TControl branch 3-8
TWinControl/TWidgetControl branch . . . 3-9

Chapter 4
Using BaseCLX 4-1
Using streams 4-2

Using streams to read or write data 4-2
Stream methods for reading and

writing 4-2
Reading and writing components. 4-3

Copying data from one stream to another . . 4-3

Specifying the stream position and size. . . . 4-3
Seeking to a specific position 4-4
Using Position and Size properties 4-4

Working with files 4-4
Approaches to file I/O 4-5
Using file streams 4-5

Creating and opening files using
file streams 4-6

Using the file handle 4-6
Manipulating files 4-7

Deleting a file. 4-7
Finding a file 4-7
Renaming a file. 4-9
File date-time routines 4-9
Copying a file 4-9

Working with ini files and the system
Registry. . 4-10

Using TIniFile and TMemIniFile 4-10
Using TRegistryIniFile 4-11
Using TRegistry 4-12

Working with lists. 4-12
Common list operations 4-13

Adding list items. 4-13
Deleting list items 4-14
Accessing list items 4-14
Rearranging list items 4-14

Persistent lists 4-14
Working with string lists 4-15

Loading and saving string lists 4-15
Creating a new string list 4-16

Short-term string lists 4-16
Long-term string lists 4-16

Manipulating strings in a list. 4-17
Counting the strings in a list 4-18
Accessing a particular string 4-18
Locating items in a string list 4-18
Iterating through strings in a list 4-18
Adding a string to a list 4-18
Moving a string within a list 4-18
Deleting a string from a list 4-19
Associating objects with a string

list . 4-19
Working with strings 4-19

Wide character routines. 4-20
Commonly used routines for

AnsiStrings 4-21

Contents

ii

Commonly used routines for
null-terminated strings. 4-23

Printing . 4-25
Converting measurements 4-25

Performing conversions 4-26
Performing simple conversions 4-26
Performing complex conversions 4-26

Adding new measurement types 4-26
Creating a simple conversion family

and adding units 4-27
Declare variables 4-27
Register the conversion family 4-27
Register measurement units 4-27
Use the new units 4-28

Using a conversion function 4-28
Declare variables 4-28
Register the conversion family 4-28
Register the base unit. 4-29
Write methods to convert to and

from the base unit 4-29
Register the other units. 4-29
Use the new units 4-29

Using a class to manage conversions. 4-30
Creating the conversion class 4-30
Declare variables 4-31
Register the conversion family and

the other units 4-31
Use the new units 4-32

Creating drawing spaces 4-33

Chapter 5
Working with components 5-1
Setting component properties 5-2

Setting properties at design time 5-2
Using property editors 5-2

Setting properties at runtime 5-3
Calling methods 5-3
Working with events and event

handlers . 5-3
Generating a new event handler 5-4
Generating a handler for a component’s

default event 5-4
Locating event handlers 5-4
Associating an event with an existing

event handler 5-4
Using the Sender parameter 5-5
Displaying and coding shared

events. 5-5

Associating menu events with event
handlers. . 5-5

Deleting event handlers 5-6
Cross-platform and non-cross-platform

components . 5-6
Adding custom components to the

Component palette 5-8

Chapter 6
Working with controls 6-1
Implementing drag and drop in controls. 6-1

Starting a drag operation 6-1
Accepting dragged items 6-2
Dropping items 6-2
Ending a drag operation 6-3
Customizing drag and drop with a

drag object 6-3
Changing the drag mouse pointer. 6-4

Implementing drag and dock in controls. 6-4
Making a windowed control a docking

site. . 6-4
Making a control a dockable child. 6-4
Controlling how child controls are

docked . 6-5
Controlling how child controls are

undocked . 6-6
Controlling how child controls respond

to drag-and-dock operations 6-6
Working with text in controls 6-6

Setting text alignment. 6-7
Adding scroll bars at runtime 6-7
Adding the clipboard object 6-8
Selecting text 6-8
Selecting all text 6-8
Cutting, copying, and pasting text 6-9
Deleting selected text 6-9
Disabling menu items. 6-9
Providing a pop-up menu 6-10
Handling the OnPopup event 6-10

Adding graphics to controls 6-11
Indicating that a control is owner-

drawn . 6-11
Adding graphical objects to a string

list . 6-12
Adding images to an application 6-12
Adding images to a string list 6-12
Drawing owner-drawn items. 6-13

Sizing owner-draw items 6-14
Drawing owner-draw items 6-14

iii

Chapter 7
Building applications, components,
and libraries 7-1

Creating applications 7-1
GUI applications 7-1

User interface models 7-2
SDI applications. 7-2
MDI applications 7-2
Setting IDE, project, and compilation

options 7-3
Programming templates 7-3
Console applications 7-4

Using the VCL and CLX in console
applications 7-4

Service applications 7-4
Service threads 7-7
Service name properties 7-8
Debugging service applications 7-9

Creating packages and DLLs 7-10
When to use packages and DLLs 7-11

Using DLLs in C++Builder 7-11
Creating DLLs in C++Builder 7-11
Creating DLLs containing VCL and CLX

components . 7-12
Linking DLLs. 7-15
Writing database applications 7-15

Distributing database applications7-16
Creating Web server applications 7-16

Using Web Broker 7-17
Creating WebSnap applications. 7-18
Using InternetExpress7-18
Creating Web Services applications 7-18

Writing applications using COM. 7-19
Using COM and DCOM 7-19
Using MTS and COM+ 7-19

Using data modules 7-20
Creating and editing standard

data modules 7-20
Naming a data module and its

unit file 7-21
Placing and naming components 7-22
Using component properties and

events in a data module 7-22
Creating business rules in a data

module 7-23
Accessing a data module from a form 7-23
Adding a remote data module to an

application server project 7-23
Using the Object Repository 7-24

Sharing items within a project 7-24
Adding items to the Object Repository . . . 7-24
Sharing objects in a team

environment 7-24
Using an Object Repository item in

a project . 7-25
Copying an item 7-25
Inheriting an item 7-25
Using an item. 7-25

Using project templates. 7-25
Modifying shared items 7-26
Specifying a default project, new form,

and main form 7-26
Enabling Help in applications 7-26

Help system interfaces 7-27
Implementing ICustomHelpViewer. 7-28
Communicating with the Help

Manager 7-28
Asking the Help Manager for

information. 7-28
Displaying keyword-based Help 7-29
Displaying tables of contents. 7-30
Implementing IExtendedHelp

Viewer . 7-30
Implementing IHelpSelector 7-31
Registering Help system objects 7-32

Registering Help viewers 7-32
Registering Help selectors 7-32

Using Help in a VCL Application 7-33
How TApplication processes VCL

Help . 7-33
How VCL controls process Help. 7-33

Using Help in a CLX Application 7-34
How TApplication processes CLX

Help . 7-34
How CLX controls process Help. 7-34

Calling a Help system directly 7-35
Using IHelpSystem 7-35
Customizing the IDE Help system 7-35

Chapter 8
Developing the application user
interface 8-1

Controlling application behavior 8-1
Working at the application level 8-2
Handling the screen. 8-2

Setting up forms. 8-2
Using the main form 8-2
Hiding the main form. 8-3

iv

Adding forms 8-3
Linking forms 8-3

Managing layout 8-4
Using forms. 8-5

Controlling when forms reside in
memory . 8-5

Displaying an auto-created form 8-5
Creating forms dynamically 8-6
Creating modeless forms such as

windows 8-6
Creating a form instance using a local

variable. 8-7
Passing additional arguments to forms . . . 8-7
Retrieving data from forms 8-8

Retrieving data from modeless
forms . 8-8

Retrieving data from modal forms 8-10
Reusing components and groups of

components . 8-12
Creating and using component templates . . .8-12
Working with frames 8-13

Creating frames. 8-13
Adding frames to the Component

palette . 8-14
Using and modifying frames 8-14
Sharing frames 8-15

Developing dialog boxes 8-15
Using open dialog boxes. 8-16

Organizing actions for toolbars and
menus . 8-16

What is an action? 8-18
Setting up action bands 8-18
Creating toolbars and menus 8-19

Adding color, patterns, or pictures
to menus, buttons, and toolbars 8-20

Adding icons to menus and
toolbars. 8-21

Creating toolbars and menus that
users can customize. 8-22

Hiding unused items and categories
in action bands 8-22

Using action lists 8-23
Setting up action lists 8-23
What happens when an action fires 8-24

Responding with events 8-24
How actions find their targets 8-26

Updating actions 8-26
Predefined action classes 8-27
Writing action components 8-28

Registering actions 8-28
Creating and managing menus 8-29

Opening the Menu Designer 8-30
Building menus 8-30

Naming menus. 8-31
Naming the menu items 8-31
Adding, inserting, and deleting menu

items . 8-31
Adding separator bars 8-33
Specifying accelerator keys and

keyboard shortcuts. 8-33
Creating submenus 8-34

Creating submenus by demoting
existing menus 8-34

Moving menu items 8-35
Adding images to menu items 8-35
Viewing the menu 8-36

Editing menu items in the Object
Inspector 8-36

Using the Menu Designer context
menu . 8-37

Commands on the context menu. 8-37
Switching between menus at design

time . 8-37
Using menu templates 8-38
Saving a menu as a template 8-39

Naming conventions for template
menu items and event handlers 8-40

Manipulating menu items at runtime 8-40
Merging menus 8-41

Specifying the active menu: Menu
property 8-41

Determining the order of merged
menu items: GroupIndex property. . . 8-41

Importing resource files 8-42
Designing toolbars and cool bars 8-42

Adding a toolbar using a panel
component 8-43

Adding a speed button to a panel 8-44
Assigning a speed button’s glyph 8-44
Setting the initial condition of a

speed button 8-44
Creating a group of speed buttons. . . . 8-45
Allowing toggle buttons 8-45

Adding a toolbar using the toolbar
component 8-45

Adding a tool button 8-46
Assigning images to tool buttons 8-46

v

Setting tool button appearance and
initial conditions 8-46

Creating groups of tool buttons8-47
Allowing toggled tool buttons 8-47

Adding a cool bar component 8-47
Setting the appearance of the cool

bar . 8-48
Responding to clicks 8-48

Assigning a menu to a tool button 8-48
Adding hidden toolbars 8-49
Hiding and showing toolbars 8-49

Chapter 9
Types of controls 9-1
Text controls . 9-1

Edit controls. 9-2
Edit control properties 9-2

Memo and rich edit controls. 9-2
Text viewing controls (CLX only). 9-3
Labels . 9-3

Specialized input controls. 9-4
Scroll bars . 9-4
Track bars . 9-5
Up-down controls (VCL only) 9-5
Spin edit controls (CLX only) 9-5
Hot key controls (VCL only) 9-5
Splitter controls 9-6

Buttons and similar controls 9-6
Button controls 9-6
Bitmap buttons 9-7
Speed buttons. 9-7
Check boxes 9-7
Radio buttons 9-8
Toolbars . 9-8
Cool bars (VCL only). 9-8

List controls. 9-9
List boxes and check-list boxes 9-9
Combo boxes 9-10
Tree views . 9-10
List views . 9-11
Date-time pickers and month

calendars (VCL only). 9-11
Grouping controls 9-11

Group boxes and radio groups 9-12
Panels . 9-12
Scroll boxes 9-12
Tab controls9-13
Page controls 9-13
Header controls. 9-13

Display controls 9-14
Status bars 9-14
Progress bars 9-14
Help and hint properties 9-15

Grids . 9-15
Draw grids 9-15
String grids. 9-15

Value list editors (VCL only). 9-16
Graphic controls. 9-16

Images . 9-17
Shapes . 9-17
Bevels . 9-17
Paint boxes 9-17
Animation control (VCL only) 9-17

Chapter 10
Working with graphics and
multimedia 10-1

Overview of graphics programming 10-1
Refreshing the screen 10-2
Types of graphic objects 10-3
Common properties and methods

of Canvas 10-4
Using the properties of the Canvas

object . 10-5
Using pens 10-5
Using brushes 10-8
Reading and setting pixels 10-9

Using Canvas methods to draw graphic
objects. 10-10

Drawing lines and polylines 10-10
Drawing shapes 10-11

Handling multiple drawing objects
in your application 10-12

Keeping track of which drawing
tool to use 10-12

Changing the tool with speed
buttons 10-13

Using drawing tools 10-13
Drawing on a graphic 10-16

Making scrollable graphics 10-17
Adding an image control 10-17

Loading and saving graphics files 10-19
Loading a picture from a file 10-19
Saving a picture to a file. 10-20
Replacing the picture 10-20

Using the clipboard with graphics 10-21
Copying graphics to the

clipboard 10-22

vi

Cutting graphics to the clipboard 10-22
Pasting graphics from the

clipboard 10-22
Rubber banding example 10-23

Responding to the mouse 10-24
Responding to a mouse-down

action 10-25
Adding a field to a form object

|to track mouse actions 10-26
Refining line drawing 10-27

Working with multimedia 10-29
Adding silent video clips to an

application. 10-29
Example of adding silent video

clips . 10-30
Adding audio and/or video clips to

an application 10-31
Example of adding audio and/or

video clips (VCL only) 10-33

Chapter 11
Writing multi-threaded applications 11-1
Defining thread objects 11-1

Initializing the thread 11-2
Assigning a default priority 11-2
Indicating when threads are freed 11-3

Writing the thread function 11-4
Using the main VCL/CLX thread. 11-4
Using thread-local variables 11-5
Checking for termination by other

threads 11-6
Handling exceptions in the thread

function 11-6
Writing clean-up code 11-7

Coordinating threads 11-7
Avoiding simultaneous access 11-7

Locking objects 11-7
Using critical sections 11-8
Using the multi-read exclusive-write

synchronizer 11-8
Other techniques for sharing

memory 11-9
Waiting for other threads 11-9

Waiting for a thread to finish
executing 11-9

Waiting for a task to be
completed 11-10

Executing thread objects 11-11
Overriding the default priority 11-11

Starting and stopping threads11-11
Debugging multi-threaded applications11-12

Naming a thread. 11-12
Converting an unnamed thread to a named

thread 11-12
Assigning separate names to similar

threads 11-13

Chapter 12
Exception handling 12-1
C++ exception handling 12-1

Exception handling syntax 12-1
The try block 12-2
The throw statement. 12-2
The catch statement 12-3

Rethrowing exceptions 12-4
Exception specifications 12-4
Unwinding exceptions 12-5

Safe pointers 12-5
Constructors in exception handling 12-6
Handling uncaught and unexpected

exceptions 12-6
Structured exceptions under Win32. 12-6

Syntax of structured exceptions 12-7
Handling structured exceptions 12-8
Exception filters 12-8
Mixing C++ with structured

exceptions 12-10
C-based exceptions in C++ program

example12-11
Defining exceptions 12-12
Raising exceptions. 12-12
Termination blocks 12-13
C++Builder exception handling

options 12-14
VCL/CLX exception handling 12-15

Differences between C++ and
VCL/CLX exception handling 12-15

Handling operating system exceptions . . 12-15
Handling VCL and CLX exceptions 12-16
VCL and CLX exception classes 12-16
Portability considerations 12-18

Chapter 13
C++ language support for the
VCL and CLX 13-1

C++ and Object Pascal object models. 13-1
Inheritance and interfaces 13-2

vii

Using interfaces instead of multiple
inheritance13-2

Declaring interface classes 13-2
IUnknown and IInterface 13-3
Creating classes that support

IUnknown 13-4
Interfaced classes and lifetime

management 13-5
Object identity and instantiation 13-5

Distinguishing C++ and Object
Pascal references 13-5

Copying objects 13-6
Objects as function arguments 13-7

Object construction for C++Builder
VCL/CLX classes 13-7

C++ object construction 13-7
Object Pascal object construction 13-8
C++Builder object construction 13-8

Calling virtual methods in base class
constructors 13-10

Object Pascal model 13-10
C++ model. 13-11
C++Builder model 13-11
Example: calling virtual methods 13-11
Constructor initialization of data
members for virtual functions. 13-12

Object destruction 13-13
Exceptions thrown from

constructors 13-13
Virtual methods called from

destructors 13-14
AfterConstruction and Before

Destruction 13-14
Class virtual functions 13-15

Support for Object Pascal data types
and language concepts 13-15

Typedefs . 13-15
Classes that support the Object

Pascal language 13-16
C++ language counterparts to the

Object Pascal language. 13-16
Var parameters 13-16
Untyped parameters 13-16

Open arrays 13-17
Calculating the number of

elements 13-17
Temporaries 13-18
array of const 13-18
OPENARRAY macro 13-19

EXISTINGARRAY macro 13-19
C++ functions that take open array

arguments. 13-19
Types defined differently 13-19

Boolean data types. 13-19
Char data types 13-20

Delphi interfaces. 13-20
Resource strings 13-21
Default parameters 13-21
Runtime type information 13-22
Unmapped types 13-23

6-byte Real types 13-23
Arrays as return types of

functions 13-23
Keyword extensions. 13-23

__classid 13-23
__closure 13-24
__property 13-26
__published. 13-27

The __declspec keyword extension 13-28
__declspec(delphiclass) 13-28
__declspec(delphireturn) 13-28
__declspec(delphirtti) 13-28
__declspec(dynamic) 13-29
__declspec(hidesbase) 13-29
__declspec(package) 13-29
__declspec(pascalimplementation) . . 13-29
__declspec(uuid) 13-29

Chapter 14
Developing cross-platform
applications 14-1

Creating cross-platform applications 14-1
Porting Windows applications to Linux 14-2

Porting techniques 14-2
Platform-specific ports 14-2
Cross-platform ports 14-3
Windows emulation ports 14-3

Porting your application 14-3
CLX versus VCL. 14-5
What CLX does differently 14-5

Look and feel 14-6
Styles . 14-6
Variants 14-6
Registry 14-6
Other differences. 14-7

Missing in CLX 14-7
Features that will not port directly 14-8
CLX and VCL unit comparison 14-8

viii

Differences in CLX object
constructors 14-11

Handling system and widget
events . 14-12

Sharing source files between
Windows and Linux 14-12

Environmental differences between
Windows and Linux 14-13

Directory structure on Linux 14-15
Writing portable code 14-15

Using conditional directives 14-16
Emitting messages 14-17
Including inline assembler code. 14-18

Programming differences on Linux 14-19
Cross-platform database applications 14-19

dbExpress differences 14-20
Component-level differences 14-21
User interface-level differences 14-21
Porting database applications to

Linux . 14-22
Updating data in dbExpress

applications 14-24
Cross-platform Internet applications 14-25

Porting Internet applications to
Linux . 14-26

Chapter 15
Working with packages and
components 15-1

Why use packages? 15-2
Packages and standard DLLs 15-2

Runtime packages 15-3
Using packages in an application. 15-3
Dynamically loading packages 15-4
Deciding which runtime packages

to use . 15-4
Custom packages 15-4

Design-time packages 15-5
Installing component packages 15-5

Creating and editing packages 15-6
Creating a package 15-6
Editing an existing package 15-7
Package source files and project

options files 15-8
Packaging components. 15-8

Understanding the structure of
a package 15-9

Naming packages 15-9
Requires list 15-9

Contains list 15-10
Building packages 15-10

Package-specific compiler
directives 15-11

Using the command-line compiler
and linker 15-12

Package files created by building . . . 15-12
Deploying packages 15-13

Deploying applications that use
packages 15-13

Distributing packages to other
developers 15-13

Package collection files 15-13

Chapter 16
Creating international
applications 16-1

Internationalization and localization 16-1
Internationalization 16-1
Localization 16-1

Internationalizing applications 16-2
Enabling application code 16-2

 Character sets 16-2
OEM and ANSI character sets 16-2
Multibyte character sets. 16-3
Wide characters 16-3
Including bi-directional functionality

in applications 16-4
BiDiMode property 16-6
Locale-specific features 16-8

Designing the user interface 16-8
Text . 16-8
Graphic images 16-9
Formats and sort order 16-9
Keyboard mappings 16-9

Isolating resources. 16-10
Creating resource DLLs. 16-10
Using resource DLLs 16-11
Dynamic switching of resource

DLLs . 16-12
Localizing applications 16-12

Localizing resources. 16-12

Chapter 17
Deploying applications 17-1
Deploying general applications 17-1

Using installation programs 17-2
Identifying application files 17-2
Application files 17-3

ix

Package files17-3
Merge modules 17-3
ActiveX controls 17-5
Helper applications. 17-5
DLL locations 17-5

Deploying CLX applications 17-6
Deploying database applications. 17-6

Deploying dbExpress database
applications 17-7

Deploying BDE applications 17-8
Borland Database Engine 17-8
SQL Links 17-9

Deploying multi-tiered database
applications (DataSnap) 17-10

Deploying Web applications 17-10
Deploying to Apache servers 17-10

Programming for varying host
environments 17-11

Screen resolutions and color depths 17-12
Considerations when not

dynamically resizing 17-12
Considerations when dynamically

resizing forms and controls 17-12
Accommodating varying color

depths 17-13
Fonts . 17-14
Operating systems versions 17-14

Software license requirements 17-15
DEPLOY. 17-15
README 17-15
No-nonsense license agreement 17-15
Third-party product documentation 17-15

Part II
Developing database applications

Chapter 18
Designing database applications 18-1
Using databases 18-1

Types of databases 18-2
Database security. 18-3
Transactions 18-4
Referential integrity, stored procedures,

and triggers 18-5
Database architecture 18-5

General structure 18-6
The user interface form. 18-6
The data module 18-6

Connecting directly to a database
server . 18-7

Using a dedicated file on disk 18-9
Connecting to another dataset 18-10

Connecting a client dataset to another
dataset in the same application. 18-11

Using a multi-tiered architecture. . . . 18-12
Combining approaches 18-14

Designing the user interface 18-15
Analyzing data 18-15
Writing reports. 18-16

Chapter 19
Using data controls 19-1
Using common data control features 19-2

Associating a data control with a
dataset . 19-3

Changing the associated dataset
at runtime 19-3

Enabling and disabling the data
source 19-4

Responding to changes mediated
by the data source 19-4

Editing and updating data 19-5
Enabling editing in controls on

user entry 19-5
Editing data in a control. 19-5

Disabling and enabling data display 19-6
Refreshing data display. 19-6
Enabling mouse, keyboard, and timer

events . 19-7
Choosing how to organize the data 19-7

Displaying a single record 19-7
Displaying data as labels 19-8
Displaying and editing fields in an

edit box 19-8
Displaying and editing text in a

memo control 19-8
Displaying and editing text in a rich

edit memo control 19-9
Displaying and editing graphics

fields in an image control 19-9
Displaying and editing data in list

and combo boxes. 19-10
Handling Boolean field values with

check boxes 19-13
Restricting field values with radio

controls 19-13
Displaying multiple records 19-14

x

Viewing and editing data with
TDBGrid. . 19-15

Using a grid control in its default
state . 19-15

Creating a customized grid 19-16
Understanding persistent

columns 19-17
Creating persistent columns 19-17
Deleting persistent columns 19-18
Arranging the order of persistent

columns 19-19
Setting column properties at

design time 19-19
Defining a lookup list column. 19-20
Putting a button in a column 19-21
Restoring default values to a

column 19-21
Displaying ADT and array fields 19-22
Setting grid options 19-24
Editing in the grid 19-25
Controlling grid drawing 19-25
Responding to user actions at

runtime 19-26
Creating a grid that contains other

data-aware controls 19-27
Navigating and manipulating records. 19-28

Choosing navigator buttons to
display . 19-29

Hiding and showing navigator
buttons at design time 19-29

Hiding and showing navigator
buttons at runtime 19-29

Displaying fly-over help. 19-30
Using a single navigator for multiple

datasets 19-30

Chapter 20
Using decision support
components 20-1

Overview . 20-1
About crosstabs 20-2

One-dimensional crosstabs 20-2
Multidimensional crosstabs 20-3

Guidelines for using decision support
components . 20-3

Using datasets with decision support
components . 20-4

Creating decision datasets with
TQuery or TTable 20-5

Creating decision datasets with the
Decision Query editor. 20-6

Using decision cubes 20-7
Decision cube properties and events 20-7
Using the Decision Cube editor 20-7

Viewing and changing dimension
settings 20-8

Setting the maximum available
dimensions and summaries. 20-8

Viewing and changing design
options 20-8

Using decision sources 20-9
Properties and events 20-9

Using decision pivots. 20-9
Decision pivot properties. 20-10

Creating and using decision grids 20-10
Creating decision grids 20-10
Using decision grids 20-11

Opening and closing decision
grid fields20-11

Reorganizing rows and columns
in decision grids 20-11

Drilling down for detail in decision
grids20-11

Limiting dimension selection in
decision grids. 20-12

Decision grid properties 20-12
Creating and using decision graphs 20-13

Creating decision graphs 20-13
Using decision graphs 20-13
The decision graph display. 20-15
Customizing decision graphs 20-15

Setting decision graph template
defaults 20-16

Customizing decision graph
series. 20-17

Decision support components at
runtime . 20-18

Decision pivots at runtime 20-18
Decision grids at runtime. 20-18
Decision graphs at runtime. 20-19

Decision support components and
memory control 20-19

Setting maximum dimensions,
summaries, and cells 20-19

Setting dimension state 20-20
Using paged dimensions 20-20

xi

Chapter 21
Connecting to databases 21-1
Using implicit connections 21-2
Controlling connections 21-2

Connecting to a database server 21-3
Disconnecting from a database server 21-3

Controlling server login 21-4
Managing transactions 21-6

Starting a transaction 21-6
Ending a transaction 21-8

Ending a successful transaction21-8
Ending an unsuccessful

transaction21-8
Specifying the transaction isolation

level . 21-9
Sending commands to the server 21-10
Working with associated datasets 21-12

Closing all datasets without dis-
connecting from the server 21-12

Iterating through the associated
datasets 21-12

Obtaining metadata 21-13
Listing available tables. 21-13
Listing the fields in a table 21-13
Listing available stored procedures 21-14
Listing available indexes 21-14
Listing stored procedure parameters. . . . 21-14

Chapter 22
Understanding datasets 22-1
Using TDataSet descendants 22-2
Determining dataset states 22-3
Opening and closing datasets 22-4
Navigating datasets 22-5

Using the First and Last methods 22-6
Using the Next and Prior methods22-6
Using the MoveBy method 22-7
Using the Eof and Bof properties 22-7

Eof . 22-7
Bof . 22-8

Marking and returning to records 22-9
The Bookmark property 22-9
The GetBookmark method. 22-9
The GotoBookmark and Bookmark

Valid methods 22-9
The CompareBookmarks method. 22-9
The FreeBookmark method 22-10
A bookmarking example. 22-10

Searching datasets 22-10

Using Locate 22-10
Using Lookup 22-11

Displaying and editing a subset of data
using filters 22-12

Enabling and disabling filtering 22-13
Creating filters 22-13

Setting the Filter property. 22-14
Writing an OnFilterRecord event

handler 22-15
Switching filter event handlers at

runtime 22-15
Setting filter options. 22-15
Navigating records in a filtered

dataset 22-16
Modifying data 22-17

Editing records. 22-17
Adding new records 22-18

Inserting records 22-19
Appending records 22-19

Deleting records 22-19
Posting data 22-20
Canceling changes. 22-21
Modifying entire records 22-21

Calculating fields 22-22
Types of datasets 22-23
Using table type datasets. 22-25

Advantages of using table type
datasets 22-25

Sorting records with indexes 22-26
Obtaining information about

indexes 22-26
Specifying an index with

IndexName 22-26
Creating an index with IndexField-

Names 22-27
Using Indexes to search for

records 22-27
Executing a search with Goto

methods 22-28
Executing a search with Find

methods 22-29
Specifying the current record after

a successful search 22-29
Searching on partial keys 22-29
Repeating or extending a search 22-29

Limiting records with ranges 22-30
Understanding the differences

between ranges and filters 22-30
Specifying ranges 22-30

xii

Modifying a range 22-33
Applying or canceling a range 22-34

Creating master/detail relationships. . . . 22-34
Making the table a detail of another

dataset 22-34
Using nested detail tables 22-36

Controlling Read/write access to
tables . 22-37

Creating and deleting tables 22-37
Creating tables 22-37
Deleting tables 22-40

Emptying tables 22-40
Synchronizing tables 22-40

Using query-type datasets 22-41
Specifying the query 22-42

Specifying a query using the
SQL property 22-42

Specifying a query using the
CommandText property 22-43

Using parameters in queries 22-43
Supplying parameters at design

time . 22-44
Supplying parameters at runtime. . . . 22-45

Establishing master/detail relationships
using parameters 22-46

Preparing queries. 22-47
Executing queries that don’t return a

result set 22-47
Using unidirectional result sets 22-48

Using stored procedure-type datasets 22-48
Working with stored procedure

parameters. 22-50
Setting up parameters at design

time . 22-50
Using parameters at runtime 22-52

Preparing stored procedures 22-52
Executing stored procedures that don’t

return a result set 22-53
Fetching multiple result sets 22-53

Chapter 23
Working with field components 23-1
Dynamic field components 23-2
Persistent field components 23-3

Creating persistent fields 23-4
Arranging persistent fields 23-5
Defining new persistent fields 23-5

Defining a data field 23-6
Defining a calculated field 23-7

Programming a calculated field 23-7
Defining a lookup field 23-8
Defining an aggregate field 23-10

Deleting persistent field
components 23-10

Setting persistent field properties
and events 23-10

Setting display and edit properties
at design time. 23-11

Setting field component properties
at runtime 23-12

Creating attribute sets for field
components 23-12

Associating attribute sets with field
components 23-13

Removing attribute associations 23-14
Controlling and masking user

input 23-14
Using default formatting for numeric,

date, and time fields 23-14
Handling events 23-15

Working with field component methods
at runtime 23-16

Displaying, converting, and accessing
field values. 23-17

Displaying field component values
in standard controls 23-17

Converting field values 23-17
Accessing field values with the default

dataset property 23-19
Accessing field values with a dataset’s

Fields property. 23-19
Accessing field values with a dataset’s

FieldByName method. 23-20
Setting a default value for a field 23-20
Working with constraints 23-21

Creating a custom constraint. 23-21
Using server constraints 23-21

Using object fields 23-22
Displaying ADT and array fields 23-23
Working with ADT fields. 23-23

Using persistent field
components 23-24

Using the dataset’s FieldByName
method 23-24

Using the dateset’s FieldValues
property 23-24

Using the ADT field’s FieldValues
property 23-24

xiii

Using the ADT field’s Fields
property 23-24

Working with array fields 23-25
Using persistent fields 23-25
Using the array field’s FieldValues

property 23-25
Using the array field’s Fields

property 23-25
Working with dataset fields 23-25

Displaying dataset fields 23-26
Accessing data in a nested

dataset 23-26
Working with reference fields. 23-26

Displaying reference fields 23-26
Accessing data in a reference

field . 23-27

Chapter 24
Using the Borland Database
Engine 24-1

BDE-based architecture 24-1
Using BDE-enabled datasets 24-2

Associating a dataset with database
and session connections 24-3

Caching BLOBs 24-4
Obtaining a BDE handle 24-4

Using TTable 24-4
Specifying the table type for local

tables . 24-5
Controlling read/write access to

local tables 24-6
Specifying a dBASE index file 24-6
Renaming local tables 24-7
Importing data from another table 24-7

Using TQuery. 24-8
Creating heterogeneous queries. 24-9
Obtaining an editable result set 24-10
Updating read-only result sets 24-11

Using TStoredProc 24-11
Binding parameters. 24-11
Working with Oracle overloaded

stored procedures 24-12
Connecting to databases with

TDatabase 24-12
Associating a database component

with a session 24-12
Understanding database and session

component interactions 24-13
Identifying the database 24-13

Opening a connection using
TDatabase. 24-15

Using database components in data
modules 24-16

Managing database sessions 24-16
Activating a session 24-17
Specifying default database

connection behavior 24-18
Managing database connections 24-19
Working with password-protected

Paradox and dBASE tables 24-21
Specifying Paradox directory

locations. 24-23
Working with BDE aliases 24-24
Retrieving information about a

session. 24-26
Creating additional sessions 24-26
Naming a session 24-27
Managing multiple sessions 24-28

Using transactions with the BDE 24-29
Using passthrough SQL 24-30
Using local transactions 24-31

Using the BDE to cache updates 24-31
Enabling BDE-based cached

updates 24-33
Applying BDE-based cached

updates 24-33
Applying cached updates using

a database 24-34
Applying cached updates with

dataset component methods 24-35
Creating an OnUpdateRecord

event handler 24-35
Handling cached update errors 24-37

Using update objects to update a
dataset 24-39

Creating SQL statements for
update components 24-40

Using multiple update objects 24-43
Executing the SQL statements 24-44

Using TBatchMove 24-47
Creating a batch move component 24-47
Specifying a batch move mode 24-48

Appending records 24-48
Updating records 24-49
Appending and updating

records. 24-49
Copying datasets. 24-49
Deleting records 24-49

xiv

Mapping data types 24-49
Executing a batch move 24-50
Handling batch move errors 24-51

The Data Dictionary 24-51
Tools for working with the BDE 24-53

Chapter 25
Working with ADO components 25-1
Overview of ADO components 25-1
Connecting to ADO data stores 25-2

Connecting to a data store using
TADOConnection. 25-3

Accessing the connection object25-4
Fine-tuning a connection 25-4

Forcing asynchronous connections 25-5
Controlling time-outs. 25-5
Indicating the types of operations

the connection supports 25-5
Specifying whether the connection

automatically initiates transactions . . . 25-6
Accessing the connection’s commands . . .25-7
ADO connection events 25-7

Events when establishing a
connection 25-7

Events when disconnecting 25-7
Events when managing

transactions 25-8
Other events25-8

Using ADO datasets 25-8
Connecting an ADO dataset to

a data store 25-9
Working with record sets 25-10
Filtering records based on

bookmarks 25-10
Fetching records

asynchronously 25-11
Using batch updates 25-11
Loading data from and saving

data to files. 25-14
Using TADODataSet 25-15

Using Command objects 25-16
Specifying the command 25-17
Using the Execute method. 25-17
Canceling commands 25-17
Retrieving result sets with

commands 25-18
Handling command parameters 25-18

Chapter 26
Using unidirectional datasets 26-1
Types of unidirectional datasets 26-2
Connecting to the database server 26-2

Setting up TSQLConnection 26-3
Identifying the driver 26-3
Specifying connection parameters 26-4
Naming a connection description 26-4
Using the Connection Editor 26-5

Specifying what data to display 26-5
Representing the results of a query 26-6
Representing the records in a table 26-6

Representing a table using
TSQLDataSet 26-6

Representing a table using
TSQLTable 26-7

Representing the results of a stored
procedure. 26-7

Fetching the data 26-8
Preparing the dataset 26-8
Fetching multiple datasets 26-9

Executing commands that do not
return records 26-9

Specifying the command to
execute . 26-9

Executing the command 26-10
Creating and modifying server

metadata 26-10
Setting up master/detail linked

cursors .26-11
Accessing schema information 26-12

Fetching metadata into a unidirectional
dataset 26-12

Fetching data after using the
dataset for metadata 26-13

The structure of metadata
datasets 26-13

Debugging dbExpress applications 26-17
Using TSQLMonitor to monitor

SQL commands 26-17
Using a callback to monitor

SQL commands 26-18

Chapter 27
Using client datasets 27-1
Working with data using a client

dataset . 27-2
Navigating data in client datasets 27-2

xv

Limiting what records appear. 27-2
Editing data 27-5

Undoing changes 27-5
Saving changes 27-6

Constraining data values 27-6
Specifying custom constraints. 27-7

Sorting and indexing. 27-7
Adding a new index 27-8
Deleting and switching indexes27-9
Using indexes to group data. 27-9

Representing calculated values 27-10
Using internally calculated fields

in client datasets. 27-10
Using maintained aggregates 27-11

 Specifying aggregates 27-11
Aggregating over groups of

records 27-12
Obtaining aggregate values 27-13

Copying data from another dataset 27-13
Assigning data directly. 27-14
Cloning a client dataset cursor 27-14

Adding application-specific information
to the data 27-15

Using a client dataset to cache updates 27-15
Overview of using cached updates. 27-16
Choosing the type of dataset for

caching updates. 27-17
Indicating what records are

modified 27-18
Updating records 27-19

Applying updates. 27-20
Intervening as updates are

applied 27-21
Reconciling update errors 27-22

Using a client dataset with a provider 27-24
Specifying a provider 27-24
Requesting data from the source

dataset or document 27-25
Incremental fetching 27-25
Fetch-on-demand 27-26

Getting parameters from the source
dataset . 27-26

Passing parameters to the source
dataset . 27-27

Sending query or stored procedure
parameters 27-28

Limiting records with parameters . . . 27-28
Handling constraints from the server . . . 27-29
Refreshing records 27-30

Communicating with providers using
custom events 27-30

Overriding the source dataset 27-31
Using a client dataset with file-based

data . 27-32
Creating a new dataset 27-32
Loading data from a file or stream 27-33
Merging changes into data 27-33
Saving data to a file or stream 27-34

Chapter 28
Using provider components 28-1
Determining the source of data 28-2

Using a dataset as the source of the
data . 28-2

Using an XML document as the
source of the data 28-2

Communicating with the client dataset 28-3
Choosing how to apply updates using

a dataset provider 28-4
Controlling what information is included

in data packets. 28-4
Specifying what fields appear in data

packets . 28-4
Setting options that influence the data

packets . 28-5
Adding custom information to data

packets . 28-6
Responding to client data requests 28-7
Responding to client update requests 28-8

Editing delta packets before updating
the database 28-9

Influencing how updates are
applied . 28-9

Screening individual updates 28-11
Resolving update errors on the

provider. 28-11
Applying updates to datasets that

do not represent a single table 28-11
Responding to client-generated

events. 28-12
Handling server constraints 28-12

Chapter 29
Creating multi-tiered applications 29-1
Advantages of the multi-tiered database

model . 29-2
Understanding provider-based multi-

tiered applications 29-2

xvi

Overview of a three-tiered
application. 29-3

The structure of the client
application. 29-4

The structure of the application
server. . 29-5

The contents of the remote data
module 29-6

Using transactional data
modules 29-6

Pooling remote data modules29-8
Choosing a connection protocol 29-9

Using DCOM connections 29-9
Using Socket connections 29-9
Using Web connections. 29-10
Using SOAP connections. 29-11

Building a multi-tiered application 29-11
Creating the application server. 29-12

Setting up the remote data module. 29-13
Configuring the remote data module

when it is not transactional 29-13
Configuring a transactional remote

data module 29-14
Configuring TSoapDataModule. 29-15

Extending the application server’s
interface 29-16

Adding callbacks to the application
server’s interface 29-17

Extending a transactional application
server’s interface 29-17

Managing transactions in multi-tiered
applications 29-17

Supporting master/detail
relationships. 29-18

Supporting state information in
remote data modules 29-19

Using multiple remote data
modules 29-20

Registering the application server 29-21
Creating the client application 29-21

Connecting to the application
server. . 29-22

Specifying a connection using
DCOM 29-23

Specifying a connection using
sockets 29-23

Specifying a connection using
HTTP 29-24

Specifying a connection using
SOAP 29-25

 Brokering connections 29-25
Managing server connections 29-26

Connecting to the server 29-26
Dropping or changing a server

onnection 29-26
Calling server interfaces 29-27
Connecting to an application server

that uses multiple data modules 29-28
Writing Web-based client applications 29-28

Distributing a client application as an
ActiveX control 29-30

Creating an Active Form for the
client application 29-30

Building Web applications using
InternetExpress 29-31

Building an InternetExpress
application 29-31

Using the javascript libraries 29-33
Granting permission to access and

launch the application server 29-33
Using an XML broker 29-34

Fetching XML data packets 29-34
Applying updates from XML delta

packets 29-35
Creating Web pages with an Internet-

Express page producer 29-36
Using the Web page editor 29-37
Setting Web item properties 29-37
Customizing the InternetExpress

page producer template 29-38

Chapter 30
Using XML in database applications 30-1
Defining transformations 30-1

Mapping between XML nodes and
data packet fields 30-2

Using XMLMapper 30-4
Loading an XML schema or data

packet 30-4
Defining mappings 30-4
Generating transformation files 30-5

Converting XML documents into data
packets . 30-6

Specifying the source XML
document 30-6

Specifying the transformation 30-7
Obtaining the resulting data packet 30-7

xvii

Converting user-defined nodes 30-7
Using an XML document as the source

for a provider 30-8
Using an XML document as the client of

a provider . 30-9
Fetching an XML document from

a provider 30-9
Applying updates from an XML

document to a provider 30-10

Part III
Writing Internet applications

Chapter 31
Writing CORBA applications 31-1
Overview of a CORBA application 31-1

Understanding stubs and skeletons 31-2
Using Smart Agent 31-3
Activating server applications 31-3
Binding interface calls dynamically 31-4

Writing CORBA servers 31-4
Defining object interfaces 31-5
Using the CORBA Server Wizard. 31-5
Generating stubs and skeletons from

an IDL file31-6
Using the CORBA Object Implementa-

tion Wizard 31-6
Instantiating CORBA objects 31-7
Using the delegation model 31-8
Viewing and editing changes 31-9

Implementing CORBA Objects 31-9
Guarding against thread

conflicts 31-11
Changing CORBA interfaces 31-12
Registering server interfaces 31-12

Writing CORBA clients 31-13
Using stubs 31-14
 Using the dynamic invocation

interface 31-15
Testing CORBA servers 31-16

Setting up the testing tool 31-16
Recording and running test scripts 31-17

Chapter 32
Creating Internet server
applications 32-1

About Web Broker and WebSnap 32-1
Terminology and standards. 32-3

Parts of a Uniform Resource Locator 32-3
URI vs. URL 32-4

HTTP request header information. 32-4
HTTP server activity 32-5

Composing client requests 32-5
Serving client requests 32-5
Responding to client requests 32-6

Types of Web server applications 32-6
ISAPI and NSAPI 32-6
CGI stand-alone 32-7
Win-CGI stand-alone 32-7
Apache 32-7
Web App Debugger 32-7

Converting Web server application
target types 32-8

Debugging server applications 32-9
Using the Web Application

Debugger 32-9
Launching your application with

the Web Application Debugger. 32-9
Converting your application to

another type of Web server
application 32-10

Debugging Web applications that
are DLLs 32-10

User rights necessary for DLL
debugging. 32-11

Chapter 33
Using Web Broker 33-1
Creating Web server applications with

Web Broker. 33-1
The Web module. 33-2
The Web Application object 33-3

The structure of a Web Broker
application . 33-3

The Web dispatcher. 33-4
Adding actions to the dispatcher 33-4
Dispatching request messages 33-5

Action items . 33-5
Determining when action items fire. 33-6

The target URL 33-6
The request method type 33-6
Enabling and disabling action

items . 33-6
Choosing a default action item 33-7

Responding to request messages
with action items 33-7

Sending the response 33-8

xviii

Using multiple action items 33-8
Accessing client request information 33-8

Properties that contain request
header information 33-9

Properties that identify the target 33-9
Properties that describe the Web

client . 33-9
Properties that identify the purpose

of the request 33-9
Properties that describe the expected

response 33-10
Properties that describe the

content 33-10
The content of HTTP request

messages. 33-10
Creating HTTP response messages 33-10

Filling in the response header. 33-11
Indicating the response status 33-11
Indicating the need for client

action 33-11
Describing the server application 33-12
Describing the content 33-12

Setting the response content 33-12
Sending the response 33-12

Generating the content of response
messages . 33-13

Using page producer components 33-13
HTML templates 33-13
Specifying the HTML template 33-14
Converting HTML-transparent

tags . 33-15
Using page producers from an

action item 33-15
Chaining page producers

together 33-16
Using database information in

responses . 33-17
Adding a session to the Web

module. 33-17
Representing database information

in HTML. 33-18
Using dataset page producers 33-18
Using table producers 33-18
Specifying the table attributes 33-18
Specifying the row attributes 33-19
Specifying the columns. 33-19
Embedding tables in HTML

documents 33-19

Setting up a dataset table
producer 33-20

Setting up a query table
producer 33-20

Chapter 34
Creating Web Server applications
using WebSnap 34-1

Fundamental WebSnap components 34-2
Web modules. 34-2

Web application module types 34-3
Web page modules. 34-4
Web data modules 34-4

Adapters . 34-5
Fields . 34-5
Actions 34-6
Errors . 34-6
Records 34-6

Page producers 34-6
Creating Web server applications with

WebSnap . 34-7
Selecting a server type 34-8
Specifying application module

components 34-8
Selecting Web application module

options 34-10
WebSnap tutorial 34-11

Create a new application34-11
Step 1. Start the WebSnap application

wizard34-11
Step 2. Save the generated files and

project34-11
Step 3. Specify the application

title. 34-12
Create a CountryTable page 34-12

Step 1. Add a new Web page
module 34-12

Step 2. Save the new Web page
module 34-13

Add data components to the Country-
Table module 34-13

Step 1. Add data-aware
components 34-13

Step 2. Specify a key field 34-14
Step 3. Add an adapter

component 34-14
Create a grid to display the data. 34-15

Step 1. Add a grid 34-15

xix

Step 2. Add editing commands to
the grid 34-17

Add an edit form 34-18
Step 1. Add a new Web page

module 34-18
Step 2. Save the new module 34-18
Step 3. Make CountryTableU

accessible to the new module 34-18
Step 4. Add input fields 34-18
Step 5. Add buttons. 34-19
Step 6. Link form actions to the

grid page 34-20
Step 7. Link grid actions to the

form page 34-20
Run the completed application 34-21
Add error reporting 34-21

Step 1. Add error support to
the grid 34-21

Step 2. Add error support to
the form 34-22

Step 3. Test the error-reporting
mechanism. 34-22

Advanced HTML design 34-23
Manipulating server-side script

in HTML files 34-24
Login support 34-24

Adding login support 34-25
Using the sessions service 34-26
Login pages 34-26
Setting pages to require logins 34-28
User access rights. 34-28

Dynamically displaying fields as
edit or text boxes 34-29

Hiding fields and their contents. 34-30
Preventing page access 34-30

Server-side scripting in WebSnap 34-30
Active scripting 34-31
Script engine 34-31
Script blocks. 34-31
Creating script 34-32

Wizard templates 34-32
TAdapterPageProducer 34-32

Editing and viewing script 34-32
Including script in a page 34-32
Script objects 34-32

Dispatching requests and responses 34-33
Dispatcher components 34-34
Adapter dispatcher operation. 34-34

Using adapter components to
generate content 34-34

Receiving adapter requests and
generating responses 34-35

Image request 34-37
Image response. 34-37

Dispatching action items 34-38
Page dispatcher operation 34-38

Chapter 35
Working with XML documents 35-1
Using the Document Object Model 35-2
Working with XML components 35-3

Using TXMLDocument 35-3
Working with XML nodes 35-4

Working with a node’s value 35-4
Working with a node’s attributes 35-5
Adding and deleting child nodes 35-5

Abstracting XML documents with the
Data Binding wizard 35-5

Using the XML Data Binding wizard 35-7
Using code that the XML Data

Binding wizard generates. 35-8

Chapter 36
Using Web Services 36-1
Understanding invokable interfaces 36-2

Using nonscalar types in invokable
interfaces 36-3

Registering nonscalar types. 36-4
Registering typedef’ed types and

enumerated types 36-6
Using remotable objects 36-7
Remotable object example 36-8

Writing servers that support Web
Services. . 36-9

Building a Web Service server 36-10
Using the SOAP application wizard 36-11
Adding new Web Services 36-12

Editing the generated code 36-12
Using a different base class 36-12

Using the Web Services Importer 36-13
Creating custom exception classes

for Web Services 36-14
Generating WSDL documents for a

Web Service application. 36-15
Writing clients for Web Services. 36-16

Importing WSDL documents 36-16
Calling invokable interfaces 36-16

xx

Chapter 37
Working with sockets 37-1
Implementing services 37-1

Understanding service protocols37-2
Communicating with applications 37-2

Services and ports 37-2
Types of socket connections. 37-2

Client connections 37-3
Listening connections 37-3
Server connections 37-3

Describing sockets 37-3
Describing the host 37-4

Choosing between a host name
and an IP address37-4

Using ports 37-5
Using socket components 37-5

Getting information about the
connection 37-6

Using client sockets 37-6
Specifying the desired server 37-6
Forming the connection 37-6
Getting information about the

connection 37-6
Closing the connection37-7

Using server sockets 37-7
Specifying the port 37-7
Listening for client requests 37-7
Connecting to clients 37-7
Closing server connections 37-7

Responding to socket events 37-8
Error events 37-8
Client events 37-8
Server events 37-9

Events when listening 37-9
Events with client connections 37-9

Reading and writing over socket
connections . 37-9

Non-blocking connections. 37-10
Reading and writing events 37-10

Blocking connections. 37-10

Part IV
Developing COM-based applications

Chapter 38
Overview of COM technologies 38-1

COM as a specification and
implementation 38-1

COM extensions 38-2
Parts of a COM application 38-2

COM interfaces 38-3
The fundamental COM interface,

IUnknown 38-4
COM interface pointers 38-4

COM servers 38-5
CoClasses and class factories 38-6
In-process, out-of-process, and

remote servers 38-6
The marshaling mechanism 38-8
Aggregation 38-9

COM clients 38-9
COM extensions. 38-10

Automation servers 38-12
Active Server Pages 38-13
ActiveX controls 38-13
Active Documents. 38-14
Transactional objects 38-14
COM+ Event and event subscriber

objects. 38-15
Type libraries. 38-16

The content of type libraries 38-16
Creating type libraries. 38-17
When to use type libraries 38-17
Accessing type libraries 38-17
Benefits of using type libraries 38-18
Using type library tools 38-18

Implementing COM objects with
wizards . 38-19

Code generated by wizards 38-22

Chapter 39
Working with type libraries 39-1
Type Library editor 39-2

Parts of the Type Library editor 39-2
Toolbar 39-3
Object list pane 39-4
Status bar 39-5
Pages of type information. 39-5

Type library elements 39-8
Interfaces 39-8
Dispinterfaces 39-9
CoClasses 39-9
Type definitions 39-9
Modules. 39-10

Using the Type Library editor 39-10
Valid types 39-11
Creating a new type library. 39-12

xxi

Opening an existing type library 39-13
Adding an interface to the type

library 39-13
Modifying an interface using the

type library 39-14
Adding properties and methods

to an interface or dispinterface 39-14
 Adding a CoClass to the type

library 39-15
Adding an interface to a CoClass 39-15
Adding an enumeration to the

type library 39-16
Adding an alias to the type

library 39-16
Adding a record or union to the

type library 39-16
Adding a module to the type

library 39-17
Saving and registering type

library information 39-17
Saving a type library 39-18
Refreshing the type library 39-18
Registering the type library 39-18
Exporting an IDL file 39-19

Deploying type libraries 39-19

Chapter 40
Creating COM clients 40-1
Importing type library information 40-2

Using the Import Type Library
dialog . 40-3

Using the Import ActiveX dialog 40-4
Code generated when you import

type library information 40-5
Controlling an imported object 40-6

Using component wrappers. 40-6
ActiveX wrappers. 40-7
Automation object wrappers 40-7

Using data-aware ActiveX controls 40-8
Example: Printing a document with

Microsoft Word 40-10
Step 1: Prepare C++Builder for this

example 40-10
Step 2: Import the Word type

library 40-10
Step 3: Use a VTable or dispatch

interface object to control Microsoft
Word 40-11

Step 4: Clean up the example 40-12

Writing client code based on type
library definitions 40-12

Connecting to a server 40-12
Controlling an Automation server

using a dual interface 40-13
Controlling an Automation server

using a dispatch interface 40-13
Handling events in an automation

controller 40-14
Creating clients for servers that do not

have a type library 40-15

Chapter 41
Creating simple COM servers 41-1
Overview of creating a COM object. 41-1
Designing a COM object 41-2
Using the COM object wizard 41-2
Using the Automation object wizard 41-4

Choosing a threading model 41-5
Writing an object that supports the

free threading model. 41-6
Writing an object that supports

the apartment threading model 41-7
Writing an object that supports

the neutral threading model 41-8
Specifying ATL options 41-8
Defining a COM object’s interface 41-9

Adding a property to the object’s
interface. 41-9

Adding a method to the object’s
interface. 41-10

Exposing events to clients 41-10
Managing events in your Auto-

mation object41-11
Automation interfaces 41-12

Dual interfaces 41-12
Dispatch interfaces 41-13
Custom interfaces 41-14

Marshaling data 41-14
Automation compatible types 41-14
Type restrictions for automatic

marshaling 41-15
Custom marshaling 41-15

Registering a COM object 41-16
Registering an in-process server 41-16
Registering an out-of-process

server . 41-16
Testing and debugging the

application 41-17

xxii

Chapter 42
Creating an Active Server Page 42-1
Creating an Active Server Object. 42-2

Using the ASP intrinsics 42-3
Application 42-3
Request. 42-4
Response 42-5
Session . 42-5
Server .42-6

Creating ASPs for in-process or
out-of-process servers 42-7

Registering an Active Server Object42-7
Registering an in-process server 42-7
Registering an out-of-process server 42-8

Testing and debugging the Active Server
Page application 42-8

Chapter 43
Creating an ActiveX control 43-1
Overview of ActiveX control creation 43-2

Elements of an ActiveX control 43-2
VCL control 43-3
ActiveX wrapper 43-3
Type library 43-3
Property page 43-3

Designing an ActiveX control 43-4
Generating an ActiveX control from

a VCL control 43-4
Generating an ActiveX control based

on a VCL form 43-6
Licensing ActiveX controls 43-7
Customizing the ActiveX control’s

interface . 43-8
Adding additional properties,

methods, and events43-9
Adding properties and

methods 43-9
Adding events. 43-10

Enabling simple data binding with
the type library 43-11

Creating a property page for an
ActiveX control 43-13

Creating a new property page 43-13
Adding controls to a property page 43-14
Associating property page controls

with ActiveX control properties. 43-14
Updating the property page 43-14
Updating the object 43-15

Connecting a property page to an
ActiveX control 43-15

Registering an ActiveX control 43-15
Testing an ActiveX control 43-16
Deploying an ActiveX control on

the Web. 43-16
Setting options 43-17

Chapter 44
Creating MTS or COM+ objects 44-1
Understanding transactional objects 44-2

Requirements for a transactional
object . 44-3

Managing resources 44-3
Accessing the object context 44-4
Just-in-time activation 44-4
Resource pooling 44-5

Database resource dispensers 44-6
Shared property manager. 44-6
Releasing resources 44-9

Object pooling 44-9
MTS and COM+ transaction support 44-10

Transaction attributes44-11
Setting the transaction attribute 44-11

Stateful and stateless objects 44-12
Influencing how transactions end 44-12
Initiating transactions 44-13

Setting up a transaction object
on the client side 44-13

Setting up a transaction object
on the server side 44-14

Transaction time-out 44-15
Role-based security 44-16
Overview of creating transactional

objects . 44-17
Using the Transactional Object

wizard . 44-17
Choosing a threading model for

a transactional object 44-18
Activities 44-19

Generating events under COM+ 44-20
Using the Event Object wizard. 44-22
Using the COM+ Event Subscription

object wizard 44-23
Firing events using a COM+ event

object . 44-24
Passing object references 44-24

Using the SafeRef method 44-25
Callbacks 44-25

xxiii

Debugging and testing transactional
objects . 44-26

Installing transactional objects 44-27
Administering transactional objects 44-28

Part V
Creating custom components

Chapter 45
Overview of component creation 45-1
Class libraries. 45-1
Components and classes 45-2
How do you create components? 45-2

Modifying existing controls 45-3
Creating windowed controls 45-3
Creating graphic controls 45-4
Subclassing Windows controls 45-4
Creating nonvisual components 45-5

What goes into a component? 45-5
Removing dependencies. 45-5
Setting properties, methods, and

events . 45-6
Properties 45-6
Events .45-6
Methods 45-6

Encapsulating graphics 45-7
Registering components 45-8

Creating a new component 45-8
Creating a component with the

Component wizard 45-9
Creating a component manually 45-11

Creating a unit file 45-11
Deriving the component 45-12
Declaring a new constructor. 45-13
Registering the component 45-13

Creating a bitmap for a component 45-14
Testing uninstalled components 45-16
Testing installed components 45-18
Installing a component on the

Component palette. 45-18
Making source files available 45-19
Adding the component 45-19

Chapter 46
Object-oriented programming for
component writers 46-1

Defining new classes 46-1
Deriving new classes. 46-2

To change class defaults to avoid
repetition 46-2

To add new capabilities to a
class . 46-2

Declaring a new component class 46-3
Ancestors, descendants, and class

hierarchies . 46-3
Controlling access. 46-4

Hiding implementation details 46-4
Defining the component writer’s

interface. 46-6
Defining the runtime interface 46-7
Defining the design-time interface 46-7

Dispatching methods 46-8
Regular methods 46-8
Virtual methods 46-9

Overriding methods 46-9
Abstract class members 46-10
Classes and pointers 46-10

Chapter 47
Creating properties 47-1
Why create properties? 47-1
Types of properties 47-2
Publishing inherited properties 47-3
Defining properties 47-3

The property declaration 47-3
Internal data storage 47-4
Direct access 47-4
Access methods 47-5

The read method 47-6
The write method 47-6

Default property values 47-7
Specifying no default value. 47-7

Creating array properties 47-8
Creating properties for sub-

components 47-9
Storing and loading properties 47-10

Using the store-and-load
mechanism47-11

Specifying default values47-11
Determining what to store 47-12
Initializing after loading 47-13
Storing and loading unpublished

properties. 47-13
Creating methods to store and

load property values. 47-13
Overriding the DefineProperties

method 47-14

xxiv

Chapter 48
Creating events 48-1
What are events? 48-1

Events are closures 48-2
Events are properties. 48-2
Event types are closure types 48-3

Event handlers have a return
type of void 48-3

Event handlers are optional 48-3
Implementing the standard events. 48-4

Identifying standard events 48-4
Standard events for all controls 48-4
Standard events for standard

controls 48-5
Making events visible 48-5
Changing the standard event

handling . 48-5
Defining your own events 48-6

Triggering the event 48-6
Two kinds of events 48-7

Defining the handler type48-7
Simple notifications. 48-7
Event-specific handlers. 48-7
Returning information from

the handler. 48-7
Declaring the event. 48-8

Event names start with “On” 48-8
Calling the event 48-8

Chapter 49
Creating methods 49-1
Avoiding dependencies 49-1
Naming methods 49-2
Protecting methods 49-3

Methods that should be public 49-3
Methods that should be protected 49-3

Making methods virtual 49-3
Declaring methods. 49-4

Chapter 50
Using graphics in components 50-1
Overview of graphics 50-1
Using the canvas 50-3
Working with pictures. 50-3

Using a picture, graphic, or canvas. 50-3
Loading and storing graphics 50-4

Handling palettes 50-5
Specifying a palette for a control 50-5

Off-screen bitmaps 50-6
Creating and managing off-screen

bitmaps . 50-6
Copying bitmapped images 50-6

Responding to changes. 50-7

Chapter 51
Handling messages and system
notifications 51-1

Understanding the message-handling
system . 51-1

What’s in a Windows message? 51-2
Dispatching messages. 51-3

Tracing the flow of messages 51-3
Changing message handling. 51-4

Overriding the handler method 51-4
Using message parameters 51-5
Trapping messages 51-5

Creating new message handlers. 51-6
Defining your own messages 51-6

Declaring a message identifier 51-6
Declaring a message-structure

type . 51-7
Declaring a new message-handling

method . 51-7
Sending messages 51-8

Broadcasting a message to all
controls in a form 51-8

Calling a control’s message
handler directly 51-9

Sending a message using the
Windows message queue 51-9

Sending a message that does
not execute immediately 51-10

Responding to system notifications
using CLX 51-10

Responding to signals. 51-10
Assigning custom signal

handlers51-11
Responding to system events 51-12

Commonly used events 51-13
Overriding the EventFilter

method 51-14
Generating Qt events 51-15

xxv

Chapter 52
Making components available
at design time 52-1

Registering components. 52-1
Declaring the Register function 52-2
Writing the Register function 52-2

Specifying the components 52-2
Specifying the palette page 52-3
Using the RegisterComponents

function 52-3
Adding palette bitmaps 52-4
Providing Help for your component. 52-4

Creating the Help file 52-5
Creating the entries 52-5
Making component help

context-sensitive 52-6
Adding component help files 52-7

Adding property editors 52-7
Deriving a property-editor class 52-7
Editing the property as text 52-8

Displaying the property value. 52-9
Setting the property value 52-9

Editing the property as a whole 52-9
Specifying editor attributes 52-10
Registering the property editor 52-11

Property categories 52-12
Registering one property at a time 52-12
Registering multiple properties

at once . 52-13
Specifying property categories 52-14
Using the IsPropertyInCategory

function 52-15
Adding component editors 52-15

Adding items to the context menu 52-16
Specifying menu items 52-16
Implementing commands 52-16

Changing the double-click behavior 52-17
Adding clipboard formats 52-18
Registering the component editor 52-18

Compiling components into packages. 52-19
Troubleshooting custom components 52-19

Chapter 53
Modifying an existing component 53-1
Creating and registering the component 53-1
Modifying the component class 53-3

Overriding the constructor 53-3

Specifying the new default property
value . 53-4

Chapter 54
Creating a graphic control 54-1
Creating and registering the

component . 54-1
Publishing inherited properties 54-3
Adding graphic capabilities 54-3

Determining what to draw 54-3
Declaring the property type 54-4
Declaring the property 54-4
Writing the implementation

method 54-5
Overriding the constructor and

destructor. 54-5
Changing default property values 54-5

Publishing the pen and brush 54-6
Declaring the data members 54-6
Declaring the access properties. 54-6
Initializing owned classes. 54-7
Setting owned classes’ properties 54-8

Drawing the component image 54-9
Refining the shape drawing 54-10

Chapter 55
Customizing a grid 55-1
Creating and registering the

component . 55-1
Publishing inherited properties 55-3
Changing initial values. 55-3
Resizing the cells 55-4
Filling in the cells 55-6

Tracking the date 55-6
Storing the internal date 55-7
Accessing the day, month, and

year . 55-7
Generating the day numbers 55-9
Selecting the current day 55-11

Navigating months and years55-11
Navigating days. 55-12

Moving the selection 55-12
Providing an OnChange event. 55-13
Excluding blank cells 55-14

Chapter 56
Making a control data aware 56-1
Creating a data browsing control 56-1

xxvi

Creating and registering the
component. 56-2

Making the control read-only 56-3
Adding the ReadOnly property56-3
Allowing needed updates 56-4

Adding the data link 56-5
Declaring the data member 56-5
Declaring the access properties 56-6
An example of declaring access

properties 56-6
Initializing the data link 56-7

Responding to data changes 56-7
Creating a data editing control 56-8

Changing the default value of
FReadOnly 56-9

Handling mouse-down and key-down
messages. 56-9

Responding to mouse-down
messages 56-9

Responding to key-down
messages 56-10

Updating the field data link class. 56-11
Modifying the Change method 56-11
Updating the dataset 56-12

Chapter 57
Making a dialog box a
component 57-1

Defining the component interface 57-1
Creating and registering the

component .57-2
Creating the component interface 57-3

Including the form unit files 57-3
Adding interface properties 57-4
Adding the Execute method 57-5

Testing the component 57-6

Chapter 58
Extending the IDE 58-1
Overview of the Tools API 58-2
Writing a wizard class 58-3

Implementing the wizard interfaces 58-4
Simplifying implementing interfaces 58-6
Installing the wizard package. 58-7

Obtaining Tools API services58-7
Using native IDE objects. 58-8

Using the INTAServices interface 58-9
Adding an image to the image list 58-9
Adding an action to the action list 58-9

Deleting toolbar buttons 58-10
Debugging a wizard 58-11
Interface version numbers 58-11

Working with files and editors 58-12
Using module interfaces 58-13
Using editor interfaces 58-13

Creating forms and projects 58-14
Creating modules 58-14

Notifying a wizard of IDE events 58-18
Installing a wizard DLL 58-22

Using a DLL without runtime
packages 58-23

Appendix A
ANSI implementation-specific
standards A-1

Appendix B
WebSnap server-side scripting
reference B-1

Object types .B-1
Adapter typeB-2

PropertiesB-2
AdapterAction typeB-4

PropertiesB-4
Methods. B-6

AdapterErrors type B-6
PropertiesB-6

AdapterField typeB-6
PropertiesB-6
Methods. B-9

AdapterFieldValues type B-10
Properties B-10
Methods. B-10

AdapterFieldValuesList type. B-10
Properties B-10
Methods. B-11

AdapterHiddenFields type. B-11
Properties B-11
Methods. B-11

AdapterImage type B-12
Properties B-12

Module type B-12
Properties B-12

Page type . B-12
Properties B-12

Global objects B-14
Application object B-14

xxvii

Properties B-14
Methods B-15

EndUser object B-15
Properties B-15

Modules object B-16
Page object B-16
Pages objectB-16
Producer objectB-17

Properties B-17
Methods B-17

Request object. B-17
Properties B-17

Response objectB-18
Properties B-18
Methods B-18

Session objectB-18
Properties B-18

JScript ExamplesB-19
Example 1B-20
Example 2B-20
Example 3B-20

Example 4 B-21
Example 5 B-21
Example 6 B-22
Example 7 B-22
Example 8 B-23
Example 9 B-23
Example 10 B-24
Example 11 B-26
Example 12 B-27
Example 13 B-28
Example 14 B-29
Example 15 B-30
Example 16 B-32
Example 17 B-33
Example 18 B-34
Example 19 B-35
Example 20 B-35
Example 21 B-36
Example 22 B-37

Index I-1

xxviii

1.1 Typefaces and symbols 1-3
3.1 Important base classes 3-5
4.1 Open modes 4-6
4.2 Share modes 4-6
4.3 Shared modes available for each

open mode 4-6
4.4 Attribute constants and values 4-8
4.5 Classes for managing lists 4-13
4.6 String comparison routines 4-22
4.7 Case conversion routines 4-22
4.8 String modification routines : 4-22
4.9 Sub-string routines 4-23
4.10 Null-terminated string comparison

routines . 4-23
4.11 Case conversion routines for

null-terminated strings4-24
4.12 String modification routines 4-24
4.13 Sub-string routines 4-24
4.14 String copying routines4-24
5.1 Component palette pages 5-7
6.1 Properties of selected text. 6-8
6.2 Fixed vs. variable owner-draw

styles . 6-12
7.1 Compiler directives for libraries 7-10
7.2 Database pages on the Component

palette . 7-15
7.3 Web server applications. 7-17
7.4 Context menu options for data

modules. 7-21
7.5 Help methods in TApplication 7-33
8.1 Action setup terminology. 8-17
8.2 Default values of the action manager’s

PrioritySchedule property 8-23
8.3 Action classes 8-27
8.4 Sample captions and their derived

names . 8-31
8.5 Menu Designer context menu

commands 8-37
8.6 Setting speed buttons’ appearance. 8-44
8.7 Setting tool buttons’ appearance8-46
8.8 Setting a cool button’s appearance. 8-48
9.1 Edit control properties 9-2
10.1 Graphic object types 10-3
10.2 Common properties of the

Canvas object. 10-4
10.3 Common methods of the

Canvas object. 10-4

10.4 CLX MIME types and constants 10-22
10.5 Mouse-event parameters. 10-24
10.6 Multimedia device types and their

functions 10-32
11.1 Thread priorities 11-3
11.2 WaitFor return values 11-10
12.1 Exception handling compiler

options 12-14
12.2 Selected exception classes 12-17
13.1 Object model comparison 13-10
13.2 Equality comparison !A == !B

of BOOL variables 13-20
13.3 Examples of RTTI mappings from

Object Pascal to C++ 13-22
14.1 Porting techniques 14-2
14.2 CLX parts 14-5
14.3 Changed or different features 14-8
14.4 VCL and equivalent CLX units 14-9
14.5 CLX-only units 14-9
14.6 VCL-only units 14-10
14.7 Differences in the Linux and

Windows operating environ-
ments. 14-13

14.8 Common Linux directories 14-15
14.9 Comparable data-access

components 14-21
14.10Properties, methods, and events

for cached updates 14-25
15.1 Package files. 15-2
15.2 Package-specific compiler

directives. 15-11
15.3 Package-specific command-line

linker switches 15-12
15.4 Files deployed with a package 15-13
16.1 VCL objects that support BiDi. 16-4
16.2 VCL methods that support BiDi 16-7
16.3 Estimating string lengths 16-9
17.1 Application files 17-3
17.2 Merge modules and their

dependencies 17-4
17.3 dbExpress deployment as

stand-alone executable 17-7
17.4 dbExpress deployment with driver

DLLs . 17-8
17.5 SQL database client software

files . 17-9
19.1 Data controls 19-2

Tables

xxix

19.2 Column properties. 19-20
19.3 Expanded TColumn Title

properties 19-20
19.4 Properties that affect the way

composite fields appear 19-23
19.5 Expanded TDBGrid Options

properties 19-24
19.6 Grid control events 19-26
19.7 Selected database control grid

properties 19-28
19.8 TDBNavigator buttons 19-29
21.1 Database connection components 21-1
22.1 Values for the dataset State

property. 22-3
22.2 Navigational methods of datasets 22-5
22.3 Navigational properties of datasets 22-6
22.4 Comparison and logical operators

that can appear in a filter 22-14
22.5 FilterOptions values 22-15
22.6 Filtered dataset navigational

methods. 22-16
22.7 Dataset methods for inserting,

updating, and deleting data 22-17
22.8 Methods that work with entire

records 22-21
22.9 Index-based search methods 22-27
23.1 TFloatField properties that affect

data display 23-1
23.2 Special persistent field kinds 23-6
23.3 Field component properties 23-11
23.4 Field component formatting

routines 23-15
23.5 Field component events. 23-15
23.6 Selected field component

methods. 23-16
23.7 Special conversion results 23-19
23.8 Types of object field components 23-22
23.9 Common object field descendant

properties 23-23
24.1 Table types recognized by the BDE

based on file extension 24-5
24.2 TableType values. 24-5
24.3 BatchMove import modes 24-8
24.4 Database-related informational

methods for session components 24-26
24.5 TSessionList properties and

methods. 24-28
24.6 Properties, methods, and events

for cached updates. 24-32

24.7 UpdateKind values 24-38
24.8 Batch move modes 24-48
24.9 Data Dictionary interface 24-52
25.1 ADO components. 25-2
25.2 ADO connection modes 25-6
25.3 Execution options for ADO

datasets 25-11
25.4 Comparison of ADO and client

dataset cached updates. 25-12
26.1 Columns in tables of metadata listing

tables . 26-13
26.2 Columns in tables of metadata listing

stored procedures. 26-14
26.3 Columns in tables of metadata listing

fields . 26-14
26.4 Columns in tables of metadata listing

indexes 26-15
26.5 Columns in tables of metadata listing

parameters. 26-16
27.1 Filter support in client datasets 27-3
27.2 Summary operators for maintained

aggregates 27-12
27.3 Specialized client datasets for caching

updates 27-17
28.1 AppServer interface members. 28-3
28.2 Provider options 28-5
28.3 UpdateStatus values 28-9
28.4 UpdateMode values 28-10
28.5 ProviderFlags values 28-10
29.1 Components used in multi-tiered

applications 29-3
29.2 Connection components 29-5
29.3 Javascript libraries 29-33
32.1 Web Broker versus WebSnap 32-2
33.1 MethodType values. 33-6
34.1 Web application module types 34-3
34.2 Web server application types 34-8
34.3 Web application components 34-9
34.4 Script objects 34-33
34.5 Request information found in action

requests 34-36
36.1 Remotable classes. 36-7
38.1 COM object requirements 38-12
38.2 C++Builder wizards for implementing

COM, Automation, and ActiveX
objects 38-20

39.1 Type Library editor files 39-2
39.2 Type Library editor parts 39-2
39.3 Type library pages 39-5

xxx

41.1 Threading models for COM
objects . 41-5

42.1 IApplicationObject interface
members 42-4

42.2 IRequest interface members 42-4
42.3 IResponse interface members 42-5
42.4 ISessionObject interface members 42-6
42.5 IServer interface members 42-6
44.1 IObjectContext methods for

transaction support 44-12
44.2 Threading models for transactional

objects . 44-18
44.3 Call synchronization options 44-20
44.4 Event publisher return codes 44-24
45.1 Component creation starting

points . 45-3
46.1 Levels of visibility within an

object . 46-4
47.1 How properties appear in the

Object Inspector 47-2
50.1 Canvas capability summary 50-3
50.2 Image-copying methods 50-6

51.1 TWidgetControl protected methods
for responding to system
notifications 51-13

51.2 TWidgetControl protected methods
for responding to events from
controls. 51-14

52.1 Predefined property-editor types 52-8
52.2 Methods for reading and writing

property values 52-9
52.3 Property-editor attribute flags. 52-10
52.4 Property categories 52-14
58.1 The four kinds of wizards 58-3
58.2 Tools API service interfaces 58-8
58.3 Notifier interfaces. 58-18
A.1 Options needed for ANSI

compliance A-1
A.2 Identifying diagnostics in C++ A-3
B.1 WebSnap object types B-2
B.2 WebSnap global objects B-14
B.3 JScript examples of server-side

scripting B-19

xxxi

3.1 Objects, components, and controls. 3-4
3.2 A simplified hierarchy diagram 3-4
8.1 A frame with data-aware controls

and a data source component 8-15
8.3 Menu terminology. 8-29
8.4 MainMenu and PopupMenu

components 8-30
8.6 Adding menu items to a main

menu . 8-33
8.7 Nested menu structures. 8-34
9.2 A progress bar 9-14
10.1 Bitmap-dimension dialog box

from the BMPDlg unit. 10-21
13.1 Order of VCL-style object

construction 13-9
16.1 TListBox set to bdLeftToRight 16-6
16.2 TListBox set to bdRightToLeft 16-6
16.3 TListBox set to bdRightToLeft

NoAlign. 16-6
16.4 TListBox set to bdRightToLeft

ReadingOnly 16-7
18.1 Generic Database Architecture 18-6
18.2 Connecting directly to the

database server. 18-8
18.3 A file-based database application 18-9
18.4 Architecture combining a client

dataset and another dataset 18-12
18.5 Multi-tiered database

architecture 18-13
19.1 TDBGrid control 19-15
19.2 TDBGrid control with ObjectView

set to false. 19-23
19.3 TDBGrid control with Expanded

set to false. 19-23
19.4 TDBGrid control with Expanded

set to true 19-23
19.5 TDBCtrlGrid at design time 19-27
19.6 Buttons on the TDBNavigator

control. 19-28
20.1 Decision support components

at design time 20-2
20.2 One-dimensional crosstab 20-3
20.3 Three-dimensional crosstab 20-3

20.4 Decision graphs bound to different
decision sources. 20-14

24.1 Components in a BDE-based
application. 24-2

29.1 Web-based multi-tiered database
application. 29-29

31.1 Structure of a CORBA application 31-2
32.1 Parts of a Uniform Resource

Locator . 32-3
33.1 Structure of a Server Application 33-3
34.2 Web App Components dialog 34-9
34.5 CountryTable Preview tab 34-16
34.6 CountryTable HTML Script tab 34-16
34.7 CountryTable Preview after editing

commands have been added 34-17
34.10 Web App Components dialog with

options for login support selected . . . 34-25
34.11 An example of a login page as seen

from a Web page editor 34-27
34.12 Generating content flow 34-35
34.13 Action request and response 34-37
34.14 Image response to a request. 34-38
34.15 Dispatching a page 34-39
38.1 A COM interface 38-3
38.2 Interface vtable 38-5
38.3 In-process server 38-7
38.4 Out-of-process and remote

servers . 38-8
38.5 COM-based technologies 38-11
38.6 Simple COM object interface 38-19
38.7 Automation object interface 38-19
38.8 ActiveX object interface 38-20
39.1 Type Library editor 39-3
39.2 Object list pane 39-4
41.1 Dual interface VTable 41-13
43.1 Mask Edit property page in design

mode . 43-14
44.1 The COM+ Events system 44-22
45.1 Visual Component Library class

hierarchy. 45-2
45.2 Component wizard 45-9
51.1 Signal routing51-11
51.2 System event routing 51-13

Figures

xxxii

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter 1Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, writing custom components,
creating Internet Web server applications, and including support for industry-
standard specifications such as SOAP, TCP/IP, COM+, and ActiveX. Many of the
advanced features that support Web development, advanced XML technologies, and
database development require components or wizards that are not available in all
versions of C++Builder.

The Developer’s Guide assumes you are familiar with using C++Builder and
understand fundamental C++Builder programming techniques. For an introduction
to C++Builder programming and the integrated development environment (IDE), see
the Quick Start and the online Help.

What’s in this manual?
This manual contains five parts, as follows:

• Part I, “Programming with C++Builder,” describes how to build general-purpose
C++Builder applications. This part provides details on programming techniques
you can use in any C++Builder application. For example, it describes how to use
common Visual Component Library (VCL) or Component Library for Cross-
Platform (CLX) objects that make user interface programming easy such as
handling strings, manipulating text, implementing the common dialogs, working
with graphics, error and exception handling, using DLLs, OLE automation, and
writing international applications.

Generally, it rarely matters that C++Builder’s underlying VCL is written in Object
Pascal. However, there are a few instances where it affects your C++Builder
programs. A chapter on C++ language support and the VCL describes language
issues such as how C++ class instantiation differs when using VCL classes and the
C++ language extensions added to support the C++Builder “component-property-
event” model of programming.

1-2 D e v e l o p e r ’ s G u i d e

W h a t ’ s i n t h i s m a n u a l ?

A chapter describes how to use objects in the Borland Component Library for
Cross-Platform (CLX) to develop applications that can be compiled and run on
either Windows or Linux platforms.

The chapter on deployment details the tasks involved in deploying your
application to your application users. For example, it includes information on
effective compiler options, using InstallShield Express, licensing issues, and
determining which packages, DLLs, and other libraries to use when building the
production-quality version of your application.

• Part II, “Developing database applications,” describes how to build database
applications using database tools and components. C++Builder lets you access
many types of databases, including local databases such as Paradox and dBASE,
and network SQL server databases like InterBase, Oracle, and Sybase. You can
choose from a variety of data access mechanisms, including dbExpress, the
Borland Database Engine, InterBaseExpress, and ActiveX Data Objects (ADO). To
implement the more advanced database applications, you need the C++Builder
features that are not available in all editions.

• Part III, “Writing Internet applications,” describes how to create applications that
are distributed over the Internet. C++Builder includes a wide array of tools for
writing Web server applications, including: Web Broker, an architecture with
which you can create cross-platform server applications; WebSnap, with which
you can design Web pages in a GUI environment; support for working with XML
documents; and BizSnap, an architecture for using SOAP-based Web Services.

This part also provides a chapter on the C++Builder socket components that let
you create applications that can communicate with other systems using TCP/IP
and related protocols. Sockets provide connections based on the TCP/IP protocol,
but are sufficiently general to work with related protocols such as Xerox Network
System (XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

• Part IV, “Developing COM-based applications,” describes how to build
applications that can interoperate with other COM-based API objects. C++Builder
supports COM applications that are based on the Active Template Library (ATL)
wizards and a Type Library editor to ease the development of COM servers, and
an importing tool lets you quickly create client applications. Support for COM
clients is available in all editions of C++Builder. Support for COM servers is not
available in all editions of C++Builder.

• Part V, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the VCL or CLX class libraries.

I n t r o d u c t i o n 1-3

M a n u a l c o n v e n t i o n s

Manual conventions
This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Developer support services

Borland offers a variety of support options, including free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products, technical support, and fee-based consultant-level support.

For more information about Borland’s developer support services, please see our
Web site at http://www.borland.com/devsupport/bcppbuilder, call Borland Assist
at (800) 523-7070, or contact our Sales Department at (831) 431-1064. For customers
outside of the United States of America, see our Web site at
http://www.borland.com/bww/intlcust.html.

When contacting support, be prepared to provide complete information about your
environment, the version and edition of the product you are using, and a detailed
description of the problem.

Ordering printed documentation

To order additional documentation, see the Borland Web site at shop.borland.com.

Table 1.1 Typefaces and symbols

Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in C++ code. It
also represents anything you must type.

[] Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent C++ reserved words or
compiler options.

Italics Italicized words in text represent C++ identifiers, such as variable or type
names. Italics are also used to emphasize certain words, such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

1-4 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g w i t h C + + B u i l d e r

P a r t

I
Part IProgramming with C++Builder

The chapters in “Programming with C++Builder” introduce concepts and skills
necessary for creating C++Builder applications using any edition of the product.

D e v e l o p i n g a p p l i c a t i o n s w i t h C + + B u i l d e r 2-1

C h a p t e r

2
Chapter 2Developing applications with

C++Builder
Borland C++Builder is an object-oriented, visual programming environment to
develop 32-bit applications for deployment on Windows and Linux. Using
C++Builder, you can create highly efficient applications with a minimum of manual
coding.

C++Builder provides a suite of Rapid Application Development (RAD) design tools,
including programming wizards and application and form templates, and supports
object-oriented programming with two comprehensive class libraries:

• The Visual Component Library (VCL), which includes objects that encapsulate the
Windows API as well as other useful programming techniques (Windows).

• The Borland Component Library for Cross-Platform (CLX), which includes objects that
encapsulate the Qt library (Windows or Linux).

This chapter briefly describes the C++Builder development environment and how it
fits into the development life cycle. The rest of this manual provides technical details
on developing general-purpose, database, Internet and Intranet applications,
creating ActiveX and COM controls, and writing your own components.

Integrated development environment
When you start C++Builder, you are immediately placed within the integrated
development environment, also called the IDE. This IDE provides all the tools you
need to design, develop, test, debug, and deploy applications, allowing rapid
prototyping and a shorter development time.

The IDE includes all the tools necessary to start designing applications, such as the:

• Form Designer, or form, a blank window on which to design the UI for your
application.

2-2 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a p p l i c a t i o n s

• Component palette for displaying visual and nonvisual components you can use
to design your user interface.

• Object Inspector for examining and changing an object’s properties and events.
• Object TreeView for displaying and changing a components’ logical relationships.
• Code editor for writing and editing the underlying program logic.
• Project Manager for managing the files that make up one or more projects.
• Integrated debugger for finding and fixing errors in your code.
• Many other tools such as property editors to change the values for an object’s

property.
• Command-line tools including compilers, linkers, and other utilities.
• Extensive class libraries with many reusable objects. Many of the objects provided

in the class library are accessible in the IDE from the Component palette. By
convention, the names of objects in the class library begin with a T, such as
TStatusBar.

Some tools may not be included in all editions of the product.

A more complete overview of the development environment is presented in the
Quick Start manual included with the product. In addition, the online Help system
provides help on all menus, dialog boxes, and windows.

Designing applications
You can use C++Builder to design any kind of 32-bit application—from general-
purpose utilities to sophisticated data access programs or distributed applications.

As you visually design the user interface for your application, C++Builder generates
the underlying C++ code to support the application. As you select and modify the
properties of components and forms, the results of those changes appear
automatically in the source code, and vice versa. You can modify the source files
directly with any text editor, including the built-in Code editor. The changes you
make are immediately reflected in the visual environment.

In C++Builder, you can create your own components. Most of the components
provided are written in Object Pascal. You can add components that you write to the
Component palette and customize the palette for your use by including new tabs if
needed.

You can also use C++Builder to design applications that run on both Linux and
Windows by using CLX. CLX contains a set of classes that, if used instead of those in
the VCL, allows your program to port between Windows and Linux. Refer to
Chapter 14, “Developing cross-platform applications” for details about cross-
platform programming and the differences between the Windows and Linux
environments.

Chapter 7, “Building applications, components, and libraries,” introduces
C++Builder’s support for different types of applications.

D e v e l o p i n g a p p l i c a t i o n s w i t h C + + B u i l d e r 2-3

C r e a t i n g p r o j e c t s

Creating projects
All of C++Builder’s application development revolves around projects. When you
create an application in C++Builder you are creating a project. A project is a
collection of files that make up an application. Some of these files are created at
design time. Others are generated automatically when you compile the project source
code.

You can view the contents of a project in a project management tool called the Project
Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms
contained in the unit (if there is one), and shows the paths to the files in the project.
Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools in C++Builder.

At the top of the project hierarchy is a group file. You can combine multiple projects
into a project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects, such
as applications that function together or parts of a multi-tiered application. If you are
only working on one project, you do not need a project group file to create an
application.

Project files, which describe individual projects, files, and associated options, have a
.bpr extension. Project files contain directions for building an application or shared
object. When you add and remove files using the Project Manager, the project file is
updated. You specify project options using a Project Options dialog which has tabs
for various aspects of your project such as forms, application, and compiler. These
project options are stored in the project file with the project.

Units and forms are the basic building blocks of a C++Builder application. A project
can share any existing form and unit file including those that reside outside the
project directory tree. This includes custom procedures and functions that have been
written as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current
project directory; it remains in its current location. Adding the shared file to the
current project registers the file name and path in the project file. C++Builder
automatically handles this as you add units to a project.

When you compile a project, it does not matter where the files that make up the
project reside. The compiler treats shared files the same as those created by the
project itself.

Editing code
The C++Builder Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. You can start designing your application interface by placing objects on the
form and modifying how they work in the Object Inspector. But other programming
tasks, such as writing event handlers for objects, must be done by typing the code.

2-4 D e v e l o p e r ’ s G u i d e

C o m p i l i n g a p p l i c a t i o n s

The contents of the form, all of its properties, its components, and their properties
can be viewed and edited as text in the Code editor. You can adjust the generated
code in the Code editor and add more components within the editor by typing code.
As you type code into the editor, the compiler is constantly scanning for changes and
updating the form with the new layout. You can then go back to the form, view and
test the changes you made in the editor, and continue adjusting the form from there.

The C++Builder code generation and property streaming systems are completely
open to inspection. The source code for everything that is included in your final
executable file—all of the VCL objects, CLX objects, RTL sources, and project files—
can be viewed and edited in the Code editor.

Compiling applications
When you have finished designing your application interface on the form and
writing additional code so it does what you want, you can compile the project from
the IDE or from the command line.

All projects have as a target a single distributable executable file. You can view or test
your application at various stages of development by compiling, building, or
running it:

• When you compile, only units that have changed since the last compile are
recompiled.

• When you build, all units in the project are compiled, regardless of whether they
have changed since the last compile. This technique is useful when you are unsure
of exactly which files have or have not been changed, or when you simply want to
ensure that all files are current and synchronized. It's also important to build when
you've changed global compiler directives to ensure that all code compiles in the
proper state.You can also test the validity of your source code without attempting
to compile the project.

• When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in
a single project group at once. Choose Project|Compile All Projects or Project|Build
All Projects with the project group selected in the Project Manager.

CLX To compile a CLX application on Linux, a Borland C++ solution is not yet available,
but you can develop the application with C++Builder now.

Debugging applications
C++Builder provides an integrated debugger that helps you find and fix errors in
your applications. The integrated debugger lets you control program execution,
monitor variable values and items in data structures, and modify data values while
debugging.

D e v e l o p i n g a p p l i c a t i o n s w i t h C + + B u i l d e r 2-5

D e p l o y i n g a p p l i c a t i o n s

The integrated debugger can track down both runtime errors and logic errors. By
running to specific program locations and viewing the variable values, the functions
on the call stack, and the program output, you can monitor how your program
behaves and find the areas where it is not behaving as designed. The debugger is
described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.
Exceptions in C++Builder are classes, like other classes in C++Builder, except, by
convention, they begin with an initial E rather than a T. See Chapter 12, “Exception
handling” for details on exception handling.

Deploying applications
C++Builder includes add-on tools to help with application deployment. For example,
InstallShield Express (not available in all editions) helps you to create an installation
package for your application that includes all of the files needed for running a
distributed application. TeamSource software (not available in all editions) is also
available for tracking application updates.

Note Not all editions of C++Builder have deployment capabilities.

CLX To deploy a CLX application on Linux, a Borland C++ solution is not yet available,
but you can develop the application with C++Builder now.

Refer to Chapter 17, “Deploying applications,” for specific information on
deployment.

2-6 D e v e l o p e r ’ s G u i d e

U s i n g t h e c l a s s l i b r a r i e s 3-1

C h a p t e r

3
Chapter 3Using the class libraries

This chapter presents an overview of the class libraries and introduces some of the
components that you can use while developing applications. C++Builder includes
both the Visual Component Library (VCL) and the Borland Component Library for
Cross-Platform (CLX). The VCL is for Windows development and CLX is for cross-
platform development on both Windows and Linux. They are two different class
libraries but they have many similarities.

Understanding the class libraries
VCL and CLX are class libraries made up of objects that you use when developing
applications. The libraries are similar to each other and contain many of the same
objects. Some objects in VCL implement features that are available on Windows only,
such as objects that appear on the ADO, BDE, QReport, COM+, and Servers tabs on
the Component palette. Virtually all CLX objects are available on both Windows and
Linux.

All VCL and CLX objects descend from TObject, an abstract class whose methods
encapsulate fundamental behavior like construction, destruction, and message
handling. When you write classes of your own, they should descend from TObject in
the class library you plan to use.

Components are a subset of VCL or CLX and descend from the abstract class
TComponent. You can place components on a form or data module and manipulate
them at design time. Most components are either visual or nonvisual, depending on
whether they are visible at runtime. Some components appear on the Component
palette.

Visual components, such as TForm and TSpeedButton, are called controls and descend
from TControl. TControl provides properties that specify the visual attributes of
controls, such as their height and width.

3-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e c l a s s l i b r a r i e s

Nonvisual components are used for a variety of tasks. For example, if you are writing
an application that connects to a database, you can place a TDataSource component
on a form to connect a control and a dataset used by the control. This connection is
not visible to the user, so TDataSource is nonvisual. At design time, nonvisual
components are represented by an icon. This allows you to manipulate their
properties and events just as you would a visual control.

Detailed reference material on all of the objects in VCL and CLX is accessible through
online Help while you are programming. In the Code editor, place the cursor
anywhere on the object and press F1 to display the Help topic. Objects, properties,
methods, and events that are in the VCL are marked “VCL Reference” and those in
CLX are marked “CLX Reference.”

Properties, methods, and events

Both the VCL and CLX form hierarchies of objects that are tied to the IDE, where you
can develop applications quickly. The objects in both component libraries are based
on properties, methods, and events. Each object includes data members (properties),
functions that operate on the data (methods), and a way to interact with users of the
class (events). The VCL and CLX are written in Object Pascal, though the VCL is
based on the Windows API and CLX is based on the Qt widget library.

Properties
Properties are characteristics of an object that influence either the visible behavior or
the operations of the object. For example, the Visible property determines whether an
object can be seen or not in an application interface. Well-designed properties make
your components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

• Unlike methods, which are only available at runtime, you can see and change
properties at design time and get immediate feedback as the components change
in the IDE.

• You can access properties in the Object Inspector where you can modify the values
of your object visually. Setting properties at design time is easier than writing code
and makes your code easier to maintain.

• Because the data is encapsulated, it is protected and private to the actual object.

• The actual calls to get and set the values are methods, so special processing can be
done that is invisible to the user of the object. For example, data could reside in a
table, but could appear as a normal data member to the programmer.

• You can implement logic that triggers events or modifies other data during the
access of the property. For example, changing the value of one property may
require you to modify another. You can change the methods created for the
property.

• Properties can be virtual.

U s i n g t h e c l a s s l i b r a r i e s 3-3

U n d e r s t a n d i n g t h e c l a s s l i b r a r i e s

• A property is not restricted to a single object. Changing one property on one object
could effect several objects. For example, setting the Checked property on a radio
button effects all of the radio buttons in the group.

Methods
A method is a function that is a member of a class. Methods define the behavior of an
object. Class methods can access all the public, protected, and private properties and
data members of the class and are commonly referred to as member functions. See
“Controlling access” on page 46-4.

Events
An event is an action or occurrence detected by a program. Most modern applications
are said to be event-driven, because they are designed to respond to events. In a
program, the programmer has no way of predicting the exact sequence of actions a
user will perform next. For example, they may choose a menu item, click a button, or
mark some text. You can write code to handle the events you're interested in, rather
than writing code that always executes in the same restricted order.

Regardless of how an event is called, C++Builder looks to see if you have written any
code to handle that event. If you have, that code is executed; otherwise, the default
event handling behavior.

The kinds of events that can occur can be divided into two main categories:

• User events
• System events

User events
User events are actions that are initiated by the user. Examples of user events are
OnClick (the user clicked the mouse), OnKeyPress (the user pressed a key on the
keyboard), and OnDblClick (the user double-clicked a mouse button).

System events
System events are events that the operating system fires for you. For example, the
OnTimer event (the Timer component issues one of these events whenever a
predefined interval has elapsed), the OnCreate event (the component is being
created), the OnPaint event (a component or window needs to be redrawn), and so
on. Usually, system events are not directly initiated by a user action.

3-4 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Objects, components, and controls
Figure 3.2 is a greatly simplified view of the inheritance hierarchy that illustrates the
relationship between objects, components, and controls.

Figure 3.1 Objects, components, and controls

Every object inherits from TObject, and many objects inherit from TComponent.
Controls inherit from TControl and have the ability to display themselves at runtime.
A control like TCheckBox inherits all the functionality of TObject, TComponent, and
TControl, and adds specialized capabilities of its own.

Figure 3.2 is an overview of the Visual Component Library (VCL) that shows the
major branches of the inheritance tree. The Borland Component Library for Cross-
Platform (CLX) looks very much the same at this level although TWinControl is
replaced by TWidgetControl.

Figure 3.2 A simplified hierarchy diagram

TForm TButton TCheckBox TListBox

TObject

TComponent

TControl

TObject

TGraphicControl

Exception

TComponent TControl TWinControlTPersistent

[Objects]

[Objects]

[Objects]

[Objects] [Objects] [Objects]

U s i n g t h e c l a s s l i b r a r i e s 3-5

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

Several important base classes are shown in the figure, and they are described in the
following table:

The next few sections present a general description of the types of classes that each
branch contains. For a complete overview of the VCL and CLX object hierarchies,
refer to the VCL Object Hierarchy and CLX Object Hierarchy wall charts included
with this product.

TObject branch

The TObject branch includes all VCL and CLX objects that descend from TObject but
not from TPersistent. Much of the powerful capability of VCL and CLX objects are
established by the methods that TObject introduces. TObject encapsulates the
fundamental behavior common to all objects in the VCL and CLX by introducing
methods that provide:

• The ability to respond when objects are created or destroyed.
• Class type and instance information on an object, and runtime type information

(RTTI) about its published properties.
• Support for message-handling (VCL) or system events (CLX).

TObject is the immediate ancestor of many simple classes. Classes that are contained
within the TObject branch have one common, important characteristic: they are
transitory. What this means is that these classes do not have a method to save the
state that they are in prior to destruction; they are not persistent.

Table 3.1 Important base classes

Class Description

TObject Signifies the base class and ultimate ancestor of everything in the VCL or
CLX. TObject encapsulates the fundamental behavior common to all VCL/
CLX objects by introducing methods that perform basic functions such as
creating, maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to exceptions. Exception
provides a consistent interface for error conditions, and enables applications
to handle error conditions gracefully.

TPersistent Specifies the base class for all objects that implement properties. Classes
under TPersistent deal with sending data to streams and allow for the
assignment of classes.

TComponent Specifies the base class for all nonvisual components such as TApplication.
TComponent is the common ancestor of all components. This class allows a
component to be displayed on the Component palette, lets the component
own other components, and allows the component to be manipulated
directly on a form.

TControl Represents the base class for all controls that are visible at runtime. TControl
is the common ancestor of all visual components and provides standard
visual controls like position and cursor. This class also provides events that
respond to mouse actions.

TWinControl Specifies the base class of all user interface objects. Controls under
TWinControl are windowed controls that can capture keyboard input. In
CLX, these are called widgets, and TWidgetControl replaces TWinControl.

3-6 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling divide-
by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Another type of group in the TObject branch are classes that encapsulate data
structures, such as:

• TBits, a class that stores an “array” of Boolean values.
• TList, a linked list class.
• TStack, a class that maintains a last-in first-out array of pointers.
• TQueue, a class that maintains a first-in first-out array of pointers.

In the VCL, you can also find wrappers for external objects like TPrinter, which
encapsulates the Windows printer interface, and TRegistry, a low-level wrapper for
the system registry and functions that operate on the registry. These are specific to
the Windows environment.

TStream is good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on.

Overall, this branch includes many different types of classes that are very useful to
you as a developer.

TPersistent branch

The TPersistent branch includes all VCL and CLX objects that descend from
TPersistent but not from TComponent. Persistence determines what gets saved with a
form file or data module and what gets loaded into the form or data module when it
is retrieved from memory.

Objects in this branch implement properties for components. Properties are only
loaded and saved with a form if they have an owner. The owner must be some
component. This branch introduces the GetOwner function which lets you determine
the owner of the property.

Objects in this branch are also the first to include a published section where
properties can be automatically loaded and saved. A DefineProperties method also
allows you to indicate how to load and save properties.

Following are some of the other classes in the TPersistent branch of the hierarchy:

• TGraphicsObject, an abstract base class for graphics objects such as: TBrush, TFont,
and TPen.

• TGraphic, an abstract base class for objects such as TBitmap and TIcon, which store
and display visual images.

• TStrings, a base class for objects that represent a list of strings.
• TClipboard, a class that contains text or graphics that have been cut or copied from

an application.
• TCollection, TOwnedCollection, and TCollectionItem, classes that maintain indexed

collections of specially defined items.

U s i n g t h e c l a s s l i b r a r i e s 3-7

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

TComponent branch

The TComponent branch contains objects that descend from TComponent but not
TControl. Objects in this branch are components that you can manipulate on forms at
design time. They are persistent objects that can do the following:

• Appear on the Component palette and can be changed in the form designer.

• Own and manage other components.

• Load and save themselves.

Several methods in TComponent dictate how components act during design time and
what information gets saved with the component. Streaming is introduced in this
branch of the VCL and CLX. C++Builder handles most streaming chores
automatically. Properties are persistent if they are published and published
properties are automatically streamed.

The TComponent class also introduces the concept of ownership that is propagated
throughout the VCL and CLX. Two properties support ownership: Owner and
Components. Every component has an Owner property that references another
component as its owner. A component may own other components. In this case, all
owned components are referenced in the component’s Array property.

A component's constructor takes a single parameter that is used to specify the new
component's owner. If the passed-in owner exists, the new component is added to
the owner's Components list. Aside from using the Components list to reference
owned components, this property also provides for the automatic destruction of
owned components. As long as the component has an owner, it will be destroyed
when the owner is destroyed. For example, since TForm is a descendant of
TComponent, all components owned by the form are destroyed and their memory
freed when the form is destroyed. This assumes that all of the components on the
form clean themselves up properly when their destructors are called.

If a property type is a TComponent or a descendant, the streaming system creates an
instance of that type when reading it in. If a property type is TPersistent but not
TComponent, the streaming system uses the existing instance available through the
property and read values for that instance’s properties.

When creating a form file (a file used to store information about the components on
the form), the form designer loops through its components array and saves all the
components on the form. Each component “knows” how to write its changed
properties out to a stream (in this case, a text file). Conversely, when loading the
properties of components in the form file, the form designer loops through the
components array and loads each component.

The types of classes you’ll find in this branch include:

• TActionList, a class that maintains a list of actions used with components and
controls, such as menu items and buttons.

• TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

• TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on,
classes that provide commonly used dialog boxes.

3-8 D e v e l o p e r ’ s G u i d e

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

• TScreen, a class that keeps track of what forms and data modules have been
instantiated by the application, the active form, and the active control within that
form, the size and resolution of the screen, and the cursors and fonts available for
the application to use.

Components that do not need a visual interface can be derived directly from
TComponent. To make a tool such as a TTimer device, you can derive from
TComponent. This type of component resides on the Component palette but performs
internal functions that are accessed through code rather than appearing in the user
interface at runtime.

In CLX, the TComponent branch also includes THandleComponent. This is the base
class for nonvisual components that require a handle to an underlying Qt object such
as dialogs and menus.

See Chapter 5, “Working with components,” for details on setting properties, calling
methods, and working with events for components.

TControl branch

The TControl branch consists of components that descend from TControl but not
TWinControl (TWidgetControl in CLX). Objects in this branch are controls that are
visual objects that the application user can see and manipulate at runtime. All
controls have properties, methods, and events in common that relate to how the
control looks, such as its position, the cursor associated with the control’s window (or
widget in CLX), methods to paint or move the control, and events to respond to
mouse actions. Controls can never receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard events, and
containership.

All visual controls share certain properties. While these properties inherited from
TControl, they are published—and hence appear in the Object Inspector—only for
components to which they are applicable. For example, TImage does not publish the
Color property, since its color is determined by the graphic it displays.

There are two types of controls:

• Those that have a window (or widget) of their own.
• Those that use the window (or widget) of their parent.

Controls that have their own window are called “windowed” controls (VCL) or
“widget-based” controls (CLX) and descend from TWinControl (TWidgetControl in
CLX). Buttons and check boxes fall into this class.

Controls that use the window (or widget) of their parent are called graphic controls
and descend from TGraphicControl. Images and shapes fall into this class. Graphic
controls do not maintain a handle and cannot receive the input focus. Because a
graphic control does not need a handle, it uses fewer system resources. Graphic
controls must draw themselves and cannot be a parent to other controls.

U s i n g t h e c l a s s l i b r a r i e s 3-9

O b j e c t s , c o m p o n e n t s , a n d c o n t r o l s

See “Graphic controls” on page 9-16 for information about other graphics controls
and Chapter 9, “Types of controls,” for details on different types of controls. See
Chapter 6, “Working with controls,” for details on how to interact with controls at
runtime.

TWinControl/TWidgetControl branch

In the VCL, the TWinControl branch includes all controls that descend from
TWinControl. TWinControl is the base class for all windowed controls, which are
items that you will use in the user interface of an application, such as buttons, labels,
and scroll bars. Windowed controls are wrappers around a Windows control.

In CLX, TWidgetControl, which replaces TWinControl, is the base class for all widget
controls, which are wrappers around widgets.

Windowed and widget controls:

• Can receive focus while an application is running, which means they can receive
keyboard input from the application user. In comparison, other controls may only
display data.

• Can be a parent of one or more child controls.
• Have a handle, or unique identifier.

The TWinControl/TWidgetControl branch includes both controls that are drawn
automatically (including TEdit, TListBox, TComboBox, TPageControl, and so on) and
custom controls that C++Builder must draw, such as TDBNavigator, TMediaPlayer
(VCL only), and TGauge (VCL only). Direct descendants of TWinControl/
TWidgetControl typically implement standard controls, like an edit field, a combo
box, list box, or page control, and, therefore, already know how to paint themselves.

The TCustomControl class is provided for components that require a window handle
but do not encapsulate a standard control that includes the ability to repaint itself.
You never have to worry about how the controls render themselves or how they
respond to events—C++Builder completely encapsulates this behavior for you.

3-10 D e v e l o p e r ’ s G u i d e

U s i n g B a s e C L X 4-1

C h a p t e r

4
Chapter4Using BaseCLX

There are a number of units that are common to both the VCL and CLX that provide
the underlying support for both component libraries. Collectively, these units are
called BaseCLX. BaseCLX does not include any of the components that appear on the
component palette. Rather, it includes a number of classes and global routines that
are used by the components that do appear on the component palette. These classes
and routines are also available for you to use in application code or when you are
writing your own classes.

Note The global routines that make up BaseCLX are often called the runtime library. Do
not confuse these routines with the C++ runtime library. Many of these perform
functions similar to those in the C++ runtime library, but can be distinguished
because the function names begin with a capital letter and they are declared in the
header of a unit.

The following topics discuss many of the classes and routines that make up BaseCLX
and illustrate how to use them. These uses include:

• Using streams
• Working with files
• Working with .ini files
• Working with lists
• Working with string lists
• Working with strings
• Converting measurements
• Creating drawing spaces

Note This list of tasks is not exhaustive. The runtime library in BaseCLX contains many
routines to perform tasks that are not mentioned here. These include a host of
mathematical functions (defined in the Math unit), routines for working with date/
time values (defined in the SysUtils and DateUtils units), and routines for working
with Object Pascal Variants (defined in the Variants unit).

4-2 D e v e l o p e r ’ s G u i d e

U s i n g s t r e a m s

Using streams
Streams are classes that let you read and write data. They provide a common
interface for reading and writing to different media such as memory, strings, sockets,
and BLOB fields in databases. There are several stream classes, which all descend
from TStream. Each stream class is specific to one media type. For example,
TMemoryStream reads from or writes to a memory image, TFileStream reads from or
writes to a file.

Using streams to read or write data

Stream classes all share several methods for reading and writing data. These methods
are distinguished by whether they perform the following:

• Return the number of bytes read or written.
• Require the number of bytes to be known.
• Raise an exception on error.

Stream methods for reading and writing
The Read method reads a specified number of bytes from the stream, starting at its
current Position, into a buffer. Read then advances the current position by the number
of bytes actually transferred. The prototype for Read is

virtual int __fastcall Read(void *Buffer, int Count);

Read is useful when the number of bytes in the file is not known. Read returns the
number of bytes actually transferred, which may be less than Count if the stream did
not contain Count bytes of data past the current position.

The Write method writes Count bytes from a buffer to the stream, starting at the
current Position. The prototype for Write is:

virtual int __fastcall Write(const void *Buffer, int Count);

After writing to the file, Write advances the current position by the number bytes
written, and returns the number of bytes actually written, which may be less than
Count if the end of the buffer is encountered or the stream can’t accept any more
bytes.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and
Write, do not return the number of bytes read or written. These procedures are useful
in cases where the number of bytes is known and required, for example when
reading in structures. ReadBuffer and WriteBuffer raise an exception (EReadError and
EWriteError) if the byte count can not be matched exactly. This is in contrast to the
Read and Write methods, which can return a byte count that differs from the
requested value. The prototypes for ReadBuffer and WriteBuffer are:

virtual int __fastcall ReadBuffer(void *Buffer, int Count);

virtual int __fastcall WriteBuffer(const void *Buffer, int Count);

These methods call the Read and Write methods to perform the actual reading and
writing.

U s i n g B a s e C L X 4-3

U s i n g s t r e a m s

Reading and writing components
TStream defines specialized methods, ReadComponent and WriteComponent, for
reading and writing components. You can use them in your applications as a way to
save components and their properties when you create or alter them at runtime.

ReadComponent and WriteComponent are the methods that the IDE uses to read
components from or write them to form files. When streaming components to or
from a form file, stream classes work with the TFiler classes, TReader and TWriter, to
read objects from the form file or write them out to disk. For more information about
using the component streaming system, see the online Help on the TStream, TFiler,
TReader, TWriter, and TComponent classes.

Copying data from one stream to another

When copying data from one stream to another, you do not need to explicitly read
and then write the data. Instead, you can use the CopyFrom method, as illustrated in
the following example.

The application includes two edit controls (From and To) and a Copy File button.

void __fastcall TForm1::CopyFileClick(TObject *Sender)
{
 TStream* stream1=TFileStream::Create(From.Text,fmOpenRead | fmShareDenyWrite);
 try

{
TStream* stream2 -> TFileStream::Create(To.Text fmOpenCreate | fmShareDenyRead);

 try
{

stream2 -> CopyFrom(stream1, stream1->Size);
}
__finally
{

delete stream2;
}

}
__finally
{

delete stream1;
}

}

Specifying the stream position and size

In addition to methods for reading and writing, streams permit applications to seek
to an arbitrary position in the stream or change the size of the stream. Once you seek
to a specified position, the next read or write operation starts reading from or writing
to the stream at that position.

4-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Seeking to a specific position
The Seek method is the most general mechanism for moving to a particular position
in the stream. There are two overloads for the Seek method:

virtual int __fastcall Seek(int Offset, Word Origin);

virtual __int64 __fastcall Seek(const __int64 Offset, TSeekOrigin Origin);

Both overloads work the same way. The difference is that one version uses a 32-bit
integer to represent positions and offsets, while the other uses a 64-bit integer.

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Seek resets the current stream position, moving it by the indicated offset. Seek returns
the new current position in the stream.

Using Position and Size properties
All streams have properties that hold the current position and size of the stream.
These are used by the Seek method, as well as all the methods that read from or write
to the stream.

The Position property indicates the current offset, in bytes, into the stream (from the
beginning of the streamed data).

The Size property indicates the size of the stream in bytes. It can be used to determine
the number of bytes available for reading, or to truncate the data in the stream.

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the data in the stream. For example, on a
file stream, setting Size inserts an end of file marker to truncate the file. If the Size of
the stream cannot be changed, an exception is raised. For example, trying to change
the Size of a read-only file stream raises an exception.

Working with files
BaseCLX supports several ways of working with files. In addition to using file
streams, there are several runtime library routines for performing file I/O. Both file
streams and the global routines for reading from and writing to files are described in
“Approaches to file I/O” on page 4-5.

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position +
Offset.

soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a
number of bytes before the end of the file.

U s i n g B a s e C L X 4-5

W o r k i n g w i t h f i l e s

In addition to input/output operations, you may want to manipulate files on disk.
Support for operations on the files themselves rather than their contents is described
in “Manipulating files” on page 4-7.

Note When using CLX in cross-platform applications, remember that although the Object
Pascal language is not case sensitive, the Linux operating system is. When using
objects and routines that work with files, be attentive to the case of file names.

Approaches to file I/O

There are three approaches you can take when reading from and writing to files:

• The recommended approach for working with files is to use file streams. File
streams are object instances of the TFileStream class used to access information in
disk files. File streams are a portable and high-level approach to file I/O. Because
file streams make the file handle available, this approach can be combined with
the next one. The next section, “Using file streams” discusses TFileStream in detail.

• You can work with files using a handle-based approach. File handles are provided
by the operating system when you create or open a file to work with its contents.
The SysUtils unit defines a number of file-handling routines that work with files
using file handles. On Windows, these are typically wrappers around Windows
API functions. Because the Delphi functions use Object Pascal syntax, and
occasionally provide default parameter values, they are a convenient interface to
the Windows API. Furthermore, there are corresponding versions on Linux, so
you can use these routines in cross-platform applications. To use a handle-based
approach, you first open a file using the FileOpen function or create a new file
using the FileCreate function. Once you have the handle, use handle-based routines
to work with its contents (write a line, read text, and so on).

• The C runtime library and standard C++ library include a number of functions
and classes for working with files. These have the advantage that they can be used
in applications that do not use the VCL or CLX. For information on these
functions, see the online documentation for the C runtime library or the standard
C++ library.

Using file streams

TFileStream is a class that enables applications to read from and write to a file on disk.
It is used for high-level object representations of file streams. Because TFileStream is a
stream object, it shares the common stream methods. You can use these methods to
read from or write to the file, copy data to or from other stream classes, and read or
write components values. See “Using streams” on page 4-2 for details on the
capabilities that files streams inherit by being stream classes.

In addition, file streams give you access to the file handle, so that you can use them
with global file handling routines that require the file handle.

4-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

Creating and opening files using file streams
To create or open a file and get access to its handle, you simply instantiate a
TFileStream. This opens or creates a named file and provides methods to read from or
write to it. If the file cannot be opened, the TFileStream constructor raises an
exception.

__fastcall TFileStream(const AnsiString FileName, Word Mode);

The Mode parameter specifies how the file should be opened when creating the file
stream. The Mode parameter consists of an open mode and a share mode OR’ed
together. The open mode must be one of the following values:

The share mode can be one of the following values with the restrictions listed below:

Note that which share mode you can use depends on which open mode you used.
The following table shows shared modes that are available for each open mode.

The file open and share mode constants are defined in the SysUtils unit.

Using the file handle
When you instantiate TFileStream you get access to the file handle. The file handle is
contained in the Handle property. On Windows, Handle is a Windows file handle. On

Table 4.1 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name
exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the
current contents.

fmOpenReadWrite Open the file to modify the current contents rather than replace them.

Table 4.2 Share modes

Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened.

fmShareExclusive Other applications can not open the file for any reason.

fmShareDenyWrite Other applications can open the file for reading but not for writing.

fmShareDenyRead Other applications can open the file for writing but not for reading.

fmShareDenyNone No attempt is made to prevent other applications from reading from or
writing to the file.

Table 4.3 Shared modes available for each open mode

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can’t use Available Can’t use Available

fmOpenWrite Available Available Can’t use Available Available

fmOpenReadWrite Available Available Available Available Available

U s i n g B a s e C L X 4-7

W o r k i n g w i t h f i l e s

Linux versions of CLX, it is a Linux file handle. Handle is read-only and reflects the
mode in which the file was opened. If you want to change the attributes of the file
Handle, you must create a new file stream object.

Some file manipulation routines take a file handle as a parameter. Once you have a
file stream, you can use the Handle property in any situation in which you would use
a file handle. Be aware that, unlike handle streams, file streams close file handles
when the object is destroyed.

Manipulating files

Several common file operations are built into the BaseCLX runtime library. The
procedures and functions for working with files operate at a high level. For most
routines, you specify the name of the file and the routine makes the necessary calls to
the operating system for you. In some cases, you use file handles instead.

Caution Although the Object Pascal language is not case sensitive, the Linux operating system
is. Be attentive to case when working with files in cross-platform applications.

Deleting a file
Deleting a file erases the file from the disk and removes the entry from the disk's
directory. There is no corresponding operation to restore a deleted file, so
applications should generally allow users to confirm before deleting files. To delete a
file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns true if it deleted the file and false if it did not (for example, if the file
did not exist or if it was read-only). DeleteFile erases the file named by FileName from
the disk.

Finding a file
There are three routines used for finding a file: FindFirst, FindNext, and FindClose.
FindFirst searches for the first instance of a filename with a given set of attributes in a
specified directory. FindNext returns the next entry matching the name and attributes
specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminate a FindFirst/FindNext
sequence. If you want to know if a file exists, a FileExists function returns true if the
file exists, false otherwise.

The three file find routines take a TSearchRec as one of the parameters. TSearchRec
defines the file information searched for by FindFirst or FindNext. The declaration for
TSearchRec is:

struct TSearchRec
{

int Time; // time stamp of the file
int Size; // size of the file in bytes
int Attr; // file attribute flags
AnsiString Name; // filename and extension
int ExcludeAttr; // file attribute flags for files to ignore

4-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s

unsigned FindHandle;
_WIN32_FIND_DATAA FindData; // structure with addition information

} ;

If a file is found, the fields of the TSearchRec type parameter are modified to describe
the found file. You can test Attr against the following attribute constants or values to
determine if a file has a specific attribute:

To test for an attribute, combine the value of the Attr field with the attribute constant
using the & operator. If the file has that attribute, the result will be greater than 0. For
example, if the found file is a hidden file, the following expression will evaluate to
true: (SearchRec.Attr & faHidden > 0). Attributes can be combined by OR’ing their
constants or values. For example, to search for read-only and hidden files in addition
to normal files, pass (faReadOnly | faHidden) as the Attr parameter.

Example: This example uses a label, a button named Search, and a button named Again on a
form. When the user clicks the Search button, the first file in the specified path is
found, and the name and the number of bytes in the file appear in the label's caption.
Each time the user clicks the Again button, the next matching filename and size is
displayed in the label:

TSearchRec SearchRec; // global variable

void __fastcall TForm1::SearchClick(TObject *Sender)
{

FindFirst("c:\\Program Files\\bcb6\\bin*.*", faAnyFile, SearchRec);
Label1->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in size";

}

void __fastcall TForm1::AgainClick(TObject *Sender)
{

if (FindNext(SearchRec) == 0)
Label1->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in

size";
else

FindClose(SearchRec);
}

Note In cross-platform applications, you should replace any hard-coded pathnames with
the correct pathname for the system or use environment variables (on the
Environment Variables page when you choose Tools|Environment Options) to
represent them.

Table 4.4 Attribute constants and values

Constant Value Description

faReadOnly 0x00000001 Read-only files

faHidden 0x00000002 Hidden files

faSysFile 0x00000004 System files

faVolumeID 0x00000008 Volume ID files

faDirectory 0x00000010 Directory files

faArchive 0x00000020 Archive files

faAnyFile 0x0000003F Any file

U s i n g B a s e C L X 4-9

W o r k i n g w i t h f i l e s

Renaming a file
To change a file name, use the RenameFile function:

extern PACKAGE bool __fastcall RenameFile(const AnsiString OldName, const AnsiString
NewName);

RenameFile changes a file name, identified by OldFileName, to the name specified by
NewFileName. If the operation succeeds, RenameFile returns true. If it cannot rename
the file (for example, if a file called NewFileName already exists), RenameFile returns
false. For example:

if (!RenameFile("OLDNAME.TXT","NEWNAME.TXT"))
ErrorMsg("Error renaming file!");

You cannot rename (move) a file across drives using RenameFile. You would need to
first copy the file and then delete the old one.

Note RenameFile in the BaseCLX runtime library is a wrapper around the Windows API
MoveFile function, so MoveFile will not work across drives either.

File date-time routines
The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-
time values. FileAge returns the date-and-time stamp of a file, or -1 if the file does not
exist. FileSetDate sets the date-and-time stamp for a specified file, and returns zero on
success or an error code on failure. FileGetDate returns a date-and-time stamp for the
specified file or -1 if the handle is invalid.

As with most of the file manipulating routines, FileAge uses a string filename.
FileGetDate and FileSetDate, however, use an integer parameter which takes a file
handle. To get the file handle either

• Use the FileOpen or FileCreate function to create a new file or open an existing file.
Both FileOpen and FileCreate return the file handle.

• Instantiate TFileStream to create or open a file. Then use its Handle property. See
“Using file streams” on page 4-5 for more information.

Copying a file
The BaseCLX runtime library does not provide any routines for copying a file.
However, if you are writing Windows-only applications, you can directly call the
Windows API CopyFile function to copy a file. Like most of the runtime library file
routines, CopyFile takes a filename as a parameter, not a file handle. When copying a
file, be aware that the file attributes for the existing file are copied to the new file, but
the security attributes are not. CopyFile is also useful when moving files across drives
because neither the RenameFile function nor the Windows API MoveFile function can
rename or move files across drives. For more information, see the Microsoft
Windows online Help.

4-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h i n i f i l e s a n d t h e s y s t e m R e g i s t r y

Working with ini files and the system Registry
Many applications use ini files to store configuration information. BaseCLX includes
two classes for working with ini files: TIniFile and TMemIniFile. Using ini files has the
advantage that they can be used in cross-platform applications and they are easy to
read and edit. For information on these classes, see “Using TIniFile and
TMemIniFile” on page 4-10 for more information.

Many Windows applications replace the use of ini files with the system Registry. The
Windows system Registry is a hierarchical database that acts as a centralized storage
space for configuration information. The VCL includes classes for working with the
system Registry. While these are technically not part of BaseCLX (because they are
only available on Windows), two of these classes, TRegistryIniFile and TRegistry, are
discussed here because of their similarity to the classes for working with ini files.

TRegistryIniFile is useful for cross-platform applications, because it shares a common
ancestor (TCustomIniFile) with the classes that work with ini files. If you confine
yourself to the methods of the common ancestor (TCustomIniFile) your application
can work on both applications with a minimum of conditional code. TRegistryIniFile
is discussed in “Using TRegistryIniFile” on page 4-11.

For applications that are not cross-platform, you can use the TRegistry class. The
properties and methods of TRegistry have names that correspond more directly to the
way the system Registry is organized, because it does not need to be compatible with
the classes for ini files. TRegistry is discussed in “Using TRegistry” on page 4-12.

Using TIniFile and TMemIniFile
The ini file format is still popular, many configuration files (such as the DSK Desktop
settings file) are in this format. This format is especially useful in cross-platform
applications, where you can’t always count on a system Registry for storing
configuration information. BaseCLX provides two classes, TIniFile and TMemIniFile,
to make reading and writing ini files very easy.

On Linux, TMemIniFile and TIniFile are identical. On Windows, TIniFile works
directly with the ini file on disk while TMemIniFile buffers all changes in memory and
does not write them to disk until you call the UpdateFile method.

When you instantiate the TIniFile or TMemIniFile object, you pass the name of the ini
file as a parameter to the constructor. If the file does not exist, it is automatically
created. You are then free to read values using the various read methods, such as
ReadString, ReadDate, ReadInteger, or ReadBool. Alternatively, if you want to read an
entire section of the ini file, you can use the ReadSection method. Similarly, you can
write values using methods such as WriteBool, WriteInteger, WriteDate, or WriteString.

Following is an example of reading configuration information from an ini file in a
form's constructor and writing values in the OnClose event handler.

__fastcall TForm1::TForm1(TComponent *Owner) : TForm(Owner)
{
 TIniFile *ini;
 ini = new TIniFile(ChangeFileExt(Application->ExeName, ".INI"));

U s i n g B a s e C L X 4-11

W o r k i n g w i t h i n i f i l e s a n d t h e s y s t e m R e g i s t r y

 Top = ini->ReadInteger("Form", "Top", 100);
 Left = ini->ReadInteger("Form", "Left", 100);
 Caption = ini->ReadString("Form", "Caption",
 "Default Caption");
 ini->ReadBool("Form", "InitMax", false) ?
 WindowState = wsMaximized :
 WindowState = wsNormal;

 delete ini;
}

void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)
{
 TIniFile *ini;
 ini = new TIniFile(ChangeFileExt(Application->ExeName, ".INI"));

ini->WriteInteger("Form", "Top", Top);
 ini->WriteInteger("Form", "Left", Left);
 ini->WriteString ("Form", "Caption", Caption);
 ini->WriteBool ("Form", "InitMax",
 WindowState == wsMaximized);

 delete ini;
}

Each of the Read routines takes three parameters. The first parameter identifies the
section of the ini file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn't exist in the ini file.
Just as the Read methods gracefully handle the case when a section or value does not
exist, the Write routines create the section and/or value if they do not exist. The
example code creates an ini file the first time it is run that looks like this:

[Form]
Top=185
Left=280
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the ini values are read in when the form
is created and written back out in the OnClose event.

Using TRegistryIniFile
Many 32-bit Windows applications store their information in the system Registry
instead of ini files because the Registry is hierarchical and doesn't suffer from the size
limitations of ini files. If you are accustomed to using ini files and want to move your
configuration information to the Registry instead, you can use the TRegistryIniFile
class. You may also want to use TRegistryIniFile in cross-platform applications if you
want to use the system Registry on Windows and an ini file on Linux. You can write
most of your application so that it uses the TCustomIniFile type. You need only
conditionalize the code that creates an instance of TRegistryIniFile (on Windows) or
TMemIniFile (on Linux) and assigns it to the TCustomIniFile your application uses.

TRegistryIniFile makes Registry entries look like ini file entries. All the methods from
TIniFile and TMemIniFile (read and write) exist in TRegistryIniFile.

4-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h l i s t s

When you construct a TRegistryIniFile object, the parameter you pass to the
constructor (corresponding to the filename for an IniFile or TMemIniFile object)
becomes a key value under the user key in the registry. All sections and values
branch from that root. TRegistryIniFile simplifies the Registry interface considerably,
so you may want to use it instead of the TRegistry component even if you aren't
porting existing code or writing a cross-platform application.

Using TRegistry
If you are writing a Windows-only application and are comfortable with the
structure of the system Registry, you can use TRegistry. Unlike TRegistryIniFile, which
uses the same properties and methods of other ini file components, the properties
and methods of TRegistry correspond more directly to the structure of the system
Registry. For example, TRegistry lets you specify both the root key and subkey, while
TRegistry assumes HKEY_CURRENT_USER as a root key. In addition to methods for
opening, closing, saving, moving, copying, and deleting keys, TRegistry lets you
specify the access level you want to use.

Note TRegistry is not available for cross-platform programming.

The following example retrieves a value from a registry entry:

#include <Registry.hpp>

AnsiString GetRegistryValue(AnsiString KeyName)
{
 AnsiString S;
 TRegistry *Registry = new TRegistry(KEY_READ);
 try
 {
 Registry->RootKey = HKEY_LOCAL_MACHINE;
 // False because we do not want to create it if it doesn’t exist
 Registry->OpenKey(KeyName,false);
 S = Registry->ReadString("VALUE1");
 }
 __finally
 {
 delete Registry;
 }
 return S;
}

Working with lists
BaseCLX includes many classes that represents lists or collections of items. They vary
depending on the types of items they contain, what operations they support, and
whether they are persistent.

U s i n g B a s e C L X 4-13

W o r k i n g w i t h l i s t s

The following table lists various list classes, and indicates the types of items they
contain:

Common list operations

Although the various list classes contain different types of items and have different
ancestries, most of them share a common set of methods for adding, deleting,
rearranging, and accessing the items in the list.

Adding list items
Most list classes have an Add method, which lets you add an item to the end of the list
(if it is not sorted) or to its appropriate position (if the list is sorted). Typically, the
Add method takes as a parameter the item you are adding to the list and returns the
position in the list where the item was added. In the case of bucket lists (TBucketList
and TObjectBucketList), Add takes not only the item to add, but also a datum you can
associate with that item. In the case of collections, Add takes no parameters, but
creates a new item that it adds. The Add method on collections returns the item it
added, so that you can assign values to the new item’s properties.

Some list classes have an Insert method in addition to the Add method. Insert works
the same way as the Add method, but has an additional parameter that lets you
specify the position in the list where you want the new item to appear. If a class has
an Add method, it also has an Insert method unless the position of items is
predetermined For example, you can’t use Insert with sorted lists because items must
go in sort order, and you can’t use Insert with bucket lists because the hash algorithm
determines the item position.

Table 4.5 Classes for managing lists

Object Maintains

TList A list of pointers

TThreadList A thread-safe list of pointers

TBucketList A hashed list of pointers

TObjectBucketList A hashed list of object instances

TObjectList A memory-managed list of object instances

TComponentList A memory-managed list of components (that is, instances of classes
descended from TComponent)

TClassList A list of class references (metaclasses)

TInterfaceList A list of interface pointers.

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue A first-in first-out list of objects

TObjectStack A last-in first-out list of objects

TCollection Base class for many specialized classes of typed items.

TStringList A list of strings

THashedStringList A list of strings with the form Name=Value, hashed for performance.

4-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h l i s t s

The only classes that do not have an Add method are the ordered lists. Ordered lists
are queues and stacks. To add items to an ordered list, use the Push method instead.
Push, like Add, takes an item as a parameter and inserts it in the correct position.

Deleting list items
To delete a single item from one of the list classes, use either the Delete method or the
Remove method. Delete takes a single parameter, the index of the item to remove.
Remove also takes a single parameter, but that parameter is a reference to the item to
remove, rather than its index. Some list classes support only a Delete method, some
support only a Remove method, and some have both.

As with adding items, ordered lists behave differently than all other lists. Instead of
using a Delete or Remove method, you remove an item from an ordered list by calling
its Pop method. Pop takes no arguments, because there is only one item that can be
removed.

If you want to delete all of the items in the list, you can call the Clear method. Clear is
available for all lists except ordered lists.

Accessing list items
All list classes (except TThreadList and the ordered lists) have a property that lets you
access the items in the list. Typically, this property is called Items. For string lists, the
property is called Strings, and for bucket lists it is called Data. The Items, Strings, or
Data property is an indexed property, so that you can specify which item you want to
access.

On TThreadList, you must lock the list before you can access items. When you lock the
list, the LockList method returns a TList object that you can use to access the items.

Ordered lists only let you access the “top” item of the list. You can obtain a reference
to this item by calling the Peek method.

Rearranging list items
Some list classes have methods that let you rearrange the items in the list. Some have
an Exchange method, that swaps the position of two items. Some have a Move method
that lets you move an item to a specified location. Some have a Sort method that lets
you sort the items in the list.

To see what methods are available, check the Online help for the list class you are
using.

Persistent lists

Persistent lists can be saved to a form file. Because of this, they are often used as the
type of a published property on a component. You can add items to the list at design
time, and those items are saved with the object so that they are there when the
component that uses them is loaded into memory at runtime. There are two main
types of persistent lists: string lists and collections.

U s i n g B a s e C L X 4-15

W o r k i n g w i t h s t r i n g l i s t s

Examples of string lists include TStringList and THashedStringList. String lists, as the
name implies, contain strings. They provide special support for strings of the form
Name=Value, so that you can look up the value associated with a name. In addition,
most string lists let you associate an object with each string in the list. String lists are
described in more detail in “Working with string lists” on page 4-15.

Collections descend from the class TCollection. Each TCollection descendant is
specialized to manage a specific class of items, where that class descends from
TCollectionItem. Collections support many of the common list operations. All
collections are designed to be the type of a published property, and many can not
function independently of the object that uses them to implement on of its properties.
At design time, the property whose value is a collection can use the collection editor
to let you add, remove, and rearrange items. The collection editor provides a
common user interface for manipulating collections.

Working with string lists
One of the most commonly used types of list is a list of character strings. Examples
include items in a combo box, lines in a memo, names of fonts, and names of rows
and columns in a string grid. BaseCLX provides a common interface to any list of
strings through an object called TStrings and its descendants such as TStringList and
THashedStringList. TStringList implements the abstract properties and methods
introduced by TStrings, and introduces properties, events, and methods to

• Sort the strings in the list.
• Prohibit duplicate strings in sorted lists.
• Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow
easy interoperability; for example, you can edit the lines of a memo (which are a
TStrings descendant) and then use these lines as items in a combo box (also a TStrings
descendant).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

• Loading and saving string lists
• Creating a new string list
• Manipulating strings in a list
• Associating objects with a string list

Loading and saving string lists

String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,

4-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g l i s t s

create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

The following example loads a copy of the WIN.INI file into a memo field and makes
a backup copy called WIN.BAK.

void __fastcall EditWinIni()
{

AnsiString FileName = "C:\\WINDOWS\\WIN.INI";// set the file name
Form1->Memo1->Lines->LoadFromFile(FileName); // load from file
Form1->Memo1->Lines->SaveToFile(ChangeFileExt(FileName, ".BAK")); // save to backup

}

Creating a new string list

A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists
If you use a string list only for the duration of a single routine, you can create it, use
it, and destroy it all in one place. This is the safest way to work with string lists.
Because the string-list object allocates memory for itself and its strings, you should
use a try...__finally block to ensure that the memory is freed even if an exception
occurs.

1 Construct the string-list object.
2 In the try part of a try...__finally block, use the string list.
3 In the __finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.

void __fastcall TForm1::ButtonClick1(TObject *Sender)
{

TStringList *TempList = new TStringList; // declare the list
try{

//use the string list
}
__finally{

 delete TempList; // destroy the list object
}

}

Long-term string lists
If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

U s i n g B a s e C L X 4-17

W o r k i n g w i t h s t r i n g l i s t s

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write a constructor for the main form that executes before the form appears. It
should create a string list and assign it to the field you declared in the first step.

3 Write an event handler that frees the string list for the form’s OnClose event.

This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

//---
#include <vcl.h>
#pragma hdrstop

#include "Unit1.h"
//---
#pragma package(smart_init)
#pragma resource "*.dfm"
TForm1 *Form1;
//---
__fastcall TForm1::TForm1(TComponent* Owner)
 : TForm(Owner)
{
 ClickList = new TStringList;
}
//---
void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)
{
 ClickList->SaveToFile(ChangeFileExt(Application->ExeName, ".LOG"));//Save the list
 delete ClickList;
}
//---
void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
 TShiftState Shift, int X, int Y)
{
 TVarRec v[] = {X,Y};
 ClickList->Add(Format("Click at (%d, %d)",v,ARRAYSIZE(v) - 1));//add a string to the list
}

Manipulating strings in a list

Operations commonly performed on string lists include:

• Counting the strings in a list
• Accessing a particular string
• Finding the position of a string in the list
• Iterating through strings in a list
• Adding a string to a list
• Moving a string within a list
• Deleting a string from a list
• Copying a complete string list

4-18 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g l i s t s

Counting the strings in a list
The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string
The Strings array property contains the strings in the list, referenced by a zero-based
index.

StringList1->Strings[0] = “This is the first string.”;

Locating items in a string list
To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns –1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

if (FileListBox1->Items->IndexOf("WIN.INI") > -1) ...

Iterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count – 1.

This example converts each string in a list box to uppercase characters.

void __fastcall TForm1::Button1Click(TObject *Sender)
{

for (int i = 0; i < ListBox1->Items->Count; i++)
ListBox1->Items->Strings[i] = UpperCase(ListBox1->Items->Strings[i]);

}

Adding a string to a list
To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

StringList1->Insert(2, "Three");

To append the strings from one list onto another, call AddStrings:

StringList1->AddStrings(StringList2); // append the strings from StringList2 to StringList1

Moving a string within a list
To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

StringListObject->Move(2, 4);

U s i n g B a s e C L X 4-19

W o r k i n g w i t h s t r i n g s

Deleting a string from a list
To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

This example uses IndexOf and Delete to find and delete a string:

int BIndex = ListBox1->Items->IndexOf("bureaucracy");
if (BIndex > -1)

ListBox1->Items->Delete(BIndex);

Copying a complete string list
You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memo1->Lines->Assign(ComboBox1->Item)s; //overwrites original strings

copies the lines from a combo box into a memo (overwriting the memo), while

Memo1->Lines->AddStrings(ComboBox1->Items);//appends strings to end

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringList1 = StringList2;

—the original string-list object will be lost, often with unpredictable results.

Associating objects with a string list
In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Working with strings
The BaseCLX runtime library provides many specialized string-handling routines
specific to a string type. These are routines for wide strings, AnsiStrings, and null-
terminated strings (char *). Routines that deal with null-terminated strings use the

4-20 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

null-termination to determine the length of the string. The following topics provide
an overview of many of the string-handling routines in the runtime library.

Wide character routines

Wide strings are used in a variety of situations. Some technologies, such as XML, use
wide strings as a native type. You may also choose to use wide strings because they
simplify some of the string-handling issues in applications that have multiple target
locales. Using a wide character encoding scheme has the advantage that you can
make many of the usual assumptions about strings that do not work for MBCS
systems. There is a direct relationship between the number of bytes in the string and
the number of characters in the string. You do not need to worry about cutting
characters in half or mistaking the second half of a character for the start of a different
character.

A disadvantage of working with wide characters is that most VCL controls represent
string values as single byte or MBCS strings. (CLX controls typically use wide
strings.) Translating between the wide character system and the MBCS system every
time you set a string property or read its value can require tremendous amounts of
extra code and slow your application down. However, you may want to translate
into wide characters for some special string processing algorithms that need to take
advantage of the 1:1 mapping between characters and WideChars.

The following functions convert between standard single-byte character strings (or
MBCS strings) and Unicode strings:

• StringToWideChar
• WideCharLenToString
• WideCharLenToStrVar
• WideCharToString
• WideCharToStrVar

In addition, the following functions translate between WideStrings and other
representations:

• UCS4StringToWideString
• WideStringToUCS4String
• VarToWideStr
• VarToWideStrDef

The following routines work directly with WideStrings:

• WideCompareStr
• WideCompareText
• WideSameStr
• WideSameText
• WideSameCaption (CLX only)
• WideFmtStr
• WideFormat
• WideLowerCase
• WideUpperCase

U s i n g B a s e C L X 4-21

W o r k i n g w i t h s t r i n g s

Finally, some routines include overloads for working with wide strings:

• UniqueString
• Length
• Trim
• TrimLeft
• TrimRight

Commonly used routines for AnsiStrings

The AnsiString handling routines cover several functional areas. Within these areas,
some are used for the same purpose, the differences being whether they use a
particular criterion in their calculations. The following tables list these routines by
these functional areas:

• Comparison
• Case conversion
• Modification
• Sub-string

Where appropriate, the tables also provide columns indicating whether a routine
satisfies the following criteria.

• Uses case sensitivity: If locale settings are used, it determines the definition of case.
If the routine does not use locale settings, analyses are based upon the ordinal
values of the characters. If the routine is case-insensitive, there is a logical merging
of upper and lower case characters that is determined by a predefined pattern.

• Uses locale settings: Locale settings allow you to customize your application for
specific locales, in particular, for Asian language environments. Most locale
settings consider lowercase characters to be less than the corresponding uppercase
characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters. Routines that use the Windows locale are
typically prefaced with Ansi (that is, AnsiXXX).

• Supports the multi-byte character set (MBCS): MBCSs are used when writing code
for far eastern locales. Multi-byte characters are represented as a mix of one- and
two-byte character codes, so the length in bytes does not necessarily correspond to
the length of the string. The routines that support MBCS parse one- and two-byte
characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a
two-byte character. Be careful when using multi-byte characters not to truncate a
string by cutting a two-byte character in half. Do not pass characters as a
parameter to a function or procedure, since the size of a character cannot be
predetermined. Pass, instead, a pointer to a to a character or string. For more

4-22 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

information about MBCS, see “Enabling application code” on page 16-2 of
Chapter 16, “Creating international applications.”

Note The routines used for string file names: AnsiCompareFileName,
AnsiLowerCaseFileName, and AnsiUpperCaseFileName all use the Windows locale. You
should always use file names that are portable because the locale (character set) used
for file names can and might differ from the default user interface.

Table 4.6 String comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiCompareStr yes yes yes

AnsiCompareText no yes yes

AnsiCompareFileName no yes yes

AnsiMatchStr yes yes yes

AnsiMatchText no yes yes

AnsiContainsStr yes yes yes

AnsiContainsText no yes yes

AnsiStartsStr yes yes yes

AnsiStartsText no yes yes

AnsiEndsStr yes yes yes

AnsiEndsText no yes yes

AnsiIndexStr yes yes yes

AnsiIndexText no yes yes

CompareStr yes no no

CompareText no no no

AnsiResemblesText no no no

Table 4.7 Case conversion routines

Routine Uses locale settings Supports MBCS

AnsiLowerCase yes yes

AnsiLowerCaseFileName yes yes

AnsiUpperCaseFileName yes yes

AnsiUpperCase yes yes

LowerCase no no

UpperCase no no

Table 4.8 String modification routines :

Routine Case-sensitive Supports MBCS

AdjustLineBreaks NA yes

AnsiQuotedStr NA yes

AnsiReplaceStr yes yes

AnsiReplaceText no yes

StringReplace optional by flag yes

U s i n g B a s e C L X 4-23

W o r k i n g w i t h s t r i n g s

Commonly used routines for null-terminated strings

The null-terminated string handling routines cover several functional areas. Within
these areas, some are used for the same purpose, the differences being whether or not
they use a particular criteria in their calculations. The following tables list these
routines by these functional areas:

• Comparison
• Case conversion
• Modification
• Sub-string
• Copying

Where appropriate, the tables also provide columns indicating whether the routine is
case-sensitive, uses the current locale, and/or supports multi-byte character sets.

ReverseString NA no

StuffString NA no

Trim NA yes

TrimLeft NA yes

TrimRight NA yes

WrapText NA yes

Table 4.9 Sub-string routines

Routine Case-sensitive Supports MBCS

AnsiExtractQuotedStr NA yes

AnsiPos yes yes

IsDelimiter yes yes

IsPathDelimiter yes yes

LastDelimiter yes yes

LeftStr NA no

RightStr NA no

MidStr NA no

QuotedStr no no

Table 4.10 Null-terminated string comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiStrComp yes yes yes

AnsiStrIComp no yes yes

AnsiStrLComp yes yes yes

Table 4.8 String modification routines (continued):

Routine Case-sensitive Supports MBCS

4-24 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s t r i n g s

AnsiStrLIComp no yes yes

StrComp yes no no

StrIComp no no no

StrLComp yes no no

StrLIComp no no no

Table 4.11 Case conversion routines for null-terminated strings

Routine Uses locale settings Supports MBCS

AnsiStrLower yes yes

AnsiStrUpper yes yes

StrLower no no

StrUpper no no

Table 4.12 String modification routines

Routine

StrCat

StrLCat

Table 4.13 Sub-string routines

Routine Case-sensitive Supports MBCS

AnsiStrPos yes yes

AnsiStrScan yes yes

AnsiStrRScan yes yes

StrPos yes no

StrScan yes no

StrRScan yes no

Table 4.14 String copying routines

Routine

StrCopy

StrLCopy

StrECopy

StrMove

StrPCopy

StrPLCopy

Table 4.10 Null-terminated string comparison routines (continued)

Routine Case-sensitive Uses locale settings Supports MBCS

U s i n g B a s e C L X 4-25

P r i n t i n g

Printing
Technically speaking, the TPrinter class does not belong to BaseCLX because there
are two separate versions, one for the VCL (in the Printers unit) and one for CLX (in
the QPrinters unit). The VCL TPrinter object encapsulates details of Windows
printers. The CLX TPrinter object is a paint device that paints on a printer. It
generates postscript and sends that to lpr, lp, or another print command. Both
versions of TPrinter, however, are extremely similar.

To get a list of installed and available printers, use the Printers property. Both printer
objects use a TCanvas (which is identical to the form's TCanvas) which means that
anything that can be drawn on a form can be printed as well. To print an image, call
the BeginDoc method followed by whatever canvas graphics you want to print
(including text through the TextOut method) and send the job to the printer by calling
the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, include <Printers.hpp> in your unit file.

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 TPrinter *Prntr = Printer();
 TRect r = Rect(200,200,Prntr->PageWidth - 200,Prntr->PageHeight- 200);
 Prntr->BeginDoc();
 for(int i = 0; i < Memo1->Lines->Count; i++)
 Prntr->Canvas->TextOut(200,200 + (i *

Prntr->Canvas->TextHeight(Memo1->Lines->Strings[i])),
Memo1->Lines->Strings[i]);

 Prntr->Canvas->Brush->Color = clBlack;
 Prntr->Canvas->FrameRect(r);
 Prntr->EndDoc();
}

For more information on the use of the TPrinter object, look in the online help under
TPrinter.

Converting measurements
The ConvUtils unit declares a general-purpose Convert function that you can use to
convert a measurement from one set of units to another. You can perform
conversions between compatible units of measurement such as feet and inches or
days and weeks. Units that measure the same types of things are said to be in the
same conversion family. The units you’re converting must be in the same conversion
family. For information on doing conversions, see the next section Performing
conversions and refer to Convert in the online Help.

The StdConvs unit defines several conversion families and measurement units
within each family. In addition, you can create customized conversion families and
associated units using the RegisterConversionType and RegisterConversionFamily

4-26 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

functions. For information on extending conversion and conversion units, see the
section Adding new measurement types and refer to Convert in the online Help.

Performing conversions

You can use the Convert function to perform both simple and complex conversions. It
includes a simple syntax and a second syntax for performing conversions between
complex measurement types.

Performing simple conversions
You can use the Convert function to convert a measurement from one set of units to
another. The Convert function converts between units that measure the same type of
thing (distance, area, time, temperature, and so on).

To use Convert, you must specify the units from which to convert and to which to
convert. You use the TConvType type to identify the units of measurement.

For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

TempInKelvin = Convert(StrToFloat(Edit1->Text), tuFahrenheit, tuKelvin);

Performing complex conversions
You can also use the Convert function to perform more complex conversions between
the ratio of two measurement types. Examples of when you might need to use this
this are when converting miles per hour to meters per minute for calculating speed or
when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:

double nKPL = Convert(StrToFloat(Edit1.Text), duMiles, vuGallons, duKilometers, vuLiter);

The units you’re converting must be in the same conversion family (they must
measure the same thing). If the units are not compatible, Convert raises an
EConversionError exception. You can check whether two TConvType values are in the
same conversion family by calling CompatibleConversionTypes.

The StdConvs unit defines several families of TConvType values. See Conversion
family variables in the online Help for a list of the predefined families of
measurement units and the measurement units in each family.

Adding new measurement types

If you want to perform conversions between measurement units not already defined
in the StdConvs unit, you need to create a new conversion family to represent the
measurement units (TConvType values). When two TConvType values are registered
with the same conversion family, the Convert function can convert between
measurements made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using
the RegisterConversionFamily function. After you get a TConvFamily value (by
registering a new conversion family or using one of the global variables in the

U s i n g B a s e C L X 4-27

C o n v e r t i n g m e a s u r e m e n t s

StdConvs unit), you can use the RegisterConversionType function to add the new units
to the conversion family. The following examples show how to do this.

Creating a simple conversion family and adding units

One example of when you could create a new conversion family and add new
measurement types might be when performing conversions between long periods of
time (such as months to centuries) where a loss of precision can occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is
the one that is used when performing all conversions within that family. Therefore,
all conversions must be done in terms of days. An inaccuracy can occur when
performing conversions using units of months or larger (months, years, decades,
centuries, millennia) because there is not an exact conversion between days and
months, days and years, and so on. Months have different lengths; years have
correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can
create a more accurate conversion family with years as its base unit. This example
creates a new conversion family called cbLongTime.

Declare variables
First, you need to declare variables for the identifiers. The identifiers are used in the
new LongTime conversion family, and the units of measurement that are its
members:

tConvFamily cbLongTime;
TConvType ltMonths;
TConvType ltYears;
TConvType ltDecades;
TConvType ltCenturies;
TConvType ltMillennia;

Register the conversion family
Next, register the conversion family:

cbLongTime = RegisterConversionFamily (“Long Times”);

Although an UnregisterConversionFamily procedure is provided, you don’t need to
unregister conversion families unless the unit that defines them is removed at
runtime. They are automatically cleaned up when your application shuts down.

Register measurement units
Next, you need to register the measurement units within the conversion family that
you just created. You use the RegisterConversionType function, which registers units of
measurement within a specified family. You need to define the base unit which in the
example is years, and the other units are defined using a factor that indicates their
relation to the base unit. So, the factor for ltMonths is 1/12 because the base unit for
the LongTime family is years. You also include a description of the units to which
you are converting.

4-28 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

The code to register the measurement units is shown here:

ltMonths = RegisterConversionType(cbLongTime,”Months”,1/12);
ltYears = RegisterConversionType(cbLongTime,”Years”,1);
ltDecades = RegisterConversionType(cbLongTime,”Decades”,10);
ltCenturies = RegisterConversionType(cbLongTime,”Centuries”,100);
ltMillennia = RegisterConversionType(cbLongTime,”Millennia”,1000);

Use the new units
You can now use the newly registered units to perform conversions. The global
Convert function can convert between any of the conversion types that you registered
with the cbLongTime conversion family.

So instead of using the following Convert call,

Convert(StrToFloat(Edit1->Text),tuMonths,tuMillennia);

you can now use this one for greater accuracy:

Convert(StrToFloat(Edit1->Text),ltMonths,ltMillennia);

Using a conversion function

For cases when the conversion is more complex, you can use a different syntax to
specify a function to perform the conversion instead of using a conversion factor. For
example, you can’t convert temperature values using a conversion factor, because
different temperature scales have a different origins.

This example, which is translated from the StdConvs unit, shows how to register a
conversion type by providing functions to convert to and from the base units.

Declare variables
First, declare variables for the identifiers. The identifiers are used in the cbTemperature
conversion family, and the units of measurement are its members:

TConvFamily cbTemperature;
TConvType tuCelsius;
TConvType tuKelvin;
TConvType tuFahrenheit;

Note The units of measurement listed here are a subset of the temperature units actually
registered in the StdConvs unit.

Register the conversion family
Next, register the conversion family:

cbTemperature = RegisterConversionFamily (“Temperature”);

U s i n g B a s e C L X 4-29

C o n v e r t i n g m e a s u r e m e n t s

Register the base unit
Next, define and register the base unit of the conversion family, which in the example
is degrees Celsius. Note that in the case of the base unit, we can use a simple
conversion factor, because there is no actual conversion to make:

tuCelsius = RegisterConversionType(cbTemperature,”Celsius”,1);

Write methods to convert to and from the base unit
You need to write the code that performs the conversion from each temperature scale
to and from degrees Celsius, because these do not rely on a simple conversion factor.
These functions are translated from the StdConvs unit:

double __fastcall FahrenheitToCelsius(const double AValue)
{
 return (((AValue - 32) * 5) / 9);
}

double __fastcall CelsiusToFahrenheit(const double AValue)
{
 return (((AValue * 9) / 5) + 32);
}

double __fastcall KelvinToCelsius(const double AValue)
{

return (AValue - 273.15);
}

double __fastcall CelsiusToKelvin(const double AValue)
{

return (AValue + 273.15);
}

Register the other units
Now that you have the conversion functions, you can register the other measurement
units within the conversion family. You also include a description of the units.

The code to register the other units in the family is shown here:

tuKelvin = RegisterConversionType(cbTemperature, “Kelvin”, KelvinToCelsius,
CelsiusToKelvin);
 tuFahrenheit = RegisterConversionType(cbTemperature, “Fahrenheit”, FahrenheitToCelsius,
CelsiusToFahrenheit);

Use the new units
You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the conversion
types that you registered with the cbTemperature conversion family. For example the
following code converts a value from degrees Fahrenheit to degrees Kelvin.

Convert(StrToFloat(Edit1->Text), tuFahrenheit, tuKelvin);

4-30 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

Using a class to manage conversions

You can always use conversion functions to register a conversion unit. There are
times, however, when this requires you to create an unnecessarily large number of
functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a
parameter or variable, you can create a class to handle those conversions. For
example, there is a set standard techniques for converting between the various
European currencies since the introduction of the Euro. Even though the conversion
factors remain constant (unlike the conversion factor between, say, dollars and
Euros), you can’t use a simple conversion factor approach to properly convert
between European currencies for two reasons:

• The conversion must round to a currency-specific number of digits.

• The conversion factor approach uses an inverse factor to the one specified by the
standard Euro conversions.

However, this can all be handled by the conversion functions such as the following:

double __fastcall FromEuro(const double AValue, const double Factor, TRoundToRange FRound)
{
 return(RoundTo(AValue * Factor, FRound));
}

double __fastcall ToEuro(const double AValue, const double Factor)
{
 return (AValue / Factor);
}

The problem is, this approach requires extra parameters on the conversion function,
which means you can’t simply register the same function with every European
currency. In order to avoid having to write two new conversion functions for every
European currency, you can make use of the same two functions by making them the
members of a class.

Creating the conversion class
The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two
methods, ToCommon and FromCommon, for converting to and from the base units of a
conversion family (in this case, to and from Euros). Just as with the functions you use
directly when registering a conversion unit, these methods have no extra parameters,
so you must supply the number of digits to round off and the conversion factor as
private members of your conversion class. This is shown in the EuroConv example in
the demos\ConvertIt directory (see euroconv.pas):

class PASCALIMPLEMENTATION TConvTypeEuroFactor : public Convutils::TConvTypeFactor
{

private:
 TRoundToRange FRound;
 public:

__fastcall TConvTypeEuroFactor(const TConvFamily AConvFamily,
const AnsiString ADescription, const double AFactor, const TRoundToRange ARound);

TConvTypeFactor(AConvFamily, ADescription, AFactor);

U s i n g B a s e C L X 4-31

C o n v e r t i n g m e a s u r e m e n t s

virtual double ToCommon(const double AValue);
 virtual double FromCommon(const double AValue);
}

The constructor assigns values to those private members:
__fastcall TConvTypeEuroFactor::TConvTypeEuroFactor(const TConvFamily AConvFamily,

const AnsiString ADescription, const double AFactor, const TRoundToRange ARound):
TConvTypeFactor(AConvFamily, ADescription, AFactor);

{
FRound = ARound;

}

The two conversion functions simply use these private members:

virtual double TConvTypeEuroFactor::ToCommon(const double AValue)
{

return (RoundTo(AValue * Factor, FRound));
}

virtual double TConvTypeEuroFactor::ToCommon(const double AValue)
{

return (AValue / Factor);
}

Declare variables
Now that you have a conversion class, begin as with any other conversion family, by
declaring identifiers:

TConvFamily cbEuro;
TConvType euEUR; // EU euro
TConvType euBEF; // Belgian francs
TConvType euDEM; // German marks
TConvType euGRD; // Greek drachmas
TConvType euESP; // Spanish pesetas
TConvType euFFR; // French francs
TConvType euIEP; // Irish pounds
TConvType euITL; // Italian lire
TConvType euLUF; // Luxembourg francs
TConvType euNLG; // Dutch guilders
TConvType euATS; // Austrian schillings
TConvType euPTE; // Protuguese escudos
TConvType euFIM; // Finnish marks

Register the conversion family and the other units
Now you are ready to register the conversion family and the European monetary
units, using your new conversion class. Register the conversion family the same way
you registered the other conversion families:

cbEuro = RegisterConversionFamily (“European currency”);

4-32 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g m e a s u r e m e n t s

To register each conversion type, create an instance of the conversion class that
reflects the factor and rounding properties of that currency, and call the
RegisterConversionType method:

TConvTypeInfo *pInfo = new TConvTypeEuroFactor(cbEuro, “EUEuro”, 1.0, -2);
if (!RegisterConversionType(pInfo, euEUR))

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “BelgianFrancs”, 40.3399, 0);
if (!RegisterConversionType(pInfo, euBEF))

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “GermanMarks”, 1.95583, -2);
if (!RegisterConversionType(pInfo, euDEM))

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “GreekDrachmas”, 340.75, 0);
if (!RegisterConversionType(pInfo, euGRD)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “SpanishPesetas”, 166.386, 0);
if (!RegisterConversionType(pInfo, euESP)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “FrenchFrancs”, 6.55957, -2);
if (!RegisterConversionType(pInfo, euFFR)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “IrishPounds”, 0.787564, -2);
if (!RegisterConversionType(pInfo, euIEP)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “ItalianLire”, 1936.27, 0);
if (!RegisterConversionType(pInfo, euITL)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “LuxembourgFrancs”, 40.3399, -2);
if (!RegisterConversionType(pInfo, euLUF)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “DutchGuilders”, 2.20371, -2);
if (!RegisterConversionType(pInfo, euNLG)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “AutstrianSchillings”, 13.7603, -2);
if (!RegisterConversionType(pInfo, euATS)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “PortugueseEscudos”, 200.482, -2);
if (!RegisterConversionType(pInfo, euPTE)

delete pInfo;
pInfo = new TConvTypeEuroFactor(cbEuro, “FinnishMarks”, 5.94573, 0);
if (!RegisterConversionType(pInfo, euFIM)

delete pInfo;

Use the new units
You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the European
currencies you have registered with the new cbEuro family. For example, the
following code converts a value from Italian Lire to German Marks:

Edit2->Text = FloatToStr(Convert(StrToFloat(Edit1->Text), euITL, euDEM));

U s i n g B a s e C L X 4-33

C r e a t i n g d r a w i n g s p a c e s

Creating drawing spaces
The TCanvas class encapsulates a Windows device context in the VCL and a paint
device (Qt painter) in CLX. It handles all drawing for both forms, visual containers
(such as panels) and the printer object (see “Printing” on page 4-25). Using the canvas
object, you no longer have to worry about allocating pens, brushes, palettes, and so
on—all the allocation and deallocation are handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left corner to the middle of the
form and outputs some raw text onto the form:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Canvas->Pen->Color = clBlue;
 Canvas->MoveTo(10, 10);
 Canvas->LineTo(100, 100);
 Canvas->Brush->Color = clBtnFace;
 Canvas->Font->Name = "Arial";
 Canvas->TextOut(Canvas->PenPos.x, Canvas->PenPos.y,"This is the end of the line");
}

In Windows applications, the TCanvas object also protects you against common
Windows graphics errors, such as restoring device contexts, pens, brushes, and so on
to the value they had before the drawing operation. TCanvas is used everywhere in
C++Builder that drawing is required or possible, and makes drawing graphics both
fail-safe and easy.

See TCanvas in the online help reference for a complete listing of properties and
methods.

4-34 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h c o m p o n e n t s 5-1

C h a p t e r

5
Chapter 5Working with components

Many components are provided in the integrated development environment (IDE)
on the Component palette. You select components from the Component palette and
drop them onto a form or data module. You design the application’s user interface by
arranging the visual components such as buttons and list boxes on a form. You can
also place nonvisual components such as data access components on either a form or
a data module.

At first glance, C++Builder’s components appear to be just like any other C++
classes. But there are differences between components in C++Builder and the
standard C++ class hierarchies that most C++ programmers work with. Some
differences are described here:

• All C++Builder components descend from TComponent.

• Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

• Components can only be allocated on the heap, not on the stack (that is, they must
be created with the new operator).

• Properties of components intrinsically contain runtime type information.

• Components can be added to the Component palette in the C++Builder user
interface and manipulated on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard C++ classes. For example, consider the use of a dialog containing a push
button. In a C++ Windows program developed using VCL components, when a user
clicks on the button, the system generates a WM_LBUTTONDOWN message. The
program must catch this message (typically in a switch statement, a message map, or
a response table) and dispatch it to a routine that will execute in response to the
message.

5-2 D e v e l o p e r ’ s G u i d e

S e t t i n g c o m p o n e n t p r o p e r t i e s

Most Windows messages (VCL) or system events (CLX) are handled by C++Builder
components. When you want to respond to a message, you only need to provide an
event handler.

Chapter 8, “Developing the application user interface,” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

Setting component properties
To set published properties at design time, you can use the Object Inspector and, in
some cases, special property editors. To set properties at runtime, assign their values
in your application source code.

For information about the properties of each component, see the online Help.

Setting properties at design time

When you select a component on a form at design time, the Object Inspector displays
its published properties and (when appropriate) allows you to edit them. Use the Tab
key to toggle between the left-hand Property column and the right-hand Value
column. When the cursor is in the Property column, you can navigate to any property
by typing the first letters of its name. For properties of Boolean or enumerated types,
you can choose values from a drop-down list or toggle their settings by double-
clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or
typing ‘+’ when the property has focus displays a list of subvalues for the property.
Similarly, if a minus (-) symbol appears next to the property name, clicking the minus
symbol or typing ‘-’ hides the subvalues.

By default, properties in the Legacy category are not shown; to change the display
filters, right-click in the Object Inspector and choose View. For more information, see
“property categories” in the online Help.

When more than one component is selected, the Object Inspector displays all
properties—except Name—that are shared by the selected components. If the value
for a shared property differs among the selected components, the Object Inspector
displays either the default value or the value from the first component selected.
When you change a shared property, the change applies to all selected components.

Changing code-related properties, such as the name of an event handler, in the
Object Inspector automatically changes the corresponding source code. In addition,
changes to the source code, such as renaming an event handler method in a form
class declaration, is immediately reflected in the Object Inspector.

Using property editors
Some properties, such as Font, have special property editors. Such properties appear
with ellipsis marks (...) next to their values when the property is selected in the Object

W o r k i n g w i t h c o m p o n e n t s 5-3

C a l l i n g m e t h o d s

Inspector. To open the property editor, double-click in the Value column, click the
ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Property editors let you set complex properties from a single dialog box. They
provide input validation and often let you preview the results of an assignment.

Setting properties at runtime

Any writable property can be set at runtime in your source code. For example, you
can dynamically assign a caption to a form:

Form1->Caption = MyString;

Calling methods
Methods are called just like ordinary procedures and functions. For example, visual
controls have a Repaint method that refreshes the control’s image on the screen. You
could call the Repaint method in a draw-grid object like this:

DrawGrid1->Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If
you want, for example, to repaint a form within an event handler of one of the form’s
child controls, you don’t have to prepend the name of the form to the method call:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Repaint;
}

Working with events and event handlers
In C++Builder, almost all the code you write is executed, directly or indirectly, in
response to events. An event is a special kind of property that represents a runtime
occurrence, often a user action. The code that responds directly to an event—called
an event handler—is a method of an object. The sections that follow show how to:

• Generate a new event handler.
• Generate a handler for a component’s default event.
• Locate event handlers.
• Associate an event with an existing event handler.
• Associate menu events with event handlers.
• Delete event handlers.

5-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h e v e n t s a n d e v e n t h a n d l e r s

Generating a new event handler

C++Builder can generate skeleton event handlers for forms and other components.
To create an event handler,

1 Select a component.

2 Click the Events tab in the Object Inspector. The Events page of the Object
Inspector displays all events defined for the component.

3 Select the event you want, then double-click the Value column or press Ctrl+Enter.

4 Type the code that you want to execute when the event occurs.

Generating a handler for a component’s default event

Some components have a default event, which is the event the component most
commonly needs to handle. For example, a button’s default event is OnClick. To
create a default event handler, double-click the component in the Form Designer; this
generates a skeleton event-handling procedure and opens the Code editor with the
cursor in the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don’t
respond to any events. Other components respond differently when you double-click
them in the Form Designer. For example, many components open a default property
editor or other dialog when they are double-clicked at design time.

Locating event handlers

If you generated a default event handler for a component by double-clicking it in the
Form Designer, you can locate that event handler in the same way. Double-click the
component, and the Code editor opens with the cursor at the beginning of the event-
handler body.

To locate an event handler that’s not the default,

1 In the form, select the component whose event handler you want to locate.

2 In the Object Inspector, click the Events tab.

3 Select the event whose handler you want to view and double-click in the Value
column. The Code editor opens with the cursor at the beginning of the event-
handler body.

Associating an event with an existing event handler

You can reuse code by writing event handlers that respond to more than one event.
For example, many applications provide speed buttons that are equivalent to drop-
down menu commands. When a button initiates the same action as a menu
command, you can write a single event handler and assign it to both the button’s and
the menu item’s OnClick event.

W o r k i n g w i t h c o m p o n e n t s 5-5

W o r k i n g w i t h e v e n t s a n d e v e n t h a n d l e r s

To associate an event with an existing event handler,

1 On the form, select the component whose event you want to handle.

2 On the Events page of the Object Inspector, select the event to which you want to
attach a handler.

3 Click the down arrow in the Value column next to the event to open a list of
previously written event handlers. (The list includes only event handlers written
for events of the same name on the same form.) Select from the list by clicking an
event-handler name.

The previous procedure is an easy way to reuse event handlers. Action lists and in the
VCL, action bands, however, provide powerful tools for centrally organizing the code
that responds to user commands. Action lists can be used in cross-platform
applications, whereas action bands cannot. For more information about action lists
and action bands, see “Organizing actions for toolbars and menus” on page 8-16.

Using the Sender parameter
In an event handler, the Sender parameter indicates which component received the
event and therefore called the handler. Sometimes it is useful to have several
components share an event handler that behaves differently depending on which
component calls it. You can do this by using the Sender parameter.

Displaying and coding shared events
When components share events, you can display their shared events in the Object
Inspector. First, select the components by holding down the Shift key and clicking on
them in the Form Designer; then choose the Events tab in the Object Inspector. From
the Value column in the Object Inspector, you can now create a new event handler
for, or assign an existing event handler to, any of the shared events.

Associating menu events with event handlers

The Menu Designer, along with the MainMenu and PopupMenu components, make it
easy to supply your application with drop-down and pop-up menus. For the menus
to work, however, each menu item must respond to the OnClick event, which occurs
whenever the user chooses the menu item or presses its accelerator or shortcut key.
This section explains how to associate event handlers with menu items. For
information about the Menu Designer and related components, see “Creating and
managing menus” on page 8-29.

To create an event handler for a menu item,

1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 From the Menu Designer, double-click the menu item. C++Builder generates an
event handler in the Code editor.

5-6 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m a n d n o n - c r o s s - p l a t f o r m c o m p o n e n t s

4 Type the code that you want to execute when the user selects the menu command.

To associate a menu item with an existing OnClick event handler,

1 Open the Menu Designer by double-clicking a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 On the Events page of the Object Inspector, click the down arrow in the Value
column next to OnClick to open a list of previously written event handlers. (The
list includes only event handlers written for OnClick events on this form.) Select
from the list by clicking an event handler name.

Deleting event handlers

When you delete a component from a form using the Form Designer, C++Builder
removes the component from the form’s type declaration. It does not, however,
delete any associated methods from the unit file, since these methods may still be
called by other components on the form. You can manually delete a method—such as
an event handler—but if you do so, be sure to delete both the method’s forward
declaration and its implementation; otherwise you’ll get a compiler error when you
build your project.

Cross-platform and non-cross-platform components
The Component palette contains a selection of components that handle a wide
variety of programming tasks. The components are arranged in pages according to
their purpose and functionality. For example, commonly used components such as
those to create menus, edit boxes, or buttons are located on the Standard page. Which
pages appear in the default configuration depends on the edition of the product you
are running.

Table 3.3 lists typical default pages and components available for creating
applications, including those that are not cross-platform. You can use all CLX
components in both Windows and Linux applications. You can use some VCL-
specific components in Windows-only CLX applications; however, the applications
will not be cross-platform unless you isolate these portions of the code.

W o r k i n g w i t h c o m p o n e n t s 5-7

C r o s s - p l a t f o r m a n d n o n - c r o s s - p l a t f o r m c o m p o n e n t s

Table 5.1 Component palette pages

Page name Description Cross-platform?

Standard Standard controls, menus Yes

Additional Specialized controls Yes, except ApplicationEvents,
ActionManager, ActionMain-
MenuBar, ActionToolBar, and
CustomizeDlg. LCDNumber is in
CLX only.

Win32 (VCL)/
Common
Controls (CLX)

Windows common controls Many of the same components on the
Win32 page are on the Common
Controls page that appears when cre-
ating a CLX application.
RichEdit, UpDown, HotKey, Ani-
mate, DataTimePicker, MonthCalen-
dar, Coolbar, PageScroller, and
ComboBoxEx are in the VCL only.
TextBrowser, TextViewer, Icon-
Viewer, and SpinEdit are in CLX
only.

System Components and controls for system-
level access, including timers, multime-
dia, and DDE.

No, except for Timer and PaintBox,
which are on the Additional page
when creating a CLX application.

Data Access Components for working with database
data that are not tied to any particular
data access mechanism.

Yes, except for XMLTransform,
XMLTransformProvider, and XML-
TransformClient.

Data Controls Visual, data-aware controls. Yes, except for DBRichEdit,
DBCtrlGrid, and DBChart.

dbExpress Database controls that use dbExpress, a
cross-platform, database-independent
layer that provides methods for dynamic
SQL processing. It defines a common
interface for accessing SQL servers.

Yes

DataSnap Components used for creating multi-
tiered database applications.

No

BDE Components that provide data access
through the Borland Database Engine.

No

ADO Components that provide data access
through the ADO framework.

No

InterBase Components that provide direct access
to the InterBase database.

Yes

InterBaseAdmin Components that access InterBase Ser-
vices API calls.

Yes

InternetExpress Components that are simultaneously a
Web server application and the client of
a multi-tiered database application.

No

Internet Components for Internet communication
protocols and Web applications.

No

5-8 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m a n d n o n - c r o s s - p l a t f o r m c o m p o n e n t s

You can add, remove, and rearrange components on the palette, and you can create
component templates and frames that group several components.

The online Help provides information about the components on the Component
palette. Some of the components on the ActiveX, Servers, and Samples pages,
however, are provided as examples only and are not documented.

For more information on the differences between the VCL and CLX, see Chapter 14,
“Developing cross-platform applications.”

Adding custom components to the Component palette

You can install custom components—written by yourself or third parties—on the
Component palette and use them in your applications. To write a custom component,
see Part V, “Creating custom components.” To install an existing component, see
“Installing component packages” on page 15-5.

WebSnap Components for building Web server
applications.

No

FastNet NetMasters Internet controls. No

QReport QuickReport components for creating
embedded reports.

No

Dialogs Commonly used dialog boxes. Yes, except for OpenPictureDialog,
SavePictureDialog, PrintDialog, and
PrinterSetupDialog.

Win 3.1 Old style Win 3.1 components. No

Samples Sample custom components. No

ActiveX Sample ActiveX controls; see Microsoft
documentation (msdn.microsoft.com).

No

COM+ Component for handling COM+ events. No

WebServices Components for writing applications
that implement or use SOAP-based Web
Services.

No

Servers COM Server examples for Microsoft
Excel, Word, and so on (see Microsoft
MSDN documentation).

No

Indy Clients Cross-platform Internet components for
the client (open source Winshoes Inter-
net components).

Yes

Indy Servers Cross-platform Internet components for
the server (open source Winshoes Inter-
net components).

Yes

Indy Misc Additional cross-platform Internet com-
ponents (open source Winshoes Internet
components).

Yes

Table 5.1 Component palette pages (continued)

Page name Description Cross-platform?

W o r k i n g w i t h c o n t r o l s 6-1

C h a p t e r

6
Chapter 6Working with controls

Controls are visual components that the user can interact with at runtime. This
chapter describes a variety of features common to many controls.

Implementing drag and drop in controls
Drag-and-drop is often a convenient way for users to manipulate objects. You can let
users drag an entire control, or let them drag items from one control—such as a list
box or tree view— into another.

• Starting a drag operation
• Accepting dragged items
• Dropping items
• Ending a drag operation
• Customizing drag and drop with a drag object
• Changing the drag mouse pointer

Starting a drag operation

Every control has a property called DragMode that determines how drag operations
are initiated. If DragMode is dmAutomatic, dragging begins automatically when the
user presses a mouse button with the cursor on the control. Because dmAutomatic can
interfere with normal mouse activity, you may want to set DragMode to dmManual
(the default) and start the dragging by handling mouse-down events.

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag
takes a Boolean parameter called Immediate and an integer parameter called Threshold.
If you pass true for Immediate, dragging begins immediately. If you pass false,
dragging does not begin until the user moves the mouse the number of pixels
specified by Threshold. If Threshold is -1, a default value is used. Calling

BeginDrag (false, -1);

6-2 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g a n d d r o p i n c o n t r o l s

allows the control to accept mouse clicks without beginning a drag operation.

You can place other conditions on whether to begin dragging, such as checking
which mouse button the user pressed, by testing the parameters of the mouse-down
event before calling BeginDrag. The following code, for example, handles a mouse-
down event in a file list box by initiating a drag operation only if the left mouse
button was pressed.

void __fastcall TFMForm::FileListBox1MouseDown(TObject *Sender,
TMouseButton Button, TShiftState Shift, int X, int Y)

{
if (Button == mbLeft)// drag only if left button pressed
{

TFileListBox *pLB = (TFileListBox *)Sender; // cast to TFileListBox
if (pLB->ItemAtPos(Point(X,Y), true) >= 0) // is there an item here?

pLB->BeginDrag(false, -1); // if so, drag it
}

}

Accepting dragged items

When the user drags something over a control, that control receives an OnDragOver
event, at which time it must indicate whether it can accept the item if the user drops it
there. The drag cursor changes to indicate whether the control can accept the
dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragOver event.

The drag-over event has a parameter called Accept that the event handler can set to
true if it will accept the item. Accept changes the cursor type to an accept cursor or
not.

The drag-over event has other parameters, including the source of the dragging and
the current location of the mouse cursor, that the event handler can use to determine
whether to accept the drag. In the following example, a directory tree view accepts
dragged items only if they come from a file list box.

void __fastcall TForm1::TreeView1DragOver(TObject *Sender, TObject *Source,
int X, int Y, TDragState State, bool &Accept)

{
if (Source->InheritsFrom(__classid(TFileListBox)))

Accept = true;
}

Dropping items

If a control indicates that it can accept a dragged item, it needs to handle the item
should it be dropped. To handle dropped items, attach an event handler to the
OnDragDrop event of the control accepting the drop. Like the drag-over event, the
drag-and-drop event indicates the source of the dragged item and the coordinates of
the mouse cursor over the accepting control. The latter parameter allows you to
monitor the path an item takes while being dragged; you might, for example, want to
use this information to change the color of components if an item is dropped.

W o r k i n g w i t h c o n t r o l s 6-3

I m p l e m e n t i n g d r a g a n d d r o p i n c o n t r o l s

In the following example, a directory tree view, accepting items dragged from a file
list box, responds by moving files to the directory on which they are dropped.

void __fastcall TForm1::TreeView1DragDrop(TObject *Sender, TObject *Source,
int X, int Y){

if (Source->InheritsFrom(__classid(TFileListBox)))
{

TTreeNode *pNode = TreeView1->GetNodeAt(X,Y); // pNode is drop target
AnsiString NewFile = pNode->Text + AnsiString("//") +

ExtractFileName(FileListBox1->FileName); // build file name for drop target
MoveFileEx(FileListBox1->FileName.c_str(), NewFile.c_str(),

MOVEFILE_REPLACE_EXISTING | MOVEFILE_COPY_ALLOWED); // move the file
}

}

Ending a drag operation

A drag operation ends when the item is either successfully dropped or released over
a control that cannot accept it. At this point an end-drag event is sent to the control
from which the drag was initiated. To enable a control to respond when items have
been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which
indicates which control, if any, accepts the drop. If Target is null, it means no control
accepts the dragged item. The OnEndDrag event also includes the coordinates on the
receiving control.

In this example, a file list box handles an end-drag event by refreshing its file list.

void __fastcall TFMForm::FileListBox1EndDrag(TObject *Sender, TObject *Target, int X, int
Y)

if (Target)
FileListBox1->Update();

};

Customizing drag and drop with a drag object

You can use a TDragObject descendant to customize an object’s drag-and-drop
behavior. The standard drag-over and drag-and-drop events indicate the source of
the dragged item and the coordinates of the mouse cursor over the accepting control.
To get additional state information, derive a custom drag object from TDragObject or
TDragObjectEx (VCL only) and override its virtual methods. Create the custom drag
object in the OnStartDrag event.

Normally, the source parameter of the drag-over and drag-and-drop events is the
control that starts the drag operation. If different kinds of control can start an
operation involving the same kind of data, the source needs to support each kind of
control. When you use a descendant of TDragObject, however, the source is the drag
object itself; if each control creates the same kind of drag object in its OnStartDrag
event, the target needs to handle only one kind of object. The drag-over and drag-
and-drop events can tell if the source is a drag object, as opposed to the control, by
calling the IsDragObject function.

6-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g d r a g a n d d o c k i n c o n t r o l s

TDragObjectEx descendants (VCL only) are freed automatically whereas descendants
of TDragObject are not. If you have TDragObject descendants that you are not
explicitly freeing, you can change them so they descend from TDragObjectEx instead
to prevent memory loss.

Drag objects let you drag items between a form implemented in the application’s
main executable file and a form implemented using a DLL, or between forms that are
implemented using different DLLs.

Changing the drag mouse pointer

You can customize the appearance of the mouse pointer during drag operations by
setting the source component’s DragCursor property (VCL only).

Implementing drag and dock in controls
Descendants of TWinControl can act as docking sites and descendants of TControl can
act as child windows that are docked into docking sites. For example, to provide a
docking site at the left edge of a form window, align a panel to the left edge of the
form and make the panel a docking site. When dockable controls are dragged to the
panel and released, they become child controls of the panel.

• Making a windowed control a docking site
• Making a control a dockable child
• Controlling how child controls are docked
• Controlling how child controls are undocked
• Controlling how child controls respond to drag-and-dock operations

Note Drag-and-dock properties are available in the VCL but not CLX.

Making a windowed control a docking site

To make a windowed control a docking site:

1 Set the DockSite property to true.

2 If the dock site object should not appear except when it contains a docked client,
set its AutoSize property to true. When AutoSize is true, the dock site is sized to 0
until it accepts a child control for docking. Then it resizes to fit around the child
control.

Making a control a dockable child

To make a control a dockable child:

1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the
control moves the control to a new docking site or undocks the control so that it
becomes a floating window. When DragKind is dkDrag (the default), dragging the

W o r k i n g w i t h c o n t r o l s 6-5

I m p l e m e n t i n g d r a g a n d d o c k i n c o n t r o l s

control starts a drag-and-drop operation which must be implemented using the
OnDragOver, OnEndDrag, and OnDragDrop events.

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for
drag-and-drop or docking, depending on DragKind) is initiated automatically
when the user starts dragging the control with the mouse. When DragMode is
dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by
calling the BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that
should host the control when it is undocked and left as a floating window. When
the control is released and not over a docking site, a windowed control of this class
is created dynamically, and becomes the parent of the dockable child. If the
dockable child control is a descendant of TWinControl, it is not necessary to create
a separate floating dock site to host the control, although you may want to specify
a form in order to get a border and title bar. To omit a dynamic container window,
set FloatingDockSiteClass to the same class as the control, and it will become a
floating window with no parent.

Controlling how child controls are docked

A docking site automatically accepts child controls when they are released over the
docking site. For most controls, the first child is docked to fill the client area, the
second splits that into separate regions, and so on. Page controls dock children into
new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

__property TGetSiteInfoEvent OnGetSiteInfo = {read=FOnGetSiteInfo, write=FOnGetSiteInfo};
typedef void __fastcall (__closure *TGetSiteInfoEvent)(System::TObject* Sender, TControl*
DockClient, Windows::TRect &InfluenceRect, const Windows::TPoint &MousePos, bool &CanDock);

OnGetSiteInfo occurs on the docking site when the user drags a dockable child over
the control. It allows the site to indicate whether it will accept the control specified by
the DockClient parameter as a child, and if so, where the child must be to be
considered for docking. When OnGetSiteInfo occurs, InfluenceRect is initialized to the
screen coordinates of the docking site, and CanDock is initialized to true. A more
limited docking region can be created by changing InfluenceRect and the child can be
rejected by setting CanDock to false.

__property TDockOverEvent OnDockOver = {read=FOnDockOver, write=FOnDockOver};
typedef void __fastcall (__closure *TDockOverEvent)(System::TObject* Sender,
TDragDockObject* Source, int X, int Y, TDragState State, bool &Accept);

OnDockOver occurs on the docking site when the user drags a dockable child over the
control. It is analogous to the OnDragOver event in a drag-and-drop operation. Use it
to signal that the child can be released for docking, by setting the Accept parameter. If
the dockable control is rejected by the OnGetSiteInfo event handler (perhaps because
it is the wrong type of control), OnDockOver does not occur.

__property TDockDropEvent OnDockDrop = {read=FOnDockDrop, write=FOnDockDrop};
typedef void __fastcall (__closure *TDockDropEvent)(System::TObject* Sender,
TDragDockObject* Source, int X, int Y);

6-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

OnDockDrop occurs on the docking site when the user releases the dockable child
over the control. It is analogous to the OnDragDrop event in a normal drag-and-drop
operation. Use this event to perform any necessary accommodations to accepting the
control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

Controlling how child controls are undocked

A docking site automatically allows child controls to be undocked when they are
dragged and have a DragMode property of dmAutomatic. Docking sites can respond
when child controls are dragged off, and even prevent the undocking, in an
OnUnDock event handler:

__property TUnDockEvent OnUnDock = {read=FOnUnDock, write=FOnUnDock};
typedef void __fastcall (__closure *TUnDockEvent)(System::TObject* Sender, TControl* Client,
TWinControl* NewTarget, bool &Allow);

The Client parameter indicates the child control that is trying to undock, and the
Allow parameter lets the docking site (Sender) reject the undocking. When
implementing an OnUnDock event handler, it can be useful to know what other
children (if any) are currently docked. This information is available in the read-only
DockClients property, which is an indexed array of TControl. The number of dock
clients is given by the read-only DockClientCount property.

Controlling how child controls respond to drag-and-dock operations

Dockable child controls have two events that occur during drag-and-dock
operations: OnStartDock, analogous to the OnStartDrag event of a drag-and-drop
operation, allows the dockable child control to create a custom drag object.
OnEndDock, like OnEndDrag, occurs when the dragging terminates.

Working with text in controls
The following sections explain how to use various features of rich edit and memo
controls. Some of these features work with edit controls as well.

• Setting text alignment
• Adding scroll bars at runtime
• Adding the clipboard object
• Selecting text
• Selecting all text
• Cutting, copying, and pasting text
• Deleting selected text
• Disabling menu items
• Providing a pop-up menu
• Handling the OnPopup event

W o r k i n g w i t h c o n t r o l s 6-7

W o r k i n g w i t h t e x t i n c o n t r o l s

Setting text alignment

In a rich edit or memo component, text can be left- or right-aligned or centered. To
change text alignment, set the edit component’s Alignment property. Alignment takes
effect only if the WordWrap property is true; if word wrapping is turned off, there is
no margin to align to.

For example, the following code from the RichEdit example sets the alignment
depending on which button was chosen:

switch((int)RichEdit1->Paragraph->Alignment)
{

case 0: LeftAlign->Down = true; break;
case 1: RightAlign->Down = true; break;
case 2: CenterAlign->Down = true; break;

}

Adding scroll bars at runtime

Rich edit and memo components can contain horizontal or vertical scroll bars, or
both, as needed. When word wrapping is enabled, the component needs only a
vertical scroll bar. If the user turns off word wrapping, the component might also
need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime:

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude
scroll bars.

The following example attaches an OnClick event handler to a Character|WordWrap
menu item.

void __fastcall TEditForm::WordWrap1Click(TObject *Sender)
{

Editor->WordWrap = !(Editor->WordWrap); // toggle word wrapping
if (Editor->WordWrap)

Editor->ScrollBars = ssVertical; // wrapped requires only vertical
else

Editor->ScrollBars = ssBoth; // unwrapped can need both
WordWrap1->Checked = Editor->WordWrap; // check menu item to match property

}

The rich edit and memo components handle their scroll bars in a slightly different
way. The rich edit component can hide its scroll bars if the text fits inside the bounds
of the component. The memo always shows scroll bars if they are enabled.

6-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

Adding the clipboard object

Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. The Clipboard
object in C++Builder encapsulates a clipboard (such as the Windows Clipboard) and
includes methods for cutting, copying, and pasting text (and other formats, including
graphics). The Clipboard object is declared in the Clipbrd unit.

To add the Clipboard object to an application:

1 Select the unit that will use the clipboard.

2 In the form’s .h file, add

#include <vcl\Clipbrd.hpp>

Selecting text

For text in an edit control, before you can send any text to the clipboard, that text
must be selected. Highlighting of selected text is built into the edit components.
When the user selects text, it appears highlighted.

Table 6.1 lists properties commonly used to handle selected text.

Selecting all text

The SelectAll method selects the entire contents of an edit control, such as a rich edit
or memo component. This is especially useful when the component’s contents exceed
the visible area of the component. In most other cases, users select text with either
keystrokes or mouse dragging.

To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s
SelectAll method.

For example:

void __fastcall TMainForm::SelectAll(TObject *Sender)
{

RichEdit1->SelectAll(); // select all text in RichEdit
}

Table 6.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.

SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string relative to the beginning of
an edit control’s text buffer.

W o r k i n g w i t h c o n t r o l s 6-9

W o r k i n g w i t h t e x t i n c o n t r o l s

Cutting, copying, and pasting text

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and
objects through the clipboard. The edit components that encapsulate the standard
text-handling controls all have methods built into them for interacting with the
clipboard. (See “Using the clipboard with graphics” on page 10-21 for information on
using the clipboard with graphics.)

To cut, copy, or paste text with the clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the
Edit|Cut, Edit|Copy, and Edit|Paste commands, respectively:

void __fastcall TMainForm::EditCutClick(TObject* Sender)
{ RichEdit1->CutToClipboard();
}
void __fastcall TMainForm::EditCopyClick(TObject* Sender)
{ RichEdit1->CopyToClipboard();
}
void __fastcall TMainForm::EditPasteClick(TObject* Sender)
{ RichEdit1->PasteFromClipboard();
}

Deleting selected text

You can delete the selected text in an edit component without cutting it to the
clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

void __fastcall TMainForm::EditDeleteClick(TObject *Sender)
{

RichEdit1->ClearSelection();
}

Disabling menu items

It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to false.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether RichEdit1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the clipboard.

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{

// enable or disable the Paste menu item
Paste1->Enabled = Clipboard()->HasFormat(CF_TEXT);

6-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t e x t i n c o n t r o l s

bool HasSelection = (RichEdit1->SelLength > 0); // true if text is selected
Cut1->Enabled = HasSelection; // enable menu items if HasSelection is true
Copy1->Enabled = HasSelection;
Delete1->Enabled = HasSelection;

}

The HasFormat method of the clipboard returns a Boolean value based on whether
the clipboard contains objects, text, or images of a particular format. By calling
HasFormat with the parameter CF_TEXT, you can determine whether the clipboard
contains any text, and enable or disable the Paste item as appropriate.

Chapter 10, “Working with graphics and multimedia” provides more information
about using the clipboard with graphics.

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to
create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form:

1 Place a pop-up menu component on the form.

2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 6-9.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

W o r k i n g w i t h c o n t r o l s 6-11

A d d i n g g r a p h i c s t o c o n t r o l s

To adjust menu items on a pop-up menu before displaying them:

1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in
“Disabling menu items” on page 6-9 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to Edit1Click for each item in the pop-up
menu.

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{

// enable or disable the Paste menu item
Paste1->Enabled = Clipboard()->HasFormat(CF_TEXT);
Paste2->Enabled = Paste1->Enabled; // add this line
bool HasSelection = (RichEdit1->SelLength > 0); // true if text is selected
Cut1->Enabled = HasSelection; // enable menu items if HasSelection is true
Cut2->Enabled = HasSelection; // add this line
Copy1->Enabled = HasSelection;
Copy2->Enabled = HasSelection; // add this line
Delete1->Enabled = HasSelection;

}

Adding graphics to controls
Several controls let you customize the way the control is rendered. These include list
boxes, combo boxes, menus, headers, tab controls, list views, status bars, tree views,
and toolbars. Instead of using the standard method of drawing a control or its items,
the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text
for items. For information on using owner-draw to add images to menus, see
“Adding images to menu items” on page 8-35.

All owner-draw controls contain lists of items. Usually, those lists are lists of strings
that are displayed as text, or lists of objects that contain strings that are displayed as
text. You can associate an object with each item in a list to make it easy to use that
object when drawing items.

In general, creating an owner-draw control in C++Builder involves these steps:

1 Indicating that a control is owner-drawn.
2 Adding graphical objects to a string list.
3 Drawing owner-drawn items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and toolbars all receive events at
various stages in the drawing process without your having to set any properties.

6-12 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

These events have names such as “OnCustomDraw” or
“OnAdvancedCustomDraw.”

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. List views and tab controls
have a property called OwnerDraw that enables or disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 6.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Adding graphical objects to a string list

Every string list has the ability to hold a list of objects in addition to its list of strings.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Adding images to an application
An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you’ll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.
2 Set their Name properties.
3 Set the Visible property for each image control to false.
4 Set the Picture property of each image to the desired bitmap using the Picture

editor from the Object Inspector.

The image controls are invisible when you run the application.

Adding images to a string list
Once you have graphical images in an application, you can associate them with the
strings in a string list. You can either add the objects at the same time as the strings,
or associate objects with existing strings. The preferred method is to add objects and
strings at the same time, if all the needed data is available.

Table 6.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height
determined by the ItemHeight property.

lbOwnerDrawFixed,
csOwnerDrawFixed

Variable Each item might have a different height,
determined by the data at runtime.

lbOwnerDrawVariable,
csOwnerDrawVariable

W o r k i n g w i t h c o n t r o l s 6-13

A d d i n g g r a p h i c s t o c o n t r o l s

The following example shows how you might want to add images to a string list.
This is part of a file manager application where, along with a letter for each valid
drive, it adds a bitmap indicating each drive’s type. The OnCreate event handler looks
like this:

void __fastcall TFMForm::FormCreate(TObject *Sender)
{

int AddedIndex;
char DriveName[4] = "A:\\";
for (char Drive = 'A'; Drive <= 'Z'; Drive++) // try all possible drives
{

DriveName[0] = Drive;
switch (GetDriveType(DriveName))
{

case DRIVE_REMOVABLE:// add a list item
DriveName[1] = '\0'; // temporarily make drive letter into string
AddedIndex = DriveList->Items->AddObject(DriveName,

Floppy->Picture->Graphic);
DriveName[1] = ':' // replace the colon
break;

case DRIVE_FIXED:// add a list item
DriveName[1] = '\0'; // temporarily make drive letter into string
AddedIndex = DriveList->Items->AddObject(DriveName,

Fixed->Picture->Graphic);
DriveName[1] = ':' // replace the colon
break;

case DRIVE_REMOTE:// add a list item
DriveName[1] = '\0'; // temporarily make drive letter into string
AddedIndex = DriveList->Items->AddObject(DriveName,

Network->Picture->Graphic);
DriveName[1] = ':' // replace the colon
break;

}
if ((int)(Drive - 'A') == getdisk()) // current drive?

DriveList->ItemIndex = AddedIndex; // then make that the current list item
}

}

Drawing owner-drawn items
When you indicate that a control is owner-drawn, either by setting a property or
supplying a custom draw event handler, the control is no longer drawn on the
screen. Instead, the operating system generates events for each visible item in the
control. Your application handles the events to draw the items.

To draw the items in an owner-draw control, do the following for each visible item in
the control. Use a single event handler for all items.

1 Size the item, if needed.

Items of the same size (for example, with a list box style of lsOwnerDrawFixed), do not
require sizing.

2 Draw the item.

6-14 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c s t o c o n t r o l s

Sizing owner-draw items

Before giving your application the chance to draw each item in a variable owner-
draw control, the operating system generates a measure-item event. The measure-
item event tells the application where the item appears on the control.

C++Builder determines the size of the item (generally, it is just large enough to
display the item’s text in the current font). Your application can handle the event and
change the rectangle chosen. For example, if you plan to substitute a bitmap for the
item’s text, change the rectangle to be the size of the bitmap. If you want a bitmap and
text, adjust the rectangle to be big enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. Depending on the control, the name of the
event can vary. List boxes and combo boxes use OnMeasureItem. Grids have no
measure-item event.

The sizing event has two important parameters: the index number of the item and the
size of that item. The size is variable: the application can make it either smaller or
larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the
application can alter is the height of the item. The width of the item is always the
width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of
each row and column is set before drawing by the ColWidths and RowHeights
properties.

The following code, attached to the OnMeasureItem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

void __fastcall TForm1::ListBox1MeasureItem(TWinControl *Control, int Index,
int &Height) // note that Height is passed by reference

{
int BitmapHeight = ((TBitmap *)ListBox1->Items->Objects[Index])->Height + 2;
// make sure list item has enough room for bitmap (plus 2)
if (BitmapHeight > Height)

Height = BitmapHeight;
}

Note You must typecast the items from the Objects property in the string list. Objects is a
property of type TObject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

Drawing owner-draw items

When an application needs to draw or redraw an owner-draw control, the operating
system generates draw-item events for each visible item in the control. Depending on
the control, the item may also receive draw events for the item as a whole or
subitems.

W o r k i n g w i t h c o n t r o l s 6-15

A d d i n g g r a p h i c s t o c o n t r o l s

To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.

The names of events for owner drawing typically start with one of the following:

• OnDraw, such as OnDrawItem or OnDrawCell

• OnCustomDraw, such as OnCustomDrawItem

• OnAdvancedCustomDraw, such as OnAdvancedCustomDrawItem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as
whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawItem event
for the list box:

void __fastcall TForm1::ListBox1DrawItem(TWinControl *Control, int Index,
TRect &Rect, TOwnerDrawState State)

TBitmap *Bitmap = (TBitmap *)ListBox1->Items->Objects[Index];
ListBox1->Canvas->Draw(R.Left, R.Top + 2, Bitmap); // draw the bitmap
ListBox1->Canvas->TextOut(R.Left + Bitmap->Width + 2, R.Top + 2,

ListBox1->Items->Strings[Index]); // and write the text to its right
}

6-16 D e v e l o p e r ’ s G u i d e

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-1

C h a p t e r

7
Chapter 7Building applications, components,

and libraries
This chapter provides an overview of how to use C++Builder to create applications,
libraries, and components.

Creating applications
The main use of C++Builder is designing and building the following types of
applications:

• GUI applications
• Console applications
• Service applications (for Windows applications only)
• Packages and DLLs

GUI applications generally have an easy-to-use interface. Console applications run
from a console window. Service applications are run as Windows services. These
types of applications compile as executables with start-up code.

You can create other types of projects such as packages and DLLs that result in
creating packages or dynamically linkable libraries. These applications produce
executable code without start-up code. Refer to “Creating packages and DLLs” on
page 7-10.

GUI applications

A graphical user interface (GUI) application is one that is designed using graphical
features such as windows, menus, dialog boxes, and features that make the
application easy to use. When you compile a GUI application, an executable file with
start-up code is created. The executable usually provides the basic functionality of

7-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

your program, and simple programs often consist of only an executable file. You can
extend the application by calling DLLs, packages, and other support files from the
executable.

C++Builder offers two application UI models:

• Single document interface (SDI)
• Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE.

User interface models
Any form can be implemented as a multiple document interface (MDI) or single
document interface (SDI) form. In an MDI application, more than one document or
child window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors. An SDI application, in
contrast, normally contains a single document view. To make your form an SDI
application, set the FormStyle property of your Form object to fsNormal.

For more information on developing the UI for an application, see Chapter 8,
“Developing the application user interface.”

SDI applications
To create a new SDI application:

1 Choose File|New|Other to bring up the New Items dialog.

2 Click on the Projects page and double-click SDI Application.

3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so
C++Builder assumes that all new applications are SDI applications.

MDI applications
To create a new MDI application:

1 Choose File|New|Other to bring up the New Items dialog.

2 Click on the Projects page and double-click MDI Application.

3 Click OK.

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIChild) or main form
(fsMDIForm). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-3

C r e a t i n g a p p l i c a t i o n s

MDI applications often include a Window pop-up on the main menu that has items
such as Cascade and Tile for viewing multiple windows in various styles. When a
child window is minimized, its icon is located in the MDI parent form.

To summarize what you need to do to create the windows for the MDI application,

1 Create the main window form or MDI parent window. Set its FormStyle property
to fsMDIForm.

2 Create a menu for the main window that includes File|Open, File|Save, and
Window which has Cascade, Tile, and Arrange All items.

3 Create the MDI child forms and set their FormStyle properties to fsMDIChild.

Setting IDE, project, and compilation options
Choose Project|Options to specify various options for your project. For more
information, see the online Help.

Setting default project options
To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will use the current options selected by default.

Programming templates

Programming templates are commonly used skeleton structures that you can add to
your source code and then fill in. Some standard code templates such as those for
array, class, and function declarations, and many statements, are included with
C++Builder.

You can also write your own templates for coding structures that you often use. For
example, if you want to use a for loop in your code, you could insert the following
template:

for (; ;)
{

}

To insert a code template in the Code editor, press Ctrl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Choose Tools|Editor Options.

2 Click the Code Insight tab.

3 In the Templates section, click Add.

4 Type a name for the template after Shortcut name, enter a brief description of the
new template, and click OK.

5 Add the template code to the Code text box.

6 Click OK.

7-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

Console applications

Console applications are 32-bit programs that run without a graphical interface,
usually in a console window. These applications typically don’t require much user
input and perform a limited set of functions.

To create a new console application:

1 Choose File|New|Other and double-click Console Wizard from the New Items
dialog box.

2 In the Console Wizard dialog box, check the Console Application option, choose
the source type (C or C++) for the main module of the project, or specify a pre-
existing file that contains a main or winmain function, and click the OK button.

C++Builder then creates a project file for this type of source file and displays the
Code editor.

Using the VCL and CLX in console applications
Note When you create a new console application, the IDE does not create a new form.

Only the Code editor appears.

You can, however, use VCL and CLX objects in console applications. To do this, in
the Console Wizard you must indicate that you will be using the VCL or CLX (check
the Use VCL or Use CLX option). If you do not indicate in the wizard that you want
to use the VCL or CLX, you will not be able use any of the VCL or CLX classes in this
application later. Trying to do so will cause linker errors.

Console applications should handle all exceptions to prevent windows from
displaying a dialog during its execution.

Service applications

Service applications take requests from client applications, process those requests,
and return information to the client applications. They typically run in the
background, without much user input. A Web, FTP, or e-mail server is an example of
a service application.

To create an application that implements a Win32 service:

1 Choose File|New|Other, and double-click Service Application in the New Items
dialog box. This adds a global variable named Application to your project, which is
of type TServiceApplication.

2 A Service window appears that corresponds to a service (TService). Implement the
service by setting its properties and event handlers in the Object Inspector.

3 You can add additional services to your service application by choosing File|
New|Other, and double-click Service in the New Items dialog box. Do not add
services to an application that is not a service application. While a TService object
can be added, the application will not generate the requisite events or make the
appropriate Windows calls on behalf of the service.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-5

C r e a t i n g a p p l i c a t i o n s

4 Once your service application is built, you can install its services with the Service
Control Manager (SCM). Other applications can then launch your services by
sending requests to the SCM.

To install your application’s services, run it using the /INSTALL option. The
application installs its services and exits, giving a confirmation message if the
services are successfully installed. You can suppress the confirmation message by
running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINSTALL
option. (You can also use the /SILENT option to suppress the confirmation message
when uninstalling).

Example This service has a TServerSocket whose port is set to 80. This is the default port for
Web browsers to make requests to Web servers and for Web servers to make
responses to Web browsers. This particular example produces a text document in the
C:\Temp directory called WebLogxxx.log (where xxx is the ThreadID). There should
be only one server listening on any given port, so if you have a Web server, you
should make sure that it is not listening (the service is stopped).

To see the results: open up a Web browser on the local machine and for the address,
type 'localhost' (with no quotes). The browser will time out eventually, but you
should now have a file called Weblogxxx.log in the C:\Temp directory.

1 To create the example, choose File|New|Other and select Service Application
from the New Items dialog box. The Service1 window appears.

2 From the Internet page of the Component palette, add a ServerSocket component
to the service window (Service1).

3 Add a private data member of type TMemoryStream to the TService1 class. The
header for your unit should now look like this:

//---
#ifndef Unit1H
#define Unit1H
//---
#include <SysUtils.hpp>
#include <Classes.hpp>
#include <SvcMgr.hpp>
#include <ScktComp.hpp>
//---
class TService1 : public TService
{
__published:// IDE-managed Components
 TServerSocket *ServerSocket1;
private:// User declarations
 TMemoryStream *Stream; // add this line here
public:// User declarations

__fastcall TService1(TComponent* Owner);
 PServiceController __fastcall GetServiceController(void);

friend void __stdcall ServiceController(unsigned CtrlCode);
};

7-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

//---
extern PACKAGE TService1 *Service1;
//---
#endif

4 Select ServerSocket1, the component you added in step 1. In the Object Inspector,
double-click the OnClientRead event and add the following event handler:

void __fastcall TService1::ServerSocket1ClientRead(TObject *Sender,
 TCustomWinSocket *Socket)
{
 char *Buffer = NULL;
 int len = Socket->ReceiveLength();
 while (len > 0)
 {
 try
 {
 Buffer = (char *)malloc(len);
 Socket->ReceiveBuf((void *)Buffer, len);
 Stream->Write(Buffer, len);
 }
 __finally
 {
 free(Buffer);
 }
 Stream->Seek(0, soFromBeginning);
 AnsiString LogFile = "C:\\Temp\\WebLog";
 LogFile = LogFile + IntToStr(ServiceThread->ThreadID) + ".log";
 Stream->SaveToFile(LogFile);
 }
}

5 Finally, select Service1 by clicking in the window’s client area (but not on the
ServiceSocket). In the Object Inspector, double click the OnExecute event and add
the following event handler:

void __fastcall TService1::Service1Execute(TService *Sender)
{
 Stream = new TMemoryStream();
 try
 {
 ServerSocket1->Port = 80; // WWW port
 ServerSocket1->Active = true;
 while (!Terminated)
 ServiceThread->ProcessRequests(true);
 ServerSocket1->Active = false;
 }
 __finally
 {
 delete Stream;
 }
 }

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-7

C r e a t i n g a p p l i c a t i o n s

When writing your service application, you should be aware of:

• Service threads
• Service name properties
• Debugging service applications

Note Service applications are for Windows only.

Service threads
Each service has its own thread (TServiceThread), so if your service application
implements more than one service you must ensure that the implementation of your
services is thread-safe. TServiceThread is designed so that you can implement the
service in the TService OnExecute event handler. The service thread has its own
Execute method which contains a loop that calls the service’s OnStart and OnExecute
handlers before processing new requests.

Because service requests can take a long time to process and the service application
can receive simultaneous requests from more than one client, it is more efficient to
spawn a new thread (derived from TThread, not TServiceThread) for each request and
move the implementation of that service to the new thread’s Execute method. This
allows the service thread’s Execute loop to process new requests continually without
having to wait for the service’s OnExecute handler to finish. The following example
demonstrates.

Example This service beeps every 500 milliseconds from within the standard thread. It handles
pausing, continuing, and stopping of the thread when the service is told to pause,
continue, or stop.

1 Choose File|New|Other and double-click Service Application in the New Items
dialog. The Service1 window appears.

2 In you unit’s header file, declare a new descendant of TThread named
TSparkyThread. This is the thread that does the work for your service. The
declaration should appear as follows:

class TSparkyThread : public TThread
{
private:
protected:
 void __fastcall Execute();
public:
 __fastcall TSparkyThread(bool CreateSuspended);
};

3 In the .cpp file for your unit, create a global variable for a TSparkyThread instance:

TSparkyThread *SparkyThread;

4 Add the following code to the .cpp file for the TSparkyThread constructor:

__fastcall TSparkyThread::TSparkyThread(bool CreateSuspended)
 : TThread(CreateSuspended)
{
}

7-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p p l i c a t i o n s

5 Add the following code to the .cpp file for the TSparkyThread Execute method
(the thread function):

void __fastcall TSparkyThread::Execute()
{

while (!Terminated)
{

Beep();
Sleep(500);

}
}

6 Select the Service window (Service1), and double-click the OnStart event in the
Object Inspector. Add the following OnStart event handler:

void __fastcall TService1::Service1Start(TService *Sender, bool &Started)
{

SparkyThread = new TSparkyThread(false);
Started = true;

}

7 Double-click the OnContinue event in the Object Inspector. Add the following
OnContinue event handler:

void __fastcall TService1::Service1Continue(TService *Sender, bool &Continued)
{

SparkyThread->Resume();
Continued = true;

}

8 Double-click the OnPause event in the Object Inspector. Add the following
OnPause event handler:

void __fastcall TService1::Service1Pause(TService *Sender, bool &Paused)
{

SparkyThread->Suspend();
Paused = true;

}

9 Finally, double-click the OnStop event in the Object Inspector and add the
following OnStop event handler:

void __fastcall TService1::Service1Stop(TService *Sender, bool &Stopped)
{

SparkyThread->Terminate();
Stopped = true;

}

When developing server applications, choosing to spawn a new thread depends on
the nature of the service being provided, the anticipated number of connections, and
the expected number of processors on the computer running the service.

Service name properties
The VCL provides classes for creating service applications on the Windows platform
(not available for cross-platform applications). These include TService and

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-9

C r e a t i n g a p p l i c a t i o n s

TDependency. When using these classes, the various name properties can be
confusing. This section describes the differences.

Services have user names (called Service start names) that are associated with
passwords, display names for display in manager and editor windows, and actual
names (the name of the service). Dependencies can be services or they can be load
ordering groups. They also have names and display names. And because service
objects are derived from TComponent, they inherit the Name property. The following
sections summarize the name properties:

TDependency properties
The TDependency DisplayName is both a display name and the actual name of the
service. It is nearly always the same as the TDependency Name property.

TService name properties
The TService Name property is inherited from TComponent. It is the name of the
component, and is also the name of the service. For dependencies that are services,
this property is the same as the TDependency Name and DisplayName properties.

TService’s DisplayName is the name displayed in the Service Manager window. This
often differs from the actual service name (TService::Name,
TDependency::DisplayName, TDependency::Name). Note that the DisplayName for the
Dependency and the DisplayName for the Service usually differ.

Service start names are distinct from both the service display names and the actual
service names. A ServiceStartName is the user name input on the Start dialog selected
from the Service Control Manager.

Debugging service applications
You can debug service applications by attaching to the service application process
when it is already running (that is, by starting the service first, and then attaching to
the debugger). To attach to the service application process, choose Run|Attach To
Process, and select the service application in the resulting dialog.

In some cases, this approach may fail, due to insufficient rights. If that happens, you
can use the Service Control Manager to enable your service to work with the
debugger:

1 First create a key called Image File Execution Options in the following registry
location:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

2 Create a subkey with the same name as your service (for example, MYSERV.EXE).
To this subkey, add a value of type REG_SZ, named Debugger. Use the full path to
BCB.exe as the string value.

3 In the Services control panel applet, select your service, click Startup and check
Allow Service to Interact with Desktop.

7-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g p a c k a g e s a n d D L L s

On Windows NT systems, you can use another approach for debugging service
applications. However, this approach can be tricky, because it requires short time
intervals:

1 First, launch the application in the debugger. Wait a few seconds until it has
finished loading.

2 Quickly start the service from the Control Panel or from the command line:
start MyServ

You must launch the service quickly (within 15-30 seconds of application startup)
because the application will terminate if no service is launched.

Creating packages and DLLs
Dynamic link libraries (DLLs) are modules of compiled code that work in
conjunction with an executable to provide functionality to an application. You can
create DLLs in cross-platform programs. However, on Linux, DLLs (and packages)
recompile as shared objects.

Packages are special DLLs used by C++Builder applications, the IDE, or both. There
are two kinds of packages: runtime packages and design-time packages. Runtime
packages provide functionality to a program while that program is running. Design-
time packages extend the functionality of the IDE.

DLLs and libraries should handle all exceptions to prevent the display of errors and
warnings through Windows dialogs.

The following compiler directives can be placed in library project files:

For more information on packages, see Chapter 15, “Working with packages and
components.”

Table 7.1 Compiler directives for libraries

Compiler Directive Description

{$LIBPREFIX 'string'} Adds a specified prefix to the output file name. For example, you could
specify {$LIBPREFIX 'dcl'} for a design-time package, or use
{$LIBPREFIX ' '} to eliminate the prefix entirely.

{$LIBSUFFIX 'string'} Adds a specified suffix to the output file name before the extension. For
example, use {$LIBSUFFIX '-2.1.3'} in something.cpp to generate
something-2.1.3.bpl.

{$LIBVERSION
'string'}

Adds a second extension to the output file name after the .bpl
extension. For example, use {$LIBVERSION '2.1.3'} in something.cpp to
generate something.bpl.2.1.3.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-11

U s i n g D L L s i n C + + B u i l d e r

When to use packages and DLLs

For most applications written in C++Builder, packages provide greater flexibility and
are easier to create than DLLs. However, there are several situations where DLLs
would be better suited to your projects than packages:

• Your code module will be called from non-C++Builder applications.
• You are extending the functionality of a Web server.
• You are creating a code module to be used by third-party developers.
• Your project is an OLE container.

You cannot pass runtime type information (RTTI) across DLLs or from a DLL to an
executable. That’s because DLLs all maintain their own symbol information. If you
need to pass a TStrings object from a DLL then using an is or as operator, you need to
create a package rather than a DLL. Packages share symbol information.

Using DLLs in C++Builder
A Windows DLL can be used in a C++Builder application just as it would be in any
C++ application.

To statically load a DLL when your C++Builder application is loaded, link the import
library file for that DLL into your C++Builder application at link time. To add an
import library to a C++Builder application, choose Project|Add and select the .LIB
file you want to add.

The exported functions of that DLL then become available for use by your
application. Prototype the DLL functions your application uses with the __declspec
(dllimport) modifier:

__declspec(dllimport) return_type imported_function_name(parameters);

To dynamically load a DLL during the run of a C++Builder application, include the
import library, just as you would for static loading, and set the delay load linker
option on the Project|Options|Advanced Linker tab. You can also use the Windows
API function LoadLibrary() to load the DLL, then use the API function
GetProcAddress() to obtain pointers to the individual functions you want to use.

Additional information on using DLLs can be found in the Microsoft® Win32 SDK
Reference.

Creating DLLs in C++Builder
Creating DLLs in C++Builder is the same as in standard C++:

1 Choose File|New|Other to display the New Items dialog box.

2 Double-click the DLL Wizard icon.

3 Choose the Source type (C or C++) for the main module.

7-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g D L L s c o n t a i n i n g V C L a n d C L X c o m p o n e n t s

4 If you want the DLL entry point to be DllMain, MSVC++ style, check the VC++
style option, otherwise, DllEntryPoint is used for the entry point.

5 Click Use VCL or Use CLX to create a DLL containing VCL or CLX components,
this option is only available for C++ source modules.
See “Creating DLLs containing VCL and CLX components” on page 7-12.

6 If you want the DLL to be multi-threaded, check the Multi-threaded option.

7 Click OK.

Exported functions in the code should be identified with the __declspec (dllexport)
modifier as they must be in Borland C++ or Microsoft Visual C++. For example, the
following code is legal in C++Builder and other Windows C++ compilers:

// MyDLL.cpp
double dblValue(double);
double halfValue(double);
extern "C" __declspec(dllexport) double changeValue(double, bool);

double dblValue(double value)
{

return value * value;
};

double halfValue(double value)
{

return value / 2.0;
}

double changeValue(double value, bool whichOp)
{

return whichOp ? dblValue(value) : halfValue(value);
}

In the code above, the function changeValue is exported, and therefore made available
to calling applications. The functions dblValue and halfValue are internal, and cannot
be called from outside of the DLL.

Additional information on creating DLLs can be found in the Microsoft® Win32 SDK
Reference.

Creating DLLs containing VCL and CLX components
One of the strengths of DLLs is that a DLL created with one development tool can
often be used by application written using a different development tool. When your
DLL contains VCL or CLX components (such as forms) that are to be used by the
calling application, you need to provide exported interface routines that use standard
calling conventions, avoid C++ name mangling, and do not require the calling
application to support the VCL and CLX libraries in order to work. To create VCL or
CLX components that can be exported, use runtime packages. For more information,
see Chapter 15, “Working with packages and components.”

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-13

C r e a t i n g D L L s c o n t a i n i n g V C L a n d C L X c o m p o n e n t s

For example, suppose you want to create a DLL to display the following simple
dialog box:

The code for the dialog box DLL is as follows:

// DLLMAIN.H
//---
#ifndef dllMainH
#define dllMainH
//---
#include <Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
//---
class TYesNoDialog : public TForm
{
__published: // IDE-managed Components
 TLabel *LabelText;
 TButton *YesButton;
 TButton *NoButton;
 void __fastcall YesButtonClick(TObject *Sender);
 void __fastcall NoButtonClick(TObject *Sender);
private: // User declarations
 bool returnValue;
public: // User declarations
 virtual __fastcall TYesNoDialog(TComponent *Owner);
 bool __fastcall GetReturnValue();
};

// exported interface function
extern "C" __declspec(dllexport) bool InvokeYesNoDialog();

//---
 extern TYesNoDialog *YesNoDialog;
//---
#endif

// DLLMAIN.CPP
//---
#include <vcl\vcl.h>
#pragma hdrstop

#include "dllMain.h"
//---
#pragma resource "*.dfm"
TYesNoDialog *YesNoDialog;
//---

7-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g D L L s c o n t a i n i n g V C L a n d C L X c o m p o n e n t s

__fastcall TYesNoDialog::TYesNoDialog(TComponent *Owner)
 : TForm(Owner)
{
 returnValue = false;
}
//---
void __fastcall TYesNoDialog::YesButtonClick(TObject *Sender)
{
 returnValue = true;
 Close();
}
//---
void __fastcall TYesNoDialog::NoButtonClick(TObject *Sender)
{
 returnValue = false;
 Close();
}
//---
bool __fastcall TYesNoDialog::GetReturnValue()
{
 return returnValue;
}
//---
// exported standard C++ interface function that calls into VCL
bool InvokeYesNoDialog()
{
 bool returnValue;

TYesNoDialog *YesNoDialog = new TYesNoDialog(NULL);
 YesNoDialog->ShowModal();

returnValue = YesNoDialog->GetReturnValue();
delete YesNoDialog;

 return returnValue;
}

//---

The code in this example displays the dialog and stores the value true in the private
data member returnValue if the “Yes” button is pressed. Otherwise, returnValue is
false. The public GetReturnValue() function retrieves the current value of returnValue.

To invoke the dialog and determine which button was pressed, the calling
application calls the exported function InvokeYesNoDialog(). This function is declared
in DLLMAIN.H as an exported function using C linkage (to avoid C++ name
mangling) and the standard C calling convention. The function is defined in
DLLMAIN.CPP.

By using a standard C function as the interface into the DLL, any calling application,
whether or not it was created with C++Builder, can use the DLL. The VCL and CLX
functionality required to support the dialog is linked into the DLL itself, and the
calling application does not need to know anything about it.

Note that when creating a DLL that uses the VCL or CLX, the required VCL or CLX
components are linked into the DLL resulting in a certain amount of overhead. The
impact of this overhead on the overall size of the application can be minimized by
combining several components into one DLL that only needs one copy of the VCL
and CLX support components.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-15

L i n k i n g D L L s

Linking DLLs
You can set the linker options for your DLL on the Linker page of the Project Options
dialog. The default check box on this page also creates an import library for your
DLL. If compiling from the command line, invoke the linker, ILINK32.EXE, with the
-Tpd switch. For example:

ilink32 /c /aa /Tpd c0d32.obj mydll.obj, mydll.dll, mydll.map, import32.lib cw32mt.lib

If you need an import library, use the -Gi switch also, to generate an import library.

You can optionally create an import library with the command line utility
IMPLIB.EXE. For example:

implib mydll.lib mydll.dll

For more information about the different options for linking DLLs and using them
with other modules that are statically or dynamically linked to the runtime library,
see the online Help.

Writing database applications
One of C++Builder’s strengths is its support for creating advanced database
applications. C++Builder supports tools that allow you to connect to SQL servers and
databases such as Oracle, Sybase, InterBase, MySQL, MS-SQL, Informix, and DB2
while providing transparent data sharing between applications.

C++Builder includes many components for accessing databases and representing the
information they contain. On the Component palette, the database components are
grouped according to the data access mechanism and function.

Table 7.2 Database pages on the Component palette

Palette page Contents

BDE Components that use the Borland Database Engine (BDE), a large API for
interacting with databases. The BDE supports the broadest range of functions
and comes with the most supporting utilities including Database Desktop,
Database Explorer, SQL Monitor, and BDE Administrator. See Chapter 24,
“Using the Borland Database Engine” for details.

ADO Components that use ActiveX Data Objects (ADO), developed by Microsoft, to
access database information. Many ADO drivers are available for connecting to
different database servers. ADO-based components let you integrate your
application into an ADO-based environment. See Chapter 25, “Working with
ADO components” for details.

dbExpress Cross-platform components that use dbExpress to access database information.
dbExpress drivers provide fast access to databases but need to be used with
TClientDataSet and TDataSetProvider to perform updates. See Chapter 26, “Using
unidirectional datasets” for details.

InterBase Components that access InterBase databases directly, without going through a
separate engine layer. For more information about using the InterBase
components, see the online Help.

7-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

When designing a database application, you must decide which data access
mechanism to use. Each data access mechanism differs in its range of functional
support, the ease of deployment, and the availability of drivers to support different
database servers.

See Part II, “Developing database applications” in this manual for details on how to
use C++Builder to create both database client applications and application servers.
Refer to “Deploying database applications” on page 17-6 for deployment
information.

Note Not all editions of C++Builder include database support.

Distributing database applications

C++Builder provides support for creating distributed database applications using a
coordinated set of components. Distributed database applications can be built on a
variety of communications protocols, including DCOM, TCP/IP, and SOAP.

For more information about building distributed database applications, see
Chapter 29, “Creating multi-tiered applications.”

Distributing database applications often requires you to distribute the Borland
Database Engine (BDE) in addition to the application files. For information on
deploying the BDE, see “Deploying database applications” on page 17-6.

Creating Web server applications
Web server applications are applications that run on servers that deliver Web content
such as HTML Web pages or XML documents over the Internet. Examples of Web
server applications include those which control access to a Web site, generate
purchase orders, or respond to information requests.

You can create several different types of Web server applications using the following
C++Builder technologies:

• Web Broker
• WebSnap
• InternetExpress
• Web Services

Data Access Components that can be used with any data access mechanism such as
TClientDataSet and TDataSetProvider. See Chapter 27, “Using client datasets” for
information about client datasets. See Chapter 28, “Using provider
components”for information about providers.

Data Controls Data-aware controls that can access information from a data source. See
Chapter 19, “Using data controls” for details.

Table 7.2 Database pages on the Component palette (continued)

Palette page Contents

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-17

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

Using Web Broker

You can use Web Broker (also called NetCLX architecture) to create Web server
applications such as CGI applications or dynamic-link libraries (DLLs). These Web
server applications can contain any nonvisual component. Components on the
Internet page of the Component palette enable you to create event handlers,
programmatically construct HTML or XML documents, and transfer them to the
client.

To create a new Web server application using the Web Broker architecture, choose
File|New|Other and double-click the Web Server Application in the New Items
dialog box. Then select the Web server application type:

CGI and Win-CGI applications use more system resources on the server, so complex
applications are better created as ISAPI, NSAPI, or Apache DLL applications. If
writing cross-platform applications, you should select CGI stand-alone or Apache
Shared Module (DLL) for Web server development. These are also the same options
you see when creating WebSnap and Web Service applications.

For more information on building Web server applications, see Chapter 32, “Creating
Internet server applications.”

Table 7.3 Web server applications

Web server
application type Description

ISAPI and NSAPI
Dynamic Link Library

ISAPI and NSAPI Web server applications are DLLs that are loaded by
the Web server. Client request information is passed to the DLL as a
structure and evaluated by TISAPIApplication. Each request message is
handled in a separate execution thread.
Selecting this type of application adds the library header of the project
files and required entries to the uses list and exports clause of the project
file.

CGI Stand-alone
executable

CGI Web server applications are console applications that receive
requests from clients on standard input, process those requests, and
sends back the results to the server on standard output to be sent to the
client.

Win-CGI Stand-alone
executable

Win-CGI Web server applications are Windows applications that receive
requests from clients from a configuration settings (INI) file written by
the server and writes the results to a file that the server passes back to the
client. The INI file is evaluated by TCGIApplication. Each request
message is handled by a separate instance of the application.

Apache Shared
Module (DLL)

Selecting this type of application sets up your project as a DLL. Apache
Web server applications are DLLs loaded by the Web server. Information
is passed to the DLL, processed, and returned to the client by the Web
server.

Web App Debugger
Stand-alone
executable

Selecting this type of application sets up an environment for developing
and testing Web server applications. Web App Debugger applications
are executable files loaded by the Web server. This type of application is
not intended for deployment.

7-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s

Creating WebSnap applications

WebSnap provides a set of components and wizards for building advanced Web
servers that interact with Web browsers. WebSnap components generate HTML or
other MIME content for Web pages. WebSnap is for server-side development.
WebSnap cannot be used in cross-platform applications at this time.

To create a new WebSnap application, select File|New|Other and select the
WebSnap tab in the New Items dialog box. Choose WebSnap Application. Then
select the Web server application type (ISAPI/NSAPI, CGI, Win-CGI, Apache). See
Table 7.3, “Web server applications” for details.

For more information on WebSnap, see Chapter 34, “Creating Web Server
applications using WebSnap.”

Using InternetExpress

InternetExpress is a set of components that extends the basic Web server application
architecture to act as the client of an application server. You use InternetExpress for
applications wherein browser-based clients can fetch data from a provider, resolve
updates to the provider, while executing on a client.

InternetExpress applications generate HTML pages that contain a mixture of HTML,
XML, and javascript. The HTML determines the layout and appearance of the pages
displayed in end-user browsers. The XML encodes the data packets and delta packets
that represent database information. The javascript allows the HTML controls to
interpret and manipulate the data in the XML data packets on the client machine.

For more information on InternetExpress, see “Building Web applications using
InternetExpress” on page 29-31.

Creating Web Services applications

Web Services are self-contained modular applications that can be published and
invoked over a network (such as the World Wide Web). Web Services provide well-
defined interfaces that describe the services provided. You use Web Services to
produce or consume programmable services over the Internet using emerging
standards such as XML, XML Schema, SOAP (Simple Object Access Protocol), and
WSDL (Web Service Definition Language).

Web Services use SOAP, a standard lightweight protocol for exchanging information
in a distributed environment. It uses HTTP as a communications protocol and XML
to encode remote procedure calls.

You can use C++Builder to build servers to implement Web Services and clients that
call on those services. You can write clients for arbitrary servers to implement Web
Services that respond to SOAP messages, and C++Builder servers to publish Web
Services for use by arbitrary clients.

Refer to Chapter 36, “Using Web Services” for more information on Web Services.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-19

W r i t i n g a p p l i c a t i o n s u s i n g C O M

Writing applications using COM
COM is the Component Object Model, a Windows-based distributed object
architecture designed to provide object interoperability using predefined routines
called interfaces. COM applications use objects that are implemented by a different
process or, if you use DCOM, on a separate machine. You can also use COM+,
ActiveX and Active Server Pages.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Using COM and DCOM

C++Builder has classes and wizards that make it easy to create COM, OLE, or
ActiveX applications. You can create COM clients or servers that implement COM
objects, Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms. COM also severs as the basis for other technologies such as
Automation, ActiveX controls, Active Documents, and Active Directories.

Using C++Builder to create COM-based applications offers a wide range of
possibilities, from improving software design by using interfaces internally in an
application, to creating objects that can interact with other COM-based API objects
on the system, such as the Win9x Shell extensions and DirectX multimedia support.
Applications can access the interfaces of COM components that exist on the same
computer as the application or that exist on another computer on the network using a
mechanism called Distributed COM (DCOM).

For more information on COM and Active X controls, see Chapter 38, “Overview of
COM technologies,” Chapter 43, “Creating an ActiveX control,” and “Distributing a
client application as an ActiveX control” on page 29-30.

For more information on DCOM, see “Using DCOM connections” on page 29-9.

Using MTS and COM+

COM applications can be augmented with special services for managing objects in a
large distributed environment. These services include transaction services, security,
and resource management supplied by Microsoft Transaction Server (MTS) on
versions of Windows prior to Windows 2000) or COM+ (for Windows 2000 and
later).

For more information on MTS and COM+, see Chapter 44, “Creating MTS or COM+
objects” and “Using transactional data modules” on page 29-6.

7-20 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s

Using data modules
A data module is like a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, then data modules provide a convenient organizational tool.

There are several types of data modules, including standard, remote, Web modules,
applet modules, and services, depending on which edition of C++Builder you have.
Each type of data module serves a special purpose.

• Standard data modules are particularly useful for single- and two-tiered database
applications, but can be used to organize the nonvisual components in any
application. For more information, see “Creating and editing standard data
modules” on page 7-20.

• Remote data modules form the basis of an application server in a multi-tiered
database application. They are not available in all editions. In addition to holding
the nonvisual components in the application server, remote data modules expose
the interface that clients use to communicate with the application server. For more
information about using them, see “Adding a remote data module to an
application server project” on page 7-23.

• Web modules form the basis of Web server applications. In addition to holding the
components that create the content of HTTP response messages, they handle the
dispatching of HTTP messages from client applications. See Chapter 32, “Creating
Internet server applications” for more information about using Web modules.

• Applet modules form the basis of control panel applets. In addition to holding the
nonvisual controls that implement the control panel applet, they define the
properties that determine how the applet’s icon appears in the control panel and
include the events that are called when users execute the applet. For more
information about applet modules, see the online Help.

• Services encapsulate individual services in an NT service application. In addition
to holding any nonvisual controls used to implement a service, services include
the events that are called when the service is started or stopped. For more
information about services, see “Service applications” on page 7-4.

Creating and editing standard data modules

To create a standard data module for a project, choose File|New|Data Module.
C++Builder opens a data module container on the desktop, displays the unit file for
the new module in the Code editor, and adds the module to the current project.

At design time, a data module looks like a standard C++Builder form with a white
background and no alignment grid. As with forms, you can place nonvisual
components from the Component palette onto a module, and edit their properties in
the Object Inspector. You can resize a data module to accommodate the components
you add to it.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-21

U s i n g d a t a m o d u l e s

You can also right-click a module to display a context menu for it. The following
table summarizes the context menu options for a data module.

For more information about data modules, see the online Help.

Naming a data module and its unit file
The title bar of a data module displays the module’s name. The default name for a
data module is “DataModuleN” where N is a number representing the lowest
unused unit number in a project. For example, if you start a new project, and add a
module to it before doing any other application building, the name of the module
defaults to “DataModule2.” The corresponding unit file for DataModule2 defaults to
“Unit2.”

You should rename your data modules and their corresponding unit files at design
time to make them more descriptive. You should especially rename data modules
you add to the Object Repository to avoid name conflicts with other data modules in
the Repository or in applications that use your modules.

To rename a data module:

1 Select the module.

2 Edit the Name property for the module in the Object Inspector.

The new name for the module appears in the title bar when the Name property in the
Object Inspector no longer has focus.

Changing the name of a data module at design time changes its variable name in the
interface section of code. It also changes any use of the type name in procedure
declarations. You must manually change any references to the data module in code
you write.

Table 7.4 Context menu options for data modules

Menu item Purpose

Edit Displays a context menu with which you can cut, copy, paste,
delete, and select the components in the data module.

Position Aligns nonvisual components to the module’s invisible grid
(Align To Grid) or according to criteria you supply in the
Alignment dialog box (Align).

Tab Order Enables you to change the order that the focus jumps from
component to component when you press the tab key.

Creation Order Enables you to change the order that data access components are
created at start-up.

Revert to Inherited Discards changes made to a module inherited from another
module in the Object Repository, and reverts to the originally
inherited module.

Add to Repository Stores a link to the data module in the Object Repository.

View as Text Displays the text representation of the data module’s properties.

Text DFM Toggles between the formats (binary or text) in which this
particular form file is saved.

7-22 D e v e l o p e r ’ s G u i d e

U s i n g d a t a m o d u l e s

To rename a unit file for a data module:

1 Select the unit file.

Placing and naming components
You place nonvisual components in a data module just as you place visual
components on a form. Click the desired component on the appropriate page of the
Component palette, then click in the data module to place the component. You
cannot place visual controls, such as grids, on a data module. If you attempt it, you
receive an error message.

For ease of use, components are displayed with their names in a data module. When
you first place a component, C++Builder assigns it a generic name that identifies
what kind of component it is, followed by a 1. For example, the TDataSource
component adopts the name DataSource1. This makes it easy to select specific
components whose properties and methods you want to work with.

You may still want to name a component a different name that reflects the type of
component and what it is used for.

To change the name of a component in a data module:

1 Select the component.
2 Edit the component’s Name property in the Object Inspector.

The new name for the component appears under its icon in the data module as soon
as the Name property in the Object Inspector no longer has focus.

For example, suppose your database application uses the CUSTOMER table. To
access the table, you need a minimum of two data access components: a data source
component (TDataSource) and a table component (TClientDataSet). When you place
these components in your data module, C++Builder assigns them the names
DataSource1 and ClientDataSet1. To reflect the type of component and the database
they access, CUSTOMER, you could change these names to CustomerSource and
CustomerTable.

Using component properties and events in a data module
Placing components in a data module centralizes their behavior for your entire
application. For example, you can use the properties of dataset components, such as
TClientDataSet, to control the data available to the data source components that use
those datasets. Setting the ReadOnly property to true for a dataset prevents users from
editing the data they see in a data-aware visual control on a form. You can also
invoke the Fields editor for a dataset, by double-clicking on ClientDataSet1, to restrict
the fields within a table or query that are available to a data source and therefore to
the data-aware controls on forms. The properties you set for components in a data
module apply consistently to all forms in your application that use the module.

In addition to properties, you can write event handlers for components. For example,
a TDataSource component has three possible events: OnDataChange, OnStateChange,
and OnUpdateData. A TClientDataSet component has over 20 potential events. You
can use these events to create a consistent set of business rules that govern data
manipulation throughout your application.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-23

U s i n g d a t a m o d u l e s

Creating business rules in a data module
Besides writing event handlers for the components in a data module, you can code
methods directly in the unit file for a data module. These methods can be applied to
the forms that use the data module as business rules. For example, you might write a
procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the data module.

Accessing a data module from a form

To associate visual controls on a form with a data module, you must first add the
data module’s header file to the form’s cpp file. You can do this in several ways:

• In the Code editor, open the form’s unit file and include the data module’s header
file using the #include directive.

• Click the form’s unit file, choose File|Include Unit Hdr, and enter the name of the
module or pick it from the list box in the Use Unit dialog.

• For database components, in the data module click a dataset or query component
to open the Fields editor and drag any existing fields from the editor onto the
form. C++Builder prompts you to confirm that you want to add the module to the
form, then creates controls (such as edit boxes) for the fields.

For example, if you’ve added the TClientDataSet component to your data module,
double-click it to open the Fields editor. Select a field and drag it to the form. An edit
box component appears.

Because the data source is not yet defined, C++Builder adds a new data source
component, DataSource1, to the form and sets the edit box’s DataSource property to
DataSource1. The data source automatically sets its DataSet property to the dataset
component, ClientDataSet1, in the data module.

You can define the data source before you drag a field to the form by adding a
TDataSource component to the data module. Set the data source’s DataSet property to
ClientDataSet1. After you drag a field to the form, the edit box appears with its
TDataSource property already set to DataSource1. This method keeps your data access
model cleaner.

Adding a remote data module to an application server project

Some editions of C++Builder allow you to add remote data modules to application
server projects. A remote data module has an interface that clients in a multi-tiered
application can access across networks.

To add a remote data module to a project:

1 Choose File|New|Other.

2 Select the Multitier page in the New Items dialog box.

3 Double-click the Remote Data Module icon to open the Remote Data Module
wizard.

7-24 D e v e l o p e r ’ s G u i d e

U s i n g t h e O b j e c t R e p o s i t o r y

Once you add a remote data module to a project, use it just like a standard data
module.

For more information about multi-tiered database applications, see Chapter 29,
“Creating multi-tiered applications.”

Using the Object Repository
The Object Repository (Tools|Repository) makes it easy share forms, dialog boxes,
frames, and data modules. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects. The repository is
maintained in BCB.DRO (by default in the BIN directory), a text file that contains
references to the items that appear in the Repository and New Items dialogs.

Sharing items within a project

You can share items within a project without adding them to the Object Repository.
When you open the New Items dialog box (File|New|Other), you'll see a page tab
with the name of the current project. This page lists all the forms, dialog boxes, and
data modules in the project. You can derive a new item from an existing item and
customize it as needed.

Adding items to the Object Repository

You can add your own projects, forms, frames, and data modules to those already
available in the Object Repository. To add an item to the Object Repository,

1 If the item is a project or is in a project, open the project.

2 For a project, choose Project|Add To Repository. For a form or data module, right-
click the item and choose Add To Repository.

3 Type a description, title, and author.

4 Decide which page you want the item to appear on in the New Items dialog box,
then type the name of the page or select it from the Page combo box. If you type
the name of a page that doesn’t exist, C++Builder creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.

6 Choose OK.

Sharing objects in a team environment

You can share objects with your workgroup or development team by making a
repository available over a network. To use a shared repository, all team members
must select the same Shared Repository directory in the Environment Options dialog:

1 Choose Tools|Environment Options.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-25

U s i n g t h e O b j e c t R e p o s i t o r y

2 On the Preferences page, locate the Shared Repository panel. In the Directory edit
box, enter the directory where you want to locate the shared repository. Be sure to
specify a directory that’s accessible to all team members.

The first time an item is added to the repository, C++Builder creates a BCB.DRO file
in the Shared Repository directory if one doesn’t exist already.

Using an Object Repository item in a project

To access items in the Object Repository, choose File|New|Other. The New Items
dialog appears, showing all the items available. Depending on the type of item you
want to use, you have up to three options for adding the item to your project:

• Copy
• Inherit
• Use

Copying an item
Choose Copy to make an exact copy of the selected item and add the copy to your
project. Future changes made to the item in the Object Repository will not be
reflected in your copy, and alterations made to your copy will not affect the original
Object Repository item.

Copy is the only option available for project templates.

Inheriting an item
Choose Inherit to derive a new class from the selected item in the Object Repository
and add the new class to your project. When you recompile your project, any changes
that have been made to the item in the Object Repository will be reflected in your
derived class, in addition to changes you make to the item in your project. Changes
made to your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project
templates. It is the only option available for reusing items within the same project.

Using an item
Choose Use when you want the selected item itself to become part of your project.
Changes made to the item in your project will appear in all other projects that have
added the item with the Inherit or Use option. Select this option with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using project templates

Templates are predesigned projects that you can use as starting points for your own
work. To create a new project from a template:

1 Choose File|New|Other to display the New Items dialog box.

7-26 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

2 Choose the Projects tab.

3 Select the project template you want and choose OK.

4 In the Select Directory dialog, specify a directory for the new project’s files.

C++Builder copies the template files to the specified directory, where you can modify
them. The original project template is unaffected by your changes.

Modifying shared items

If you modify an item in the Object Repository, your changes will affect all future
projects that use the item as well as existing projects that have added the item with
the Use or Inherit option. To avoid propagating changes to other projects, you have
several alternatives:

• Copy the item and modify it in your current project only.
• Copy the item to the current project, modify it, then add it to the Repository under

a different name.
• Create a component, DLL, component template, or frame from the item. If you

create a component or DLL, you can share it with other developers.

Specifying a default project, new form, and main form

By default, when you choose File|New|Application or File|New|Form,
C++Builder displays a blank form. You can change this behavior by reconfiguring
the Repository:

1 Choose Tools|Repository.

2 If you want to specify a default project, select the Projects page and choose an item
under Objects. Then select the New Project check box.

3 If you want to specify a default form, select a Repository page (such as Forms),
them choose a form under Objects. To specify the default new form (File|New|
Form), select the New Form check box. To specify the default main form for new
projects, select the Main Form check box.

4 Click OK.

Enabling Help in applications
Both the VCL and CLX support displaying Help from applications using an object-
based mechanism that allows Help requests to be passed on to one of multiple
external Help viewers. To support this, an application must include a class that
implements the ICustomHelpViewer interface (and, optionally, one of several
interfaces descended from it), and registers itself with the global Help Manager.

The VCL provides to all applications an instance of TWinHelpViewer, which
implements all of these interfaces and provides a link between applications and
WinHelp. CLX requires that you provide your own implementation. On Windows,

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-27

E n a b l i n g H e l p i n a p p l i c a t i o n s

CLX applications can use the WinHelpViewer unit provided as part of the VCL if
they bind to it statically—that is, by including that unit as part of your project instead
of linking it to the VCL package.

The Help Manager maintains a list of registered viewers and passes requests to them
in a two-phase process: it first asks each viewer if it can provide support for a
particular Help keyword or context, and then it passes the Help request on to the
viewer which says it can provide such support.

If more than one viewer supports the keyword, as would be the case in an
application that had registered viewers for both WinHelp and HyperHelp on
Windows or Man and Info on Linux, the Help Manager can display a selection box
through which the user of the application can determine which Help viewer to
invoke. Otherwise, it displays the first responding Help system encountered.

Help system interfaces

The Help system allows communication between your application and Help viewers
through a series of interfaces. These interfaces are all defined in HelpIntfs, which also
contains the implementation of the Help Manager.

ICustomHelpViewer provides support for displaying Help based upon a provided
keyword and for displaying a table of contents listing all Help available in a
particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric
Help context and for displaying topics; in most Help systems, topics function as
high-level keywords (for example, “IntToStr” might be a keyword in the Help
system, but “String manipulation routines” could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp
messages that an application running under Windows may receive and which are
not easily generalizable. In general, only applications operating in the Windows
environment need to implement this interface, and even then it is only required for
applications that make extensive use of non-standard WinHelp messages.

IHelpManager provides a mechanism for the Help viewer to communicate back to the
application’s Help Manager and request additional information. IHelpManager is
obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests
on to the Help system. TApplication obtains an instance of an object which
implements both IHelpSystem and IHelpManager at application load time and exports
that instance as a property; this allows other code within the application to file Help
requests directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the
user interface to ask which Help viewer should be used in cases where more than one
viewer is capable of handling a Help request, and to display a Table of Contents. This
display capability is not built into the Help Manager directly to allow the Help
Manager code to be identical regardless of which widget set or class library is in use.

7-28 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

Implementing ICustomHelpViewer

The ICustomHelpViewer interface contains three types of methods: methods used to
communicate system-level information (for example, information not related to a
particular Help request) with the Help Manager; methods related to showing Help
based upon a keyword provided by the Help Manager; and methods for displaying a
table of contents.

Communicating with the Help Manager

ICustomHelpViewer provides four functions that can be used to communicate system
information with the Help Manager:

• GetViewerName
• NotifyID
• ShutDown
• SoftShutDown

The Help Manager calls through these functions in the following circumstances:

• AnsiString ICustomHelpViewer::GetViewerName() is called when the Help Manager
wants to know the name of the viewer (for example, if the application is asked to
display a list of all registered viewers). This information is returned via a string,
and is required to be logically static (that is, it cannot change during the operation
of the application). Multibyte character sets are not supported.

• void ICustomHelpViewer::NotifyID(const int ViewerID) is called immediately
following registration to provide the viewer with a unique cookie that identifies it.
This information must be stored off for later use; if the viewer shuts down on its
own (as opposed to in response to a notification from the Help Manager), it must
provide the Help Manager with the identifying cookie so that the Help Manager
can release all references to the viewer. (Failing to provide the cookie, or providing
the wrong one, causes the Help Manager to potentially release references to the
wrong viewer.)

• void ICustomHelpViewer::ShutDown() is called by the Help Manager to notify the
Help viewer that the Manager is shutting down and that any resources the Help
viewer has allocated should be freed. It is recommended that all resource freeing
be delegated to this method.

• void ICustomHelpViewer::SoftShutDown() is called by the Help Manager to ask the
Help viewer to close any externally visible manifestations of the Help system (for
example, windows displaying Help information) without unloading the viewer.

Asking the Help Manager for information

Help viewers communicate with the Help Manager through the IHelpManager
interface, an instance of which is returned to them when they register with the Help
Manager. IHelpManager allows the Help viewer to communicate four things:

• A request for the window handle of the currently active control.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-29

E n a b l i n g H e l p i n a p p l i c a t i o n s

• A request for the name of the Help file which the Help Manager believes should
contain help for the currently active control.

• A request for the path to that Help file.
• A notification that the Help viewer is shutting itself down in response to

something other than a request from the Help Manager that it do so.

int IHelpManager::GetHandle() is called by the Help viewer if it needs to know the
handle of the currently active control; the result is a window handle.

AnsiString IHelpManager::GetHandle() is called by the Help viewer if it wishes to
know the name of the Help file which the currently active control believes contains
its help.

void IHelpManager::Release() is called to notify the Help Manager when a Help viewer
is disconnecting. It should never be called in response to a request through
IHelpManager::ShutDown(); it is only used to notify the Help Manager of unexpected
disconnects.

Displaying keyword-based Help

Help requests typically come through to the Help viewer as either keyword-based
Help, in which case the viewer is asked to provide help based upon a particular
string, or as context-based Help, in which case the viewer is asked to provide help
based upon a particular numeric identifier.

CLX Numeric help contexts are the default form of Help requests in applications running
under Windows, which use the WinHelp system; while CLX supports them, they are
not recommended for use in CLX applications because most Linux Help systems do
not understand them.

ICustomHelpViewer implementations are required to provide support for keyword-
based Help requests, while IExtendedHelpViewer implementations are required to
support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:

• UnderstandsKeyword
• GetHelpStrings
• ShowHelp

int__fastcall ICustomHelpViewer::UnderstandsKeyword(const AnsiString HelpString)

is the first of the three methods called by the Help Manager, which will call each
registered Help viewer with the same string to ask if the viewer provides help for
that string; the viewer is expected to respond with an integer indicating how many
different Help pages it can display in response to that Help request. The viewer can
use any method it wants to determine this — inside the IDE, the HyperHelp viewer
maintains its own index and searches it. If the viewer does not support help on this
keyword, it should return zero. Negative numbers are currently interpreted as
meaning zero, but this behavior is not guaranteed in future releases.

Classes::TStringList*__fastcall ICustomHelpViewer::GetHelpStrings(const AnsiString
HelpString)

7-30 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

is called by the Help Manager if more than one viewer can provide Help on a topic.
The viewer is expected to return a TStringList, which is freed by the Help Manager.
The strings in the returned list should map to the pages available for that keyword,
but the characteristics of that mapping can be determined by the viewer. In the case
of the WinHelp viewer on Windows and the HyperHelp viewer on Linux, the string
list always contains exactly one entry. HyperHelp provides its own indexing, and
duplicating that elsewhere would be pointless duplication. In the case of the Man
page viewer (Linux), the string list consists of multiple strings, one for each section of
the manual which contains a page for that keyword.

void__fastcall ICustomHelpViewer::ShowHelp(const AnsiString HelpString)

is called by the Help Manager if it needs the Help viewer to display help for a
particular keyword. This is the last method call in the operation; it is guaranteed to
never be called unless UnderstandsKeyword is invoked first.

Displaying tables of contents

ICustomHelpViewer provides two methods relating to displaying tables of contents:

• CanShowTableOfContents
• ShowTableOfContents

The theory behind their operation is similar to the operation of the keyword Help
request functions: the Help Manager first queries all Help viewers by calling
ICustomHelpViewer::CanShowTableOfContents() and then invokes a particular Help
viewer by calling ICustomHelpViewer::ShowTableOfContents().

It is reasonable for a particular viewer to refuse to allow requests to support a table of
contents. The Man page viewer does this, for example, because the concept of a table
of contents does not map well to the way Man pages work; the HyperHelp viewer
supports a table of contents, on the other hand, by passing the request to display a
table of contents directly to HyperHelp on Linux and WinHelp on Windows. It is not
reasonable, however, for an implementation of ICustomHelpViewer to respond to
queries through CanShowTableOfContents with the answer true, and then ignore
requests through ShowTableOfContents.

Implementing IExtendedHelpViewer

ICustomHelpViewer only provides direct support for keyword-based Help. Some
Help systems (especially WinHelp) work by associating numbers (known as context
IDs) with keywords in a fashion which is internal to the Help system and therefore
not visible to the application. Such systems require that the application support
context-based Help in which the application invokes the Help system with that
context, rather than with a string, and the Help system translates the number itself.

Applications written in the VCL or CLX can talk to systems requiring context-based
Help by extending the object that implements ICustomHelpViewer to also implement
IExtendedHelpViewer. IExtendedHelpViewer also provides support for talking to Help
systems that allow you to jump directly to high-level topics instead of using keyword
searches. The built-in WinHelp viewer does this for you automatically.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-31

E n a b l i n g H e l p i n a p p l i c a t i o n s

IExtendedHelpViewer exposes four functions. Two of them—UnderstandsContext and
DisplayHelpByContext—are used to support context-based Help; the other two—
UnderstandsTopic and DisplayTopic—are used to support topics.

When an application user presses F1, the Help Manager calls

int__fastcall IExtendedHelpViewer::UnderstandsContext(const int ContextID, AnsiString
HelpFileName)

and the currently activated control supports context-based, rather than keyword-
based Help. As with ICustomHelpViewer::UnderstandsKeyword(), the Help Manager
queries all registered Help viewers iteratively. Unlike the case with
ICustomHelpViewer::UnderstandsKeyword(), however, if more than one viewer
supports a specified context, the first registered viewer with support for a given
context is invoked.

The Help Manager calls

void__fastcall IExtendedHelpViewer::DisplayHelpByContext(const int ContextID, AnsiString
HelpFileName)

after it has polled the registered Help viewers.

The topic support functions work the same way:

bool__fastcall IExtendedHelpViewer::UnderstandsTopic(const AnsiString Topic)

is used to poll the Help viewers asking if they support a topic;

void__fastcall IExtendedHelpViewer::DisplayTopic(const AnsiString Topic)

is used to invoke the first registered viewer which reports that it is able to provide
help for that topic.

Implementing IHelpSelector

IHelpSelector is a companion to ICustomHelpViewer. When more than one registered
viewer claims to provide support for a given keyword, context, or topic, or provides
a table of contents, the Help Manager must choose between them. In the case of
contexts or topics, the Help Manager always selects the first Help viewer that claims
to provide support. In the case of keywords or the table of context, the Help Manager
will, by default, select the first Help viewer. This behavior can be overridden by an
application.

To override the decision of the Help Manager in such cases, an application must
register a class that provides an implementation of the IHelpSelector interface.
IHelpSelector exports two functions: SelectKeyword, and TableOfContents. Both take as
arguments a TStrings containing, one by one, either the possible keyword matches or
the names of the viewers claiming to provide a table of contents. The implementor is
required to return the index (in the TStringList) that represents the selected string; the
TStringList is then freed by the Help Manager.

Note The Help Manager may get confused if the strings are rearranged; it is recommended
that implementors of IHelpSelector refrain from doing this. The Help system only
supports one HelpSelector; when new selectors are registered, any previously
existing selectors are disconnected.

7-32 D e v e l o p e r ’ s G u i d e

E n a b l i n g H e l p i n a p p l i c a t i o n s

Registering Help system objects

For the Help Manager to communicate with them, objects that implement
ICustomHelpViewer, IExtendedHelpViewer, ISpecialWinHelpViewer, and IHelpSelector
must register with the Help Manager.

To register Help system objects with the Help Manager, you need to:

• Register the Help viewer.
• Register the Help Selector.

Registering Help viewers
The unit that contains the object implementation must use HelpIntfs. An instance of
the object must be declared in the header file of the implementing unit.

The implementing unit must include a pragma startup directive that calls a method
that assigns the instance variable and passes it to the function RegisterViewer.
RegisterViewer is a flat function exported by HelpIntfs.pas, which takes as an
argument an ICustomHelpViewer and returns an IHelpManager. The IHelpManager
should be stored for future use.

The corresponding .cpp file contains the code to register the interface. For the
interface described above, this registration code looks like the following:

void InitServices()
{

THelpImplementor GlobalClass;
Global = dynamic_cast<ICustomHelpViewer*>(GlobalClass);
Global->AddRef;
HelpIntfs::RegisterViewer(Global, GlobalClass->Manager);

}
#pragma startup InitServices

Note The Help Manager object must be freed in the destructor for the GlobalClass object if
it has not already been freed.

Registering Help selectors
The unit that contains the object implementation must use either Forms in the VCL or
QForms in CLX. An instance of the object must be declared in the .cpp file of the
implementing unit.

The implementing unit must register the Help selector through the HelpSystem
property of the global Application object:

Application->HelpSystem->AssignHelpSelector(myHelpSelectorInstance)

This procedure does not return a value.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-33

U s i n g H e l p i n a V C L A p p l i c a t i o n

Using Help in a VCL Application
The following sections explain how to use Help within a VCL application.

• How TApplication processes VCL Help
• How VCL controls process Help
• Calling a Help system directly
• Using IHelpSystem

How TApplication processes VCL Help

TApplication in the VCL provides four methods that are accessible from application
code:

All four functions take the data passed to them and forward it through a data
member of TApplication which represents the Help System. That data member is
directly accessible through the property HelpSystem.

How VCL controls process Help

All VCL controls that derive from TControl expose several properties that are used by
the Help system: HelpType, HelpContext, and HelpKeyword.

The HelpType property contains an instance of an enumerated type that determines if
the control’s designer expects help to be provided via keyword-based Help or
context-based Help. If the HelpType is set to htKeyword, then the Help system expects
the control to use keyword-based Help, and the Help system only looks at the
contents of the HelpKeyword property. Conversely, if the HelpType is set to htContext,
the Help system expects the control to use context-based Help and only looks at the
contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, that can be
called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of Help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWinControl calls InvokeHelp.

Table 7.5 Help methods in TApplication

HelpCommand Takes a Windows Help style HELP_COMMAND and passes it off to
WinHelp. Help requests forwarded through this mechanism are passed only
to implementations of IspecialWinHelpViewer.

HelpContext Invokes the Help System with a request for context-based Help.

HelpKeyword Invokes the HelpSystem with a request for keyword-based Help.

HelpJump Requests the display of a particular topic.

7-34 D e v e l o p e r ’ s G u i d e

U s i n g H e l p i n a C L X A p p l i c a t i o n

Using Help in a CLX Application
The following sections explain how to use Help within a CLX application.

• How TApplication processes CLX Help
• How CLX controls process Help
• Calling a Help system directly
• Using IHelpSystem

How TApplication processes CLX Help

TApplication in CLX provides two methods that are accessible from application code:

• ContextHelp, which invokes the Help system with a request for context-based Help

• KeywordHelp, which invokes the Help system with a request for keyword-based
Help

Both functions take as an argument the context or keyword being passed and
forward the request on through a data member of TApplication, which represents the
Help system. That data member is directly accessible through the read-only property
HelpSystem.

How CLX controls process Help

All controls that derive from TControl expose four properties which are used by the
Help system: HelpType, HelpFile, HelpContext, and HelpKeyword. HelpFile is supposed
to contain the name of the file in which the control’s help is located; if the help is
located in an external Help system that does not care about file names (say, for
example, the Man page system), then the property should be left blank.

The HelpType property contains an instance of an enumerated type which determines
if the control’s designer expects help to be provided via keyword-based Help or
context-based Help; the other two properties are linked to it. If the HelpType is set to
htKeyword, then the Help system expects the control to use keyword-based Help, and
the Help system only looks at the contents of the HelpKeyword property. Conversely,
if the HelpType is set to htContext, the Help system expects the control to use context-
based Help and only looks at the contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, which can
be called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWidgetControl calls InvokeHelp.

B u i l d i n g a p p l i c a t i o n s , c o m p o n e n t s , a n d l i b r a r i e s 7-35

C a l l i n g a H e l p s y s t e m d i r e c t l y

Calling a Help system directly
For additional Help system functionality not provided by the VCL or CLX,
TApplication provides a read-only property that allows direct access to the Help
system. This property is an instance of an implementation of the interface
IHelpSystem. IHelpSystem and IHelpManager are implemented by the same object, but
one interface is used to allow the application to talk to the Help Manager, and one is
used to allow the Help viewers to talk to the Help Manager.

Using IHelpSystem
IHelpSystem allows a VCL or CLX application to do three things:

• Provides path information to the Help Manager.

• Provides a new Help selector.

• Asks the Help Manager to display help.

Assigning a Help selector allows the Help Manager to delegate decision-making in
cases where multiple external Help systems can provide help for the same keyword.
For more information, see the section “Implementing IHelpSelector” on page 7-31.

IHelpSystem exports four procedures and one function to request the Help Manager
to display help:

• ShowHelp
• ShowContextHelp
• ShowTopicHelp
• ShowTableOfContents
• Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a CLX
application; it allows processing of WM_HELP messages that cannot be mapped
directly onto requests for keyword-based, context-based, or topic-based Help. The
other methods each take two arguments: the keyword, context ID, or topic for which
help is being requested, and the Help file in which it is expected that help can be
found.

In general, unless you are asking for topic-based help, it is equally effective and more
clear to pass help requests to the Help Manager through the InvokeHelp method of
your control.

Customizing the IDE Help system
The C++Builder IDE supports multiple Help viewers in exactly the same way that a
VCL or CLX application does: it delegates Help requests to the Help Manager, which
forwards them to registered Help viewers. The IDE makes use of the same
WinHelpViewer that the VCL uses.

7-36 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e I D E H e l p s y s t e m

To install a new Help viewer in the IDE, you do exactly what you would do in a VCL
or CLX application, with one difference. You write an object that implements
ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to forward Help requests to
the external viewer of your choice, and you register the ICustomHelpViewer with the
IDE.

To register a custom Help viewer with the IDE:

1 Make sure that the unit implementing the Help viewer contains HelpIntfs.cpp.

2 Build the unit into a design-time package registered with the IDE, and build the
package with runtime packages turned on. (This is necessary to ensure that the
Help Manager instance used by the unit is the same as the Help Manager instance
used by the IDE.)

3 Make sure that the Help viewer exists as a global instance within the unit.

4 In the initialization function blocked by #pragma startup, make sure that the
instance is passed to the RegisterHelpViewer function.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-1

C h a p t e r

8
Chapter8Developing the application user

interface
When you open C++Builder or create a new project, a blank form is displayed on the
screen. You design your application’s user interface (UI) by placing and arranging
visual components, such as windows, menus, and dialog boxes, from the Component
palette onto the form.

Once a visual component is on the form, you can adjust its position, size, and other
design-time properties, and code its event handlers. C++Builder takes care of the
underlying programming details.

The following sections describe some of the major interface tasks, such as working
with forms, creating component templates, adding dialog boxes, and organizing
actions for menus and toolbars.

Controlling application behavior
TApplication, TScreen, and TForm are the classes that form the backbone of all
C++Builder applications by controlling the behavior of your project. The TApplication
class forms the foundation of an application by providing properties and methods
that encapsulate the behavior of a standard program. TScreen is used at runtime to
keep track of forms and data modules that have been loaded as well as maintaining
system-specific information such as screen resolution and available display fonts.
Instances of the TForm class are the building blocks of your application’s user
interface. The windows and dialog boxes in your application are based on TForm.

8-2 D e v e l o p e r ’ s G u i d e

S e t t i n g u p f o r m s

Working at the application level

The global variable Application, of type TApplication, is in every VCL- or CLX-based
application. Application encapsulates your application as well as providing many
functions that occur in the background of the program. For instance, Application
handles how you call a Help file from the menu of your program. Understanding
how TApplication works is more important to a component writer than to developers
of stand-alone applications, but you should set the options that Application handles in
the Project|Options Application page when you create a project.

In addition, Application receives many events that apply to the application as a whole.
For example, the OnActivate event lets you perform actions when the application first
starts up, the OnIdle event lets you perform background processes when the
application is not busy, the OnMessage event lets you intercept Windows messages
(on Windows only), the OnEvent event lets you intercept events, and so on. Although
you can’t use the IDE to examine the properties and events of the global Application
variable, another component, TApplicationEvents, intercepts the events and lets you
supply event-handlers using the IDE.

Handling the screen

A global variable of type TScreen called Screen is created when you create a project.
Screen encapsulates the state of the screen on which your application is running.
Common tasks performed by Screen include specifying:

• The look of the cursor.
• The size of the window in which your application is running.
• A list of fonts available to the screen device.
• Multiple screen behavior (Windows only).

If your Windows application runs on multiple monitors, Screen maintains a list of
monitors and their dimensions so that you can effectively manage the layout of your
user interface.

If using CLX for cross-platform programming, the default behavior is that
applications create a screen component based on information about the current
screen device and assign it to Screen.

Setting up forms
TForm is the key class for creating GUI applications. When you open C++Builder
displaying a default project or when you create a new project, a form appears on
which you can begin your UI design.

Using the main form

The first form you create and save in a project becomes, by default, the project’s main
form, which is the first form created at runtime. As you add forms to your projects,

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-3

S e t t i n g u p f o r m s

you might decide to designate a different form as your application’s main form. Also,
specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the
running application.

To change the project main form:

1 Choose Project|Options and select the Forms page.

2 In the Main Form combo box, select the form you want to use as the project’s main
form and choose OK.

Now if you run the application, the form you selected as the main form is displayed.

Hiding the main form

You can prevent the main form from displaying when your application first starts
up. To do so, you must use the global Application variable (described in “Working at
the application level,” on page 8-2).

To hide the main form at startup:

1 Choose Project|View Source to display the main project file.

2 Add the following line after the call to Application->CreateForm() and before the call
to Application->Run().

Application->ShowMainForm = false;

3 Using the Object Inspector, set the Visible property of your main form to false.

Adding forms

To add a form to your project, select File|New|Form. You can see all your project’s
forms and their associated units listed in the Project Manager (View|Project
Manager) and you can display a list of the forms alone by choosing View|Forms.

Linking forms
Adding a form to a project adds a reference to it in the project file, but not to any
other units in the project. Before you can write code that references the new form,
you need to add a reference to it in the referencing forms’ unit files. This is called form
linking.

A common reason to link forms is to provide access to the components in that form.
For example, you’ll often use form linking to enable a form that contains data-aware
components to connect to the data-access components in a data module.

To link a form to another form,

1 Select the form that needs to refer to another.
2 Choose File|Include Unit Hdr.
3 Select the name of the form unit for the form to be referenced.
4 Choose OK.

8-4 D e v e l o p e r ’ s G u i d e

S e t t i n g u p f o r m s

Linking a form to another just means that one form unit contains the header for the
other’s form unit, meaning that the linked form and its components are now in scope
for the linking form.

Managing layout

At its simplest, you control the layout of your user interface by where you place
controls in your forms. The placement choices you make are reflected in the control’s
Top, Left, Width, and Height properties. You can change these values at runtime to
change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to
automatically adjust to their contents or containers. This allows you to lay out your
forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent.
The Align property lets you force a control to fit perfectly within its parent along a
specific edge or filling up the entire client area after any other controls have been
aligned. When the parent is resized, the controls aligned to it are automatically
resized and remain positioned so that they fit against a particular edge.

If you want to keep a control positioned relative to a particular edge of its parent, but
don’t want it to necessarily touch that edge or be resized so that it always runs along
the entire edge, you can use the Anchors property.

If you want to ensure that a control does not grow too big or too small, you can use
the Constraints property. Constraints lets you specify the control’s maximum height,
minimum height, maximum width, and minimum width. Set these to limit the size
(in pixels) of the control’s height and width. For example, by setting the MinWidth
and MinHeight of the constraints on a container object, you can ensure that child
objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an
object’s size can be constrained because it contains aligned children that have size
constraints. Constraints can also prevent a control from being scaled in a particular
dimension when its ChangeScale method is called.

TControl introduces a protected event, OnConstrainedResize, of type
TConstrainedResizeEvent:

void __fastcall (__closure *TConstrainedResizeEvent)(System::TObject* Sender, int &MinWidth,
int &MinHeight, int &MaxWidth, int &MaxHeight);

This event allows you to override the size constraints when an attempt is made to
resize the control. The values of the constraints are passed as var parameters which
can be changed inside the event handler. OnConstrainedResize is published for
container objects (TForm, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that
causes the control to adjust its size to its font or contained objects.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-5

U s i n g f o r m s

Using forms
When you create a form in C++Builder from the IDE, C++Builder automatically
creates the form in memory by including code in the main entry point of your
application function. Usually, this is the desired behavior and you don’t have to do
anything to change it. That is, the main window persists through the duration of your
program, so you would likely not change the default C++Builder behavior when
creating the form for your main window.

However, you may not want all your application’s forms in memory for the duration
of the program execution. That is, if you do not want all your application’s dialogs in
memory at once, you can create the dialogs dynamically when you want them to
appear.

Forms can be modal or modeless. Modal forms are forms with which the user must
interact before switching to another form (for example, a dialog box requiring user
input). Modeless forms are windows that are displayed until they are either obscured
by another window or until they are closed or minimized by the user.

Controlling when forms reside in memory

By default, C++Builder automatically creates the application’s main form in memory
by including the following code in the application’s main entry point:

Application ->CreateForm(__classid(TForm1), &Form1);

This function creates a global variable with the same name as the form. So, every
form in an application has an associated global variable. This variable is a pointer to
an instance of the form’s class and is used to reference the form while the application
is running. Any source code (.cpp) file that includes the form’s header (.h) file can
access the form via this variable.

Because the form is added to the application’s main entry point, the form appears
when the program is invoked and it exists in memory for the duration of the
application.

Displaying an auto-created form
If you choose to create a form at startup, and do not want it displayed until sometime
later during program execution, the form’s event handler uses the ShowModal
method to display the form that is already loaded in memory:

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{

ResultsForm->ShowModal();
}

In this case, since the form is already in memory, there is no need to create another
instance or destroy that instance.

8-6 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

Creating forms dynamically
You may not always want all your application’s forms in memory at once. To reduce
the amount of memory required at load time, you may want to create some forms
only when you need to use them. For example, a dialog box needs to be in memory
only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:

1 Select the File|New|Form from the main menu to display the new form.

2 Remove the form from the Auto-create forms list of the Project|Options|Forms
page.

This removes the form’s invocation. As an alternative, you can manually remove
the following line from program’s main entry point:

Application->CreateForm(__classid(TResultsForm), &ResultsForm);

3 Invoke the form when desired by using the form’s Show method, if the form is
modeless, or ShowModal method, if the form is modal.

An event handler for the main form must create an instance of the result form and
destroy it. One way to invoke the result form is to use the global variable as follows.
Note that ResultsForm is a modal form so the handler uses the ShowModal method.

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{

ResultsForm = new TResultsForm(this);
 ResultsForm->ShowModal();
 delete ResultsForm;
}

The event handler in the example deletes the form after it is closed, so the form
would need to be recreated using new if you needed to use ResultsForm elsewhere in
the application. If the form were displayed using Show you could not delete the form
within the event handler because Show returns while the form is still open.

Note If you create a form using the new operator, be sure to check that the form is not in
the Auto-create forms list on the Project Options|Forms page. Specifically, if you
create the new form without deleting the form of the same name from the list,
C++Builder creates the form at startup and this event-handler creates a new instance
of the form, overwriting the reference to the auto-created instance. The auto-created
instance still exists, but the application can no longer access it. After the event-
handler terminates, the global variable no longer points to a valid form. Any attempt
to dereference the global variable will likely crash the application.

Creating modeless forms such as windows
You must guarantee that reference variables for modeless forms exist for as long as
the form is in use. This means that these variables should have global scope. In most
cases, you use the global reference variable that was created when you made the
form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global
variables (of type pointer to the form class) for each instance.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-7

U s i n g f o r m s

Creating a form instance using a local variable
A safer way to create a unique instance of a modal form is to use a local variable in the
event handler as a reference to a new instance. If a local variable is used, it does not
matter whether ResultsForm is auto-created or not. The code in the event handler
makes no reference to the global form variable. For example:

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{

TResultsForm *rf = new TResultsForm(this);// rf is local form instance
 rf->ShowModal();
 delete rf; // form safely destroyed
}

Notice how the global instance of the form is never used in this version of the event
handler.

Typically, applications use the global instances of forms. However, if you need a new
instance of a modal form, and you use that form in a limited, discrete section of the
application, such as a single function, a local instance is usually the safest and most
efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms
because they must have global scope to ensure that the forms exist for as long as the
form is in use. Show returns as soon as the form opens, so if you used a local variable,
the local variable would go out of scope immediately.

Passing additional arguments to forms

Typically, you create forms for your application from within the IDE. When created
this way, the forms have a constructor that takes one argument, Owner, which is a
pointer to the owner of the form being created. (The owner is the calling application
object or form object.) Owner can be NULL.

To pass additional arguments to a form, create a separate constructor and instantiate
the form using the new operator. The example form class below shows an additional
constructor, with the extra argument whichButton. This new constructor is added to
the form class manually.

class TResultsForm : public TForm
{
__published: // IDE-managed Components
 TLabel *ResultsLabel;
 TButton *OKButton;
 void __fastcall OKButtonClick(TObject *Sender);
private: // User declarations
public: // User declarations
 virtual __fastcall TResultsForm(TComponent* Owner);
 virtual __fastcall TResultsForm(int whichButton, TComponent* Owner);

};

Here’s the manually coded constructor that passes the additional argument,
whichButton. This constructor uses the whichButton parameter to set the Caption
property of a Label control on the form.

8-8 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

void__fastcall TResultsForm::TResultsForm(int whichButton, TComponent* Owner)
 : TForm(Owner)
{

switch (whichButton) {
case 1:

ResultsLabel->Caption = "You picked the first button!";
break;

case 2:
ResultsLabel->Caption = "You picked the second button!";
break;

case 3:
ResultsLabel->Caption = "You picked the third button!";

}
}

When creating an instance of a form with multiple constructors, you can select the
constructor that best suits your purpose. For example, the following OnClick handler
for a button on a form calls creates an instance of TResultsForm that uses the extra
parameter:

void __fastcall TMainMForm::SecondButtonClick(TObject *Sender)
{

TResultsForm *rf = new TResultsForm(2, this);
rf->ShowModal();
delete rf;

}

Retrieving data from forms

Most real-world applications consist of several forms. Often, information needs to be
passed between these forms. Information can be passed to a form by means of
parameters to the receiving form’s constructor, or by assigning values to the form’s
properties. The way you get information from a form depends on whether the form is
modal or modeless.

Retrieving data from modeless forms
You can easily extract information from modeless forms by calling public member
functions of the form or by querying properties of the form. For example, assume an
application contains a modeless form called ColorForm that contains a listbox called
ColorListBox with a list of colors (“Red”, “Green”, “Blue”, and so on). The selected
color name string in ColorListBox is automatically stored in a property called
CurrentColor each time a user selects a new color. The class declaration for the form is
as follows:

class TColorForm : public TForm
{

__published: // IDE-managed Components
TListBox *ColorListBox;
void __fastcall ColorListBoxClick(TObject *Sender);

private: // User declarations
String getColor();
void setColor(String);

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-9

U s i n g f o r m s

String curColor;
public: // User declarations

virtual __fastcall TColorForm(TComponent* Owner);
__property String CurrentColor = {read=getColor, write=setColor};

};

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the
CurrentColor property each time a new item in the listbox is selected. The event
handler gets the string from the listbox containing the color name and assigns it to
CurrentColor. The CurrentColor property uses the setter function, setColor, to store the
actual value for the property in the private data member curColor:

void __fastcall TColorForm::ColorListBoxClick(TObject *Sender)
{

int index = ColorListBox->ItemIndex;
if (index >= 0) {// make sure a color is selected

CurrentColor = ColorListBox->Items->Strings[index];
}
else // no color selected

CurrentColor = "";
}
//---
void TColorForm::setColor(String s)
{

curColor = s;
}

Now suppose that another form within the application, called ResultsForm, needs to
find out which color is currently selected on ColorForm whenever a button (called
UpdateButton) on ResultsForm is clicked. The OnClick event handler for UpdateButton
might look like this:

void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{

if (ColorForm) {// verify ColorForm exists
String s = ColorForm->CurrentColor;
// do something with the color name string

}
}

The event handler first verifies that ColorForm exists by checking whether the point is
NULL. It then gets the value of ColorForm’s CurrentColor property. The query of
CurrentColor calls its getter function getColor which is shown here:

String TColorForm::getColor()
{

return curColor;
}

Alternatively, if ColorForm’s getColor function were public, another form could get the
current color without using the CurrentColor property (for example, String s =
ColorForm->getColor();). In fact, there’s nothing to prevent another form from getting
the ColorForm’s currently selected color by checking the listbox selection directly:

String s = ColorListBox->Items->Strings[ColorListBox->ItemIndex];

8-10 D e v e l o p e r ’ s G u i d e

U s i n g f o r m s

However, using a property makes the interface to ColorForm very straightforward
and simple. All a form needs to know about ColorForm is to check the value of
CurrentColor.

Retrieving data from modal forms
Just like modeless forms, modal forms often contain information needed by other
forms. The most common example is when form A launches modal form B. When
form B is closed, form A needs to know what the user did with form B to decide how
to proceed with the processing of form A. If form B is still in memory, it can be
queried through properties or member functions just as in the modeless forms
example above. But how do you handle situations where form B is deleted from
memory upon closing? Since a form does not have an explicit return value, you must
preserve important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be
a modal form. The class declaration is as follows:

class TColorForm : public TForm
{

__published: // IDE-managed Components
TListBox *ColorListBox;
TButton *SelectButton;
TButton *CancelButton;
void __fastcall CancelButtonClick(TObject *Sender);
void __fastcall SelectButtonClick(TObject *Sender);

private: // User declarations
String* curColor;

public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
virtual __fastcall TColorForm(String* s, TComponent* Owner);

};

The form has a listbox called ColorListBox with a list of names of colors. When
pressed, the button called SelectButton makes note of the currently selected color
name in ColorListBox then closes the form. CancelButton is a button that simply closes
the form.

Note that a user-defined constructor was added to the class that takes a String*
argument. Presumably, this String* points to a string that the form launching
ColorForm knows about. The implementation of this constructor is as follows:

void__fastcall TColorForm::TColorForm(String* s, TComponent* Owner)
 : TForm(Owner)
{

curColor = s;
*curColor = "";

}

The constructor saves the pointer to a private data member curColor and initializes
the string to an empty string.

Note To use the above user-defined constructor, the form must be explicitly created. It
cannot be auto-created when the application is started. For details, see “Controlling
when forms reside in memory” on page 8-5.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-11

U s i n g f o r m s

In the application, the user selects a color from the listbox and presses SelectButton to
save the choice and close the form. The OnClick event handler for SelectButton might
look like this:

void __fastcall TColorForm::SelectButtonClick(TObject *Sender)
{

int index = ColorListBox->ItemIndex;
if (index >= 0)

*curColor = ColorListBox->Items->Strings[index];
Close();

}

Notice that the event handler stores the selected color name in the string address that
was passed to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to
an existing string. For example, assume ColorForm was instantiated by a form called
ResultsForm in response to a button called UpdateButton on ResultsForm being clicked.
The event handler would look as follows:

void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{

String s;
GetColor(&s);
if (s != "") {

// do something with the color name string
}
else {

// do something else because no color was picked
}

}
//---
void TResultsForm::GetColor(String *s)
{

ColorForm = new TColorForm(s, this);
ColorForm->ShowModal();
delete ColorForm;
ColorForm = 0; // NULL the pointer

}

UpdateButtonClick creates a String called s. The address of s is passed to the GetColor
function which creates ColorForm, passing the pointer to s as an argument to the
constructor. As soon as ColorForm is closed it is deleted, but the color name that was
selected is still preserved in s, assuming that a color was selected. Otherwise, s
contains an empty string which is a clear indication that the user exited ColorForm
without selecting a color.

This example uses one string variable to hold information from the modal form. Of
course, more complex objects can be used depending on the need. Keep in mind that
you should always provide a way to let the calling form know if the modal form was
closed without making any changes or selections (such as having s default to an
empty string).

8-12 D e v e l o p e r ’ s G u i d e

R e u s i n g c o m p o n e n t s a n d g r o u p s o f c o m p o n e n t s

Reusing components and groups of components
C++Builder offers several ways to save and reuse work you’ve done with
components:

• Component templates provide a simple, quick way of configuring and saving
groups of components. See “Creating and using component templates” on
page 8-12.

• You can save forms, data modules, and projects in the Repository. This gives you a
central database of reusable elements and lets you use form inheritance to
propagate changes.

• You can save frames on the Component palette or in the repository. Frames use
form inheritance and can be embedded into forms or other frames. See “Working
with frames” on page 8-13.

• Creating a custom component is the most complicated way of reusing code, but it
offers the greatest flexibility. See Chapter 45, “Overview of component creation.”

Creating and using component templates
You can create templates that are made up of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
save them as a component template. Later, by selecting the template from the
Component palette, you can place the preconfigured components on a form in a
single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

To create a component template,

1 Place and arrange components on a form. In the Object Inspector, set their
properties and events as desired.

2 Select the components. The easiest way to select several components is to drag the
mouse over all of them. Gray handles appear at the corners of each selected
component.

3 Choose Component|Create Component Template.

4 Specify a name for the component template in the Component Template
Information edit box. The default proposal is the component type of the first
component selected in step 2 followed by the word “Template.” For example, if
you select a label and then an edit box, the proposed name will be
“TLabelTemplate.” You can change this name, but be careful not to duplicate
existing component names.

5 In the Palette page edit box, specify the Component palette page where you want
the template to reside. If you specify a page that does not exist, a new page is
created when you save the template.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-13

W o r k i n g w i t h f r a m e s

6 Next to Palette Icon, select a bitmap to represent the template on the palette. The
default proposal will be the bitmap used by the component type of the first
component selected in step 2. To browse for other bitmaps, click Change. The
bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the Component palette, choose Component|Configure
Palette.

Working with frames
A frame (TFrame), like a form, is a container for other components. It uses the same
ownership mechanism as forms for automatic instantiation and destruction of the
components on it, and the same parent-child relationships for synchronization of
component properties.

In some ways, however, a frame is more like a customized component than a form.
Frames can be saved on the Component palette for easy reuse, and they can be nested
within forms, other frames, or other container objects. After a frame is created and
saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or
form, it continues to inherit changes made to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in
your application. For example, if you have a bitmap that is used on multiple forms,
you can put it in a frame and only one copy of that bitmap is included in the
resources of your application. You could also describe a set of edit fields that are
intended to edit a table with a frame and use that whenever you want to enter data
into the table.

Creating frames

To create an empty frame, choose File|New|Frame, or choose File|New|Other and
double-click Frame. You can then drop components (including other frames) onto
your new frame.

It is usually best—though not necessary—to save frames as part of a project. If you
want to create a project that contains only frames and no forms, choose File|New|
Application, close the new form and unit without saving them, then choose File|
New|Frame and save the project.

Note When you save frames, avoid using the default names Unit1, Project1, and so forth,
since these are likely to cause conflicts when you try to use the frames later.

At design time, you can display any frame included in the current project by
choosing View|Forms and selecting a frame. As with forms and data modules, you
can toggle between the Form Designer and the frame’s form file by right-clicking and
choosing View as Form or View as Text.

8-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f r a m e s

Adding frames to the Component palette

Frames are added to the Component palette as component templates. To add a frame
to the Component palette, open the frame in the Form Designer (you cannot use a
frame embedded in another component for this purpose), right-click the frame, and
choose Add to Palette. When the Component Template Information dialog opens,
select a name, palette page, and icon for the new template.

Using and modifying frames

To use a frame in an application, you must place it, directly or indirectly, on a form.
You can add frames directly to forms, to other frames, or to other container objects
such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

• Select a frame from the Component palette and drop it onto a form, another frame,
or another container object. If necessary, the Form Designer asks for permission to
include the frame’s unit file in your project.

• Select Frames from the Standard page of the Component palette and click on a
form or another frame. A dialog appears with a list of frames that are already
included in your project; select one and click OK.

When you drop a frame onto a form or other container, C++Builder declares a new
class that descends from the frame you selected. (Similarly, when you add a new
form to a project, C++Builder declares a new class that descends from TForm.) This
means that changes made later to the original (ancestor) frame propagate to the
embedded frame, but changes to the embedded frame do not propagate backward to
the ancestor.

Suppose, for example, that you wanted to assemble a group of data-access
components and data-aware controls for repeated use, perhaps in more than one
application. One way to accomplish this would be to collect the components into a
component template; but if you started to use the template and later changed your
mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed.

If, on the other hand, you put your database components into a frame, later changes
would need to be made in only one place; changes to an original frame automatically
propagate to its embedded descendants when your projects are recompiled. At the
same time, you are free to modify any embedded frame without affecting the original
frame or other embedded descendants of it. The only limitation on modifying
embedded frames is that you cannot add components to them.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-15

D e v e l o p i n g d i a l o g b o x e s

Figure 8.1 A frame with data-aware controls and a data source component

In addition to simplifying maintenance, frames can help you to use resources more
efficiently. For example, to use a bitmap or other graphic in an application, you might
load the graphic into the Picture property of a TImage control. If, however, you use
the same graphic repeatedly in one application, each Image object you place on a
form will result in another copy of the graphic being added to the form’s resource
file. (This is true even if you set TImage::Picture once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load
your graphic into it, then use the frame where you want the graphic to appear. This
results in smaller form files and has the added advantage of letting you change the
graphic everywhere it occurs simply by modifying the Image on the original frame.

Sharing frames

You can share a frame with other developers in two ways:

• Add the frame to the Object Repository.
• Distribute the frame’s unit (.cpp and .h) and form (.dfm or .xfm) files.

To add a frame to the Repository, open any project that includes the frame, right-
click in the Form Designer, and choose Add to Repository. For more information, see
“Using the Object Repository” on page 7-24.

If you send a frame’s unit and form files to other developers, they can open them and
add them to the Component palette. If the frame has other frames embedded in it,
they will have to open it as part of a project.

Developing dialog boxes
The dialog box components on the Dialogs page of the Component palette make
various dialog boxes available to your applications. These dialog boxes provide
applications with a familiar, consistent interface that enables the user to perform
common file operations such as opening, saving, and printing files. Dialog boxes
display and/or obtain data.

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns true; if the user chooses Cancel to escape from the dialog box without making
or saving changes, Execute returns false.

8-16 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

CLX If you are developing cross-platform applications, you can use the dialogs provided
with CLX in the QDialogs unit. For operating systems that have native dialog box
types for common tasks, such as for opening or saving a file or for changing font or
color, you can use the UseNativeDialog property. Set UseNativeDialog to true if your
application will run in such an environment, and if you want it to use the native
dialogs instead of the Qt dialogs.

Using open dialog boxes

One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form. The dialog box contains controls that let you select groups of files
using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the
TOpenDialog FileName property, which you can then process as you want.

The following code snippet can be placed in an Action and linked to the Action
property of a TMainMenu subitem or be placed in the subitem’s OnClick event:

if(OpenDialog1->Execute()){
filename = OpenDialog1->FileName;

};

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

Organizing actions for toolbars and menus
C++Builder provides several features that simplify the work of creating,
customizing, and maintaining menus and toolbars. These features allow you to
organize lists of actions that users of your application can initiate by pressing a
button on a toolbar, choosing a command on a menu, or pointing and clicking on an
icon.

Often a set of actions is used in more than one user interface element. For example,
the Cut, Copy, and Paste commands often appear on both an Edit menu and on a
toolbar. You only need to add the action once to use it in multiple UI elements in
your application.

On the Windows platform, tools are provided to make it easy to define and group
actions, create different layouts, and customize menus at design time or runtime.
These tools are known collectively as ActionBand tools, and the menus and toolbars

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-17

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

you create with them are known as action bands. In general, you can create an
ActionBand user interface as follows:

• Build the action list to create a set of actions that will be available for your
application (use the Action Manager, TActionManager)

• Add the user interface elements to the application (use ActionBand components
such as TActionMainMenuBar and TActionToolBar)

• Drag-and-drop actions from the Action Manager onto the user interface elements

The following table defines the terminology related to setting up menus and toolbars:

Table 8.1 Action setup terminology

Term Definition

Action A response to something a user does, such as clicking a menu item. Many
standard actions that are frequently required are provided for you to use
in your applications as is. For example, file operations such as File Open,
File SaveAs, File Run, and File Exit are included along with many others
for editing, formatting, searches, help, dialogs, and window actions. You
can also program custom actions and access them using action lists and
the Action Manager.

Action band A container for a set of actions associated with a customizable menu or
toolbar. The ActionBand components for main menus and toolbars
(TActionMainMenuBar and TActionToolBar) are examples of action bands.

Action category Lets you group actions and drop them as a group onto a menu or toolbar.
For example, one of the standard action categories is Search which
includes Find, FindFirst, FindNext, and Replace actions all at once.

Action classes Classes that perform the actions used in your application. All of the
standard actions are defined in action classes such as TEditCopy, TEditCut,
and TEditUndo. You can use these classes by dragging and dropping them
from the Customize dialog onto an action band.

Action client Most often represents a menu item or a button that receives a notification
to initiate an action. When the client receives a user command (such as a
mouse click), it initiates an associated action.

Action list Maintains a list of actions that your application can take in response to
something a user does.

Action Manager Groups and organizes logical sets of actions that can be reused on
ActionBand components. See TActionManager.

Menu Lists commands that the user of the application can execute by clicking on
them. You can create menus by using the ActionBand menu class
TActionMainMenuBar, or by using cross-platform components such as
TMainMenu or TPopupMenu.

Target Represents the item an action does something to. The target is usually a
control, such as a memo or a data control. Not all actions require a target.
For example, the standard help actions ignore the target and simply
launch the help system.

Toolbar Displays a visible row of button icons which, when clicked, cause the
program to perform some action, such as printing the current document.
You can create toolbars by using the ActionBand toolbar component
TActionToolBar, or by using the cross-platform component TToolBar.

8-18 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

If you are doing cross-platform development, refer to “Using action lists” on
page 8-23.

What is an action?

As you are developing your application, you can create a set of actions that you can
use on various UI elements. You can organize them into categories that can be
dropped onto a menu as a set (for example, Cut, Copy, and Paste) or one at a time
(for example, Tools|Customize).

An action corresponds to one or more elements of the user interface, such as menu
commands or toolbar buttons. Actions serve two functions: (1) they represent
properties common to the user interface elements, such as whether a control is
enabled or checked, and (2) they respond when a control fires, for example, when the
application user clicks a button or chooses a menu item. You can create a repertoire
of actions that are available to your application through menus, through buttons,
through toolbars, context menus, and so on.

Actions are associated with other components:

• Clients: One or more clients use the action. The client most often represents a
menu item or a button (for example, TToolButton, TSpeedButton, TMenuItem,
TButton, TCheckBox, TRadioButton, and so on). Actions also reside on ActionBand
components such as TActionMainMenuBar and TActionToolBar. When the client
receives a user command (such as a mouse click), it initiates an associated action.
Typically, a client’s OnClick event is associated with its action’s OnExecute event.

• Target: The action acts on the target. The target is usually a control, such as a
memo or a data control. Component writers can create actions specific to the needs
of the controls they design and use, and then package those units to create more
modular applications. Not all actions use a target. For example, the standard help
actions ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to
an associated dataset.

The client influences the action—the action responds when a client fires the action.
The action also influences the client—action properties dynamically update the client
properties. For example, if at runtime an action is disabled (by setting its Enabled
property to false), every client of that action is disabled, appearing grayed.

You can add, delete, and rearrange actions using the Action Manager or the Action
List editor (displayed by double-clicking an action list object, TActionList). These
actions are later connected to client controls.

Setting up action bands

Because actions do not maintain any “layout” (either appearance or positional)
information, C++Builder provides action bands which are capable of storing this
data. Action bands provide a mechanism that allows you to specify layout

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-19

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

information and a set of controls. You can render actions as UI elements such as
toolbars and menus.

You organize sets of actions using the Action Manager (TActionManager). You can
use standard actions provided or create new actions of your own.

You then create the action bands:

• Use TActionMainMenuBar to create a main menu.

• Use TActionToolBar to create a toolbar.

The action bands act as containers that hold and render sets of actions. You can drag
and drop items from the Action Manager editor onto the action band at design time.
At runtime, application users can also customize the application’s menus or toolbars
using a dialog box similar to the Action Manager editor.

Creating toolbars and menus

Note This section describes the recommended method for creating menus and toolbars in
Windows applications. For cross-platform development, you need to use TToolBar
and the menu components, such as TMainMenu, organizing them using action lists
(TActionList). See “Setting up action lists” on page 8-23.

You use the Action Manager to automatically generate toolbars and main menus
based on the actions contained in your application. The Action Manager manages
standard actions and any custom actions that you have written. You then create UI
elements based on these actions and use action bands to render the actions items as
either menu items or as buttons on a toolbar.

The general procedure for creating menus, toolbars, and other action bands involves
these steps:

• Drop an Action Manager onto a form.

• Add actions to the Action Manager, which organizes them into appropriate action
lists.

• Create the action bands (that is, the menu or the toolbar) for the user interface.

• Drag and drop the actions into the application interface.

The following procedure explains these steps in more detail.

To create menus and toolbars using action bands:

1 From the Additional page of the Component palette, drop an Action Manager
component (TActionManager) onto the form where you want to create the toolbar
or menu.

2 If you want images on the menu or toolbar, drop an ImageList component from
the Win32 page of the Component palette onto a form. (You need to add the
images you want to use to the ImageList or use the one provided.)

8-20 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

3 From the Additional page of the Component palette, drop one or more of the
following action bands onto the form:

• TActionMainMenuBar (for designing main menus)
• TActionToolBar (for designing toolbars)

4 Connect the ImageList to the Action Manager: with focus on the Action Manager
and in the Object Inspector, select the name of the ImageList from the Images
property.

5 Add actions to the Action Manager editor’s action pane:

• Double-click the Action Manager to display the Action Manager editor.

• Click the drop-down arrow next to the New Action button (the leftmost button
at the top right corner of the Actions tab, as shown in Figure 8.2) and select New
Action or New Standard Action. A tree view is displayed. Add one or more
actions or categories of actions to the Action Manager’s actions pane. The
Action Manager adds the actions to its action lists.

Figure 8.2 Action Manager editor

6 Drag and drop single actions or categories of actions from the Action Manager
editor onto the menu or toolbar you are designing.

To add user-defined actions, create a new TAction by pressing the New Action button
and writing an event handler that defines how it will respond when fired. See “What
happens when an action fires” on page 8-24 for details. Once you’ve defined the
actions, you can drag and drop them onto menus or toolbars like the standard
actions.

Adding color, patterns, or pictures to menus, buttons, and toolbars
You can use the Background and BackgroundLayout properties to specify a color,
pattern, or bitmap to use on a menu item or button. These properties also let you set
up a banner the runs up the left or right side of a menu.

You assign backgrounds and layouts to subitems from their action client objects. If
you want to set the background of the items in a menu, in the form designer click on
the menu item that contains the items. For example, selecting File lets you change the

New Action button &
drop-down button.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-21

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

background of items appearing on the File menu. You can assign a color, pattern, or
bitmap in the Background property in the Object Inspector.

Use the BackgroundLayout property to describe how to place the background on the
element. Colors or images can be placed behind the caption normally, stretched to fit
the item area, or tiled in small squares to cover the area.

Items with normal (blNormal), stretched (blStretch), or tiled (blTile) backgrounds are
rendered with a transparent background. If you create a banner, the full image is
placed on the left (blLeftBanner) or the right (blRightBanner) of the item. You need to
make sure it is the correct size because it is not stretched or shrunk to fit.

To change the background of an action band (that is, on a main menu or toolbar),
select the action band and choose the TActionClientBar through the action band
collection editor. You can set Background and BackgroundLayout properties to specify a
color, pattern, or bitmap to use on the entire toolbar or menu.

Adding icons to menus and toolbars
You can add icons next to menu items or replace captions on toolbars with icons. You
organize bitmaps or icons using an ImageList component.

1 Drop an ImageList component from the Win32 page of the Component palette onto
a form.

2 Add the images you want to use to the image list: Double-click the ImageList icon.
Click Add and navigate to the images you want to use and click OK when done.
Some sample images are included in Program Files\Common Files\Borland
Shared\Images. (The buttons images include two views of each for active and
inactive buttons.)

3 From the Additional page of the Component palette, drop one or more of the
following action bands onto the form:

• TActionMainMenuBar (for designing main menus)
• TActionToolBar (for designing toolbars)

4 Connect the image list to the Action Manager. First, set the focus on the Action
Manager. Next, in the Object Inspector, select the name of the image list from the
Images property, such as ImageList1.

5 Use the Action Manager editor to add actions to the Action Manager. You can
associate an image with an action by setting its ImageIndex property to its number
in the image list.

6 Drag and drop single actions or categories of actions from the Action Manager
editor onto the menu or toolbar.

7 For toolbars where you only want to display the icon and no caption: select the
Toolbar action band and double-click its Items property. In the collection editor,
you can select one or more items and set their Caption properties.

8 The images automatically appear on the menu or toolbar.

8-22 D e v e l o p e r ’ s G u i d e

O r g a n i z i n g a c t i o n s f o r t o o l b a r s a n d m e n u s

Creating toolbars and menus that users can customize
You can use action bands with the Action Manager to create customizable toolbars
and menus. At runtime, users of your application can customize the toolbars and
menus (action bands) in the application user interface using a customization dialog
similar to the Action Manager editor.

To allow the user of your application to customize an action band in your
application:

1 Drop an Action Manager component onto a form.

2 Drop your action band components (TActionMainMenuBar, TActionToolBar).

3 Double-click the Action Manager to display the Action Manager editor:

• Add the actions you want to use in your application. Also add the Customize
action, which appears at the bottom of the standard actions list.

• Drop a TCustomizeDlg component from the Additional tab onto the form, and
connect it to the Action Manager using its ActionManager property. You
specify a filename for where to stream customizations made by users.

• Drag and drop the actions onto the action band components. (Make sure you
add the Customize action to the toolbar or menu.)

4 Complete your application.

When you compile and run the application, users can access a Customize command
that displays a customization dialog box similar to the Action Manager editor. They
can drag and drop menu items and create toolbars using the same actions you
supplied in the Action Manager.

Hiding unused items and categories in action bands
One benefit of using ActionBands is that unused items and categories can be hidden
from the user. Over time, the action bands become customized for the application
users, showing only the items that they use and hiding the rest from view. Hidden
items can become visible again when the user presses a drop-down button. Also, the
user can restore the visibility of all action band items by resetting the usage statistics
from the customization dialog. Item hiding is the default behavior of action bands,
but that behavior can be changed to prevent hiding of individual items, all the items
in a particular collection (like the File menu), or all of the items in a given action
band.

The action manager keeps track of the number of times an action has been called by
the user, which is stored in the associated TActionClientItem’s UsageCount field. The
action manager also records the number of times the application has been run, which
we shall call the session number, as well as the session number of the last time an
action was used. The value of UsageCount is used to look up the maximum number of
sessions the item can go unused before it becomes hidden, which is then compared
with the difference between the current session number and the session number of
the last use of the item. If that difference is greater than the number determined in

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-23

U s i n g a c t i o n l i s t s

PrioritySchedule, the item is hidden. The default values of PrioritySchedule are shown
in the table below:

It is possible to disable item hiding at design time. To prevent a specific action (and
all the collections containing it) from becoming hidden, find its TActionClientItem
object and set its UsageCount to -1. To prevent hiding for an entire collection of items,
such as the File menu or even the main menu bar, find the TActionClients object
associated with the collection and set its HideUnused property to false.

Using action lists
Note The contents of this section apply to setting up toolbars and menus for cross-platform

development. For Windows development you can also use the methods described
here. However, using action bands instead is simpler and offers more options. The
action lists will be handled automatically by the Action Manager. See “Organizing
actions for toolbars and menus” on page 8-16 for information on using action bands
and the Action Manager.

Action lists maintain a list of actions that your application can take in response to
something a user does. By using action objects, you centralize the functions
performed by your application from the user interface. This lets you share common
code for performing actions (for example, when a toolbar button and menu item do
the same thing), as well as providing a single, centralized way to enable and disable
actions depending on the state of your application.

Setting up action lists

Setting up action lists is fairly easy once you understand the basic steps involved:

• Create the action list.

• Add actions to the action list.

• Set properties on the actions.

• Attach clients to the action.

Table 8.2 Default values of the action manager’s PrioritySchedule property

Number of sessions in which
an action band item was used

Number of sessions an item will remain unhidden after
its last use

0, 1 3

2 6

3 9

4, 5 12

6-8 17

9-13 23

14-24 29

25 or more 31

8-24 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

Here are the steps in more detail:

1 Drop a TActionList object onto your form or data module. (ActionList is on the
Standard page of the Component palette.)

2 Double-click the TActionList object to display the Action List editor.

1 Use one of the predefined actions listed in the editor: right-click and choose
New Standard Action.

2 The predefined actions are organized into categories (such as Dataset, Edit,
Help, and Window) in the Standard Action Classes dialog box. Select all the
standard actions you want to add to the action list and click OK.

or

3 Create a new action of your own: right-click and choose New Action.

3 Set the properties of each action in the Object Inspector. (The properties you set
affect every client of the action.)

The Name property identifies the action, and the other properties and events
(Caption, Checked, Enabled, HelpContext, Hint, ImageIndex, ShortCut, Visible, and
Execute) correspond to the properties and events of its client controls. The client’s
corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action’s Enabled property
corresponds to a TToolButton’s Enabled property. However, an action’s Checked
property corresponds to a TToolButton’s Down property.

4 If you use the predefined actions, the action includes a standard response that
occurs automatically. If creating your own action, you need to write an event
handler that defines how the action responds when fired. See “What happens
when an action fires” on page 8-24 for details.

5 Attach the actions in the action list to the clients that require them:

• Click on the control (such as the button or menu item) on the form or data
module. In the Object Inspector, the Action property lists the available actions.

• Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you
would expect. You can look at the online reference Help for details on how all of the
standard actions work if you need to. If writing your own actions, you’ll need to
understand more about what happens when the action is fired.

What happens when an action fires

When an event fires, a series of events intended primarily for generic actions occurs.
Then if the event doesn’t handle the action, another sequence of events occurs.

Responding with events
When a client component or control is clicked or otherwise acted on, a series of
events occurs to which you can respond. For example, the following code illustrates

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-25

U s i n g a c t i o n l i s t s

the event handler for an action that toggles the visibility of a toolbar when the action
is executed:

void __fastcall TForm1::Action1Execute(TObject *Sender)
{

// Toggle Toolbar1’s visibility
ToolBar1->Visible = !ToolBar1->Visible;

}

 You can supply an event handler that responds at one of three different levels: the
action, the action list, or the application. This is only a concern if you are using a new
generic action rather than a predefined standard action. You do not have to worry
about this if using the standard actions because standard actions have built-in
behavior that executes when these events occur.

The order in which the event handlers will respond to events is as follows:

• Action list
• Application
• Action

When the user clicks on a client control, C++Builder calls the action's Execute method
which defers first to the action list, then the Application object, then the action itself if
neither action list nor Application handles it. To explain this in more detail,
C++Builder follows this dispatching sequence when looking for a way to respond to
the user action:

1 If you supply an OnExecute event handler for the action list and it handles the
action, the application proceeds.

The action list’s event handler has a parameter called Handled, that returns false by
default. If the handler is assigned and it handles the event, it returns true, and the
processing sequence ends here. For example:

void __fastcall TForm1::ActionList1ExecuteAction(TBasicAction *Action, bool &Handled)
{

Handled = true;
}

If you don’t set Handled to true in the action list event handler, then processing
continues.

2 If you did not write an OnExecute event handler for the action list or if the event
handler doesn’t handle the action, the application’s OnActionExecute event handler
fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in
the application fails to handle an event. Like the action list’s OnExecute event
handler, the OnActionExecute handler has a parameter Handled that returns false
by default. If an event handler is assigned and handles the event, it returns true,
and the processing sequence ends here. For example:

void __fastcall TForm1::ApplicationExecuteAction(TBasicAction *Action, bool &Handled)
{

// Prevent execution of all actions in Application
 Handled = true;
}

8-26 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

3 If the application’s OnExecute event handler doesn’t handle the action, the action’s
OnExecute event handler fires.

You can use built-in actions or create your own action classes that know how to
operate on specific target classes (such as edit controls). When no event handler is
found at any level, the application next tries to find a target on which to execute the
action. When the application locates a target that the action knows how to address, it
invokes the action. See the next section for details on how the application locates a
target that can respond to a predefined action class.

How actions find their targets
“What happens when an action fires” on page 8-24 describes the execution cycle that
occurs when a user invokes an action. If no event handler is assigned to respond to
the action, either at the action list, application, or action level, then the application
tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:

1 Active control: The application looks first for an active control as a potential target.

2 Active form: If the application does not find an active control or if the active
control can’t act as a target, it looks at the screen’s ActiveForm.

3 Controls on the form: If the active form is not an appropriate target, the
application looks at the other controls on the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component;
for example, data-aware controls defer to the associated dataset component. Also,
some predefined actions do not use a target; for example, the File Open dialog.

Updating actions

When the application is idle, the OnUpdate event occurs for every action that is linked
to a control or menu item that is showing. This provides an opportunity for
applications to execute centralized code for enabling and disabling, checking and
unchecking, and so on. For example, the following code illustrates the OnUpdate
event handler for an action that is “checked” when the toolbar is visible:

void __fastcall TForm1::Action1Update(TObject *Sender)
{

// Indicate whether ToolBar1 is currently visible
((TAction *)Sender)->Checked = ToolBar1->Visible;

}

Warning Do not add time-intensive code to the OnUpdate event handler. This executes
whenever the application is idle. If the event handler takes too much time, it will
adversely affect performance of the entire application.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-27

U s i n g a c t i o n l i s t s

Predefined action classes

You can add predefined actions to your application by right-clicking on the Action
Manager and choosing New Standard Action. The New Standard Action Classes
dialog box is displayed listing the predefined action classes and the associated
standard actions. These are actions that are included with C++Builder and they are
objects that automatically perform actions. The predefined actions are organized
within the following classes:

Table 8.3 Action classes

Class Description

Edit Standard edit actions: Used with an edit control target. TEditAction is the
base class for descendants that each override the ExecuteTarget method to
implement copy, cut, and paste tasks by using the clipboard.

Format Standard formatting actions: Used with rich text to apply text formatting
options such as bold, italic, underline, strikeout, and so on.
TRichEditAction is the base class for descendants that each override the
ExecuteTarget and UpdateTarget methods to implement formatting of the
target.

Help Standard Help actions: Used with any target. THelpAction is the base
class for descendants that each override the ExecuteTarget method to pass
the command onto a Help system.

Window Standard window actions: Used with forms as targets in an MDI
application. TWindowAction is the base class for descendants that each
override the ExecuteTarget method to implement arranging, cascading,
closing, tiling, and minimizing MDI child forms.

File File actions: Used with operations on files such as File Open, File Run, or
File Exit.

Search Search actions: Used with search options. TSearchAction implements the
common behavior for actions that display a modeless dialog where the
user can enter a search string for searching an edit control.

Tab Tab control actions: Used to move between tabs on a tab control such as
the Prev and Next buttons on a wizard.

List List control actions: Used for managing items in a list view.

Dialog Dialog actions: Used with dialog components. TDialogAction implements
the common behavior for actions that display a dialog when executed.
Each descendant class represents a specific dialog.

Internet Internet actions: Used for functions such as Internet browsing,
downloading, and sending mail.

DataSet DataSet actions: Used with a dataset component target. TDataSetAction is
the base class for descendants that each override the ExecuteTarget and
UpdateTarget methods to implement navigation and editing of the target.
TDataSetAction introduces a DataSource property that ensures actions are
performed on that dataset. If DataSource is NULL, the currently focused
data-aware control is used.

Tools Tools: Additional tools such as TCustomizeActionBars for automatically
displaying the customization dialog for action bands.

8-28 D e v e l o p e r ’ s G u i d e

U s i n g a c t i o n l i s t s

All of the action objects are described under the action object names in the online
reference Help. Refer to the Help for details on how they work.

Writing action components

You can also create your own predefined action classes. When you write your own
action classes, you can build in the ability to execute on certain target classes of
object. Then, you can use your custom actions in the same way you use pre-defined
action classes. That is, when the action can recognize and apply itself to a target class,
you can simply assign the action to a client control, and it acts on the target with no
need to write an event handler.

Component writers can use the classes in the QStdActns and DBActns units as
examples for deriving their own action classes to implement behaviors specific to
certain controls or components. The base classes for these specialized actions
(TEditAction, TWindowAction, and so on) generally override HandlesTarget,
UpdateTarget, and other methods to limit the target for the action to a specific class of
objects. The descendant classes typically override ExecuteTarget to perform a
specialized task. These methods are described here:

Registering actions

When you write your own actions, you can register actions to enable them to appear
in the Action List editor. You register and unregister actions by using the global
routines in the Actnlist unit:

extern PACKAGE void __fastcall RegisterActions(const AnsiString CategoryName, TMetaClass*
const * AClasses, const int AClasses_Size, TMetaClass* Resource);

extern PACKAGE void __fastcall UnRegisterActions(TMetaClass* const * AClasses, const int
AClasses_Size);

When you call RegisterActions, the actions you register appear in the Action List
editor for use by your applications. You can supply a category name to organize your
actions, as well as a Resource parameter that lets you supply default property values.

Method Description

HandlesTarget Called automatically when the user invokes an object (such as a tool button
or menu item) that is linked to the action. The HandlesTarget method lets the
action object indicate whether it is appropriate to execute at this time with
the object specified by the Target parameter as a “target”. See “How actions
find their targets” on page 8-26 for details.

UpdateTarget Called automatically when the application is idle so that actions can update
themselves according to current conditions. Use in place of OnUpdateAction.
See “Updating actions” on page 8-26 for details.

ExecuteTarget Called automatically when the action fires in response to a user action in
place of OnExecute (for example, when the user selects a menu item or
presses a tool button that is linked to this action). See “What happens when
an action fires” on page 8-24 for details.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-29

C r e a t i n g a n d m a n a g i n g m e n u s

For example, the following code registers actions with the IDE in the MyAction unit:

namespace MyAction
{

void __fastcall PACKAGE Register()
{

// code goes here to register any components and editors
 TMetaClass classes[2] = {__classid(TMyAction1), __classid(TMyAction2)};
 RegisterActions("MySpecialActions", classes, 1, NULL);
 }
}

When you call UnRegisterActions, the actions no longer appear in the Action List
editor.

Creating and managing menus
Menus provide an easy way for your users to execute logically grouped commands.
The Menu Designer enables you to easily add a menu—either predesigned or custom
tailored—to your form. You add a menu component to the form, open the Menu
Designer, and type menu items directly into the Menu Designer window. You can
add or delete menu items, or drag and drop them to rearrange them during design
time.

You don't even need to run your program to see the results—your design is
immediately visible in the form, appearing just as it will during runtime. Your code
can also change menus at runtime, to provide more information or options to the
user.

This chapter explains how to use the Menu Designer to design menu bars and pop-
up (local) menus. It discusses the following ways to work with menus at design time
and runtime:

• Opening the Menu Designer.
• Building menus.
• Editing menu items in the Object Inspector.
• Using the Menu Designer context menu.
• Using menu templates.
• Saving a menu as a template.
• Adding images to menu items.

Figure 8.3 Menu terminology

Accelerator key

Separator bar

Menu items on the menu bar

Menu items in a menu list

Keyboard shortcut

8-30 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

Opening the Menu Designer

You design menus for your application using the Menu Designer. Before you can
start using the Menu Designer, first add either a MainMenu or PopupMenu
component to your form. Both menu components are located on the Standard page of
the Component palette.

Figure 8.4 MainMenu and PopupMenu components

A MainMenu component creates a menu that’s attached to the form’s title bar. A
PopupMenu component creates a menu that appears when the user right-clicks in
the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then either:

• Double-click the menu component.

or

• From the Properties page of the Object Inspector, select the Items property, and
then either double-click [Menu] in the Value column, or click the ellipsis (...)
button.

The Menu Designer appears, with the first (blank) menu item highlighted in the
Designer, and the Caption property selected in the Object Inspector.

Figure 8.5 Menu Designer for a main menu

Building menus

You add a menu component to your form, or forms, for every menu you want to
include in your application. You can build each menu structure entirely from scratch,
or you can start from one of the predesigned menu templates.

This section discusses the basics of creating a menu at design time. For more
information about menu templates, see “Using menu templates” on page 8-38.

MainMenu component

PopupMenu component

Placeholder for first
menu item

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-31

C r e a t i n g a n d m a n a g i n g m e n u s

Naming menus
As with all components, when you add a menu component to the form, C++Builder
gives it a default name; for example, MainMenu1. You can give the menu a more
meaningful name.

C++Builder adds the menu name to the form’s type declaration, and the menu name
then appears in the Component list.

Naming the menu items
In contrast to the menu component itself, you need to explicitly name menu items as
you add them to the form. You can do this in one of two ways:

• Directly type the value for the Name property.

• Type the value for the Caption property first, and let C++Builder derive the Name
property from the caption.

For example, if you give a menu item a Caption property value of File, C++Builder
assigns the menu item a Name property of File1. If you fill in the Name property
before filling in the Caption property, C++Builder leaves the Caption property
blank until you type a value.

Note If you enter characters in the Caption property that are not valid for C++
identifiers, C++Builder modifies the Name property accordingly. For example, if
you want the caption to start with a number, C++Builder precedes the number
with a character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items
shown appear in the same menu bar.

As with the menu component, C++Builder adds any menu item names to the form’s
type declaration, and those names then appear in the Component list.

Adding, inserting, and deleting menu items
The following procedures describe how to perform the basic tasks involved in
building your menu structure. Each procedure assumes you have the Menu Designer
window open.

Table 8.4 Sample captions and their derived names

Component caption Derived name Explanation

&File File1 Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name

$@@@# N1 Removes all non-standard characters, adding
preceding letter and numerical order

- (hyphen) N2 Numerical ordering of second occurrence of caption
with no standard characters

8-32 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

To add menu items at design time,

1 Select the position where you want to create the menu item.

If you’ve just opened the Menu Designer, the first position on the menu bar is
already selected.

2 Begin typing to enter the caption. Or enter the Name property first by specifically
placing your cursor in the Object Inspector and entering a value. In this case, you
then need to reselect the Caption property and enter a value.

3 Press Enter.

The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu
item you just entered. You’ll see that C++Builder has filled in the Name property
based on the value you entered for the caption. (See “Naming the menu items” on
page 8-31.)

4 Continue entering values for the Name and Caption properties for each new item
you want to create, or press Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move
between items in the list; press Enter to complete an action. To return to the menu
bar, press Esc.

To insert a new, blank menu item,

1 Place the cursor on a menu item.
2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above
the selected item in the menu list.

To delete a menu item or command,

1 Place the cursor on the menu item you want to delete.
2 Press Del.

Note You cannot delete the default placeholder that appears below the item last entered in
a menu list, or next to the last item on the menu bar. This placeholder does not
appear in your menu at runtime.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-33

C r e a t i n g a n d m a n a g i n g m e n u s

Figure 8.6 Adding menu items to a main menu

Adding separator bars
Separator bars insert a line between menu items. You can use separator bars to
indicate groupings within the menu list, or simply to provide a visual break in a list.

To make the menu item a separator bar, type a hyphen (-) for the caption.

Specifying accelerator keys and keyboard shortcuts
Accelerator keys enable the user to access a menu command from the keyboard by
pressing Alt+ the appropriate letter, indicated in your code by the preceding
ampersand. The letter after the ampersand appears underlined in the menu.

C++Builder automatically checks for duplicate accelerators and adjusts them at
runtime. This ensures that menus built dynamically at runtime contain no duplicate
accelerators and that all menu items have an accelerator. You can turn off this
automatic checking by setting the AutoHotkeys property of a menu item to maManual.

To specify an accelerator,

• Add an ampersand in front of the appropriate letter.

For example, to add a Save menu command with the S as an accelerator key, type
&Save.

Keyboard shortcuts enable the user to perform the action without using the menu
directly, by typing in the shortcut key combination.

To specify a keyboard shortcut,

• Use the Object Inspector to enter a value for the ShortCut property, or select a key
combination from the drop-down list.

This list is only a subset of the valid combinations you can type in.

Menu Designer displays WYSIWYG
menu items as you build the menu.

A TMenuItem object is created and the
Name property set to the menu item
Caption you specify (minus any illegal
characters and plus a numeric suffix).

Placeholder for
menu item

Menu bar

Title bar (shows Name property
for Menu component)

8-34 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

When you add a shortcut, it appears next to the menu item caption.

Caution Keyboard shortcuts, unlike accelerator keys, are not checked automatically for
duplicates. You must ensure uniqueness yourself.

Creating submenus

Many application menus contain drop-down lists that appear next to a menu item to
provide additional, related commands. Such lists are indicated by an arrow to the
right of the menu item. C++Builder supports as many levels of such submenus as
you want to build into your menu.

Organizing your menu structure this way can save vertical screen space. However,
for optimal design purposes you probably want to use no more than two or three
menu levels in your interface design. (For pop-up menus, you might want to use only
one submenu, if any.)

Figure 8.7 Nested menu structures

To create a submenu,

1 Select the menu item under which you want to create a submenu.

2 Press Ctrl→ to create the first placeholder, or right-click and choose Create
Submenu.

3 Type a name for the submenu item, or drag an existing menu item into this
placeholder.

4 Press Enter, or ↓, to create the next placeholder.

5 Repeat steps 3 and 4 for each item you want to create in the submenu.

6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus
You can create a submenu by inserting a menu item from the menu bar (or a menu
template) between menu items in a list. When you move a menu into an existing
menu structure, all its associated items move with it, creating a fully intact submenu.
This pertains to submenus as well. Moving a menu item into an existing submenu
just creates one more level of nesting.

Menu item on
the menu bar

Menu item in
a menu list

Nested
menu item

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-35

C r e a t i n g a n d m a n a g i n g m e n u s

Moving menu items
During design time, you can move menu items simply by dragging and dropping.
You can move menu items along the menu bar, or to a different place in the menu
list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the
menu bar into its own menu; nor can you move a menu item into its own submenu.
However, you can move any item into a different menu, no matter what its original
position is.

While you are dragging, the cursor changes shape to indicate whether you can
release the menu item at the new location. When you move a menu item, any items
beneath it move as well.

To move a menu item along the menu bar,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new location.

2 Release the mouse button to drop the menu item at the new location.

To move a menu item into a menu list,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu
item at the new location.

Adding images to menu items
Images can help users navigate in menus by matching glyphs and images to menu
item action, similar to toolbar images. You can add single bitmaps to menu items, or
you can organize images for your application into an image list and add them to a
menu from the image list. If you’re using several bitmaps of the same size in your
application, it’s useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference
the name of the bitmap to use on the menu or menu item.

To add an image to a menu item using an image list:

1 Drop a TMainMenu or TPopupMenu object on a form.

2 Drop a TImageList object on the form.

3 Open the ImageList editor by double clicking on the TImageList object.

4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click
OK.

5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you
just created.

6 Create your menu items and submenu items as described previously.

8-36 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

7 Select the menu item you want to have an image in the Object Inspector and set the
ImageIndex property to the corresponding number of the image in the ImageList
(the default value for ImageIndex is -1, which doesn’t display an image).

Note Use images that are 16 by 16 pixels for proper display in the menu. Although you can
use other sizes for the menu images, alignment and consistency problems may result
when using images greater than or smaller than 16 by 16 pixels.

Viewing the menu
You can view your menu in the form at design time without first running your
program code. (Pop-up menu components are visible in the form at design time, but
the pop-up menus themselves are not. Use the Menu Designer to view a pop-up
menu at design time.)

To view the menu,

1 If the form is visible, click the form, or from the View menu, choose the form
whose menu you want to view.

2 If the form has more than one menu, select the menu you want to view from the
form’s Menu property drop-down list.

The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector

This section has discussed how to set several properties for menu items—for
example, the Name and Caption properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut
property, directly in the Object Inspector, just as you would for any component
selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still
displayed in the Object Inspector. You can switch focus to the Object Inspector and
continue editing the menu item properties there. Or you can select the menu item
from the Component list in the Object Inspector and edit its properties without ever
opening the Menu Designer.

To close the Menu Designer window and continue editing menu items,

1 Switch focus from the Menu Designer window to the Object Inspector by clicking
the properties page of the Object Inspector.

2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing
properties for the selected menu item. To edit another menu item, select it from the
Component list.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-37

C r e a t i n g a n d m a n a g i n g m e n u s

Using the Menu Designer context menu

The Menu Designer context menu provides quick access to the most common Menu
Designer commands, and to the menu template options. (For more information about
menu templates, refer to “Using menu templates” on page 8-38.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10
when the cursor is in the Menu Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Switching between menus at design time
If you’re designing several menus for your form, you can use the Menu Designer
context menu or the Object Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,

1 Right-click in the Menu Designer and choose Select Menu.

Table 8.5 Menu Designer context menu commands

Menu command Action

Insert Inserts a placeholder above or to the left of the cursor.

Delete Deletes the selected menu item (and all its sub-items, if any).

Create Submenu Creates a placeholder at a nested level and adds an arrow to the right of
the selected menu item.

Select Menu Opens a list of menus in the current form. Double-clicking a menu name
opens the designer window for the menu.

Save As Template Opens the Save Template dialog box, where you can save a menu for
future reuse.

Insert From
Template

Opens the Insert Template dialog box, where you can select a template to
reuse.

Delete Templates Opens the Delete Templates dialog box, where you can choose to delete
any existing templates.

Insert From
Resource

Opens the Insert Menu from Resource file dialog box, where you can
choose a .rc or .mnu file to open in the current form.

8-38 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

The Select Menu dialog box appears.

Figure 8.8 Select Menu dialog box

This dialog box lists all the menus associated with the form whose menu is
currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or
edit.

To use the Object Inspector to switch between menus in a form,

1 Give focus to the form whose menus you want to choose from.

2 From the Component list, select the menu you want to edit.

3 On the Properties page of the Object Inspector, select the Items property for this
menu, and then either click the ellipsis button, or double-click [Menu].

Using menu templates

C++Builder provides several predesigned menus, or menu templates, that contain
frequently used commands. You can use these menus in your applications without
modifying them (except to write code), or you can use them as a starting point,
customizing them as you would a menu you originally designed yourself. Menu
templates do not contain any event handler code.

The menu templates shipped with C++Builder are stored in the BIN subdirectory in a
default installation. These files have a .dmt (C++Builder menu template) extension.

You can also save as a template any menu that you design using the Menu Designer.
After saving a menu as a template, you can use it as you would any predesigned
menu. If you decide you no longer want a particular menu template, you can delete it
from the list.

To add a menu template to your application,

1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the
context menu.)

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-39

C r e a t i n g a n d m a n a g i n g m e n u s

The Insert Template dialog box opens, displaying a list of available menu
templates.

Figure 8.9 Sample Insert Template dialog box for menus

2 Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your
cursor is on a menu item in a list, the menu template is inserted above the selected
item. If your cursor is on the menu bar, the menu template is inserted to the left of
the cursor.

To delete a menu template,

1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the
context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.

2 Select the menu template you want to delete, and press Del.

C++Builder deletes the template from the templates list and from your hard disk.

Saving a menu as a template

Any menu you design can be saved as a template so you can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a
starting point which you then further customize.

The menu templates you save are stored in your BIN subdirectory as .dmt files.

To save a menu as a template,

1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like;
everything in the active Menu Designer window will be saved as one reusable
menu.

2 Right-click in the Menu Designer and choose Save As Template.

8-40 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d m a n a g i n g m e n u s

The Save Template dialog box appears.

Figure 8.10 Save Template dialog box for menus

3 In the Template Description edit box, type a brief description for this menu, and
then choose OK.

The Save Template dialog box closes, saving your menu design and returning you
to the Menu Designer window.

Note The description you enter is displayed only in the Save Template, Insert Template,
and Delete Templates dialog boxes. It is not related to the Name or Caption property
for the menu.

Naming conventions for template menu items and event handlers
When you save a menu as a template, C++Builder does not save its Name property,
since every menu must have a unique name within the scope of its owner (the form).
However, when you insert the menu as a template into a new form by using the
Menu Designer, C++Builder then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you
name it MyFile. If you insert it as a template into a new menu, C++Builder names it
File1. If you insert it into a menu with an existing menu item named File1,
C++Builder names it File2.

C++Builder also does not save any OnClick event handlers associated with a menu
saved as a template, since there is no way to test whether the code would be
applicable in the new form. When you generate a new event handler for the menu
template item, C++Builder still generates the event handler name.

You can easily associate items in the menu template with existing OnClick event
handlers in the form.

Manipulating menu items at runtime

Sometimes you want to add menu items to an existing menu structure while the
application is running, to provide more information or options to the user. You can
insert a menu item by using the menu item’s Add or Insert method, or you can

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-41

C r e a t i n g a n d m a n a g i n g m e n u s

alternately hide and show the items in a menu by changing their Visible property.
The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.

For examples that use the menu item’s Visible and Enabled properties, see “Disabling
menu items” on page 6-9.

In multiple document interface (MDI) and Object Linking and Embedding (OLE)
applications, you can also merge menu items into an existing menu bar. The
following section discusses this in more detail.

Merging menus

For MDI applications, such as the text editor sample application, and for OLE client
applications, your application’s main menu needs to be able to receive menu items
either from another form or from the OLE server object. This is often called merging
menus. Note that OLE technology is limited to Windows applications only and is not
available for use in cross-platform programming.

You prepare menus for merging by specifying values for two properties:

• Menu, a property of the form
• GroupIndex, a property of menu items in the menu

Specifying the active menu: Menu property
The Menu property specifies the active menu for the form. Menu-merging operations
apply only to the active menu. If the form contains more than one menu component,
you can change the active menu at runtime by setting the Menu property in code. For
example,

Form1->Menu = SecondMenu;

Determining the order of merged menu items: GroupIndex property
The GroupIndex property determines the order in which the merging menu items
appear in the shared menu bar. Merging menu items can replace those on the main
menu bar, or can be inserted.

The default value for GroupIndex is 0. Several rules apply when specifying a value for
GroupIndex:

• Lower numbers appear first (farther left) in the menu.

For instance, set the GroupIndex property to 0 (zero) for a menu that you always
want to appear leftmost, such as a File menu. Similarly, specify a high number (it
needn’t be in sequence) for a menu that you always want to appear rightmost,
such as a Help menu.

• To replace items in the main menu, give items on the child menu the same
GroupIndex value.

This can apply to groupings or to single items. For example, if your main form has
an Edit menu item with a GroupIndex value of 1, you can replace it with one or

8-42 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

more items from the child form's menu by giving them a GroupIndex value of 1 as
well.

Giving multiple items in the child menu the same GroupIndex value keeps their
order intact when they merge into the main menu.

• To insert items without replacing items in the main menu, leave room in the
numeric range of the main menu’s items and “plug in” numbers from the child
form.

For example, number the items in the main menu 0 and 5, and insert items from
the child menu by numbering them 1, 2, 3, and 4.

Importing resource files

C++Builder supports use of menus built with other applications, so long as they are
in the standard Windows resource (.RC) file format. You can import such menus
directly into your C++Builder project, saving you the time and effort of rebuilding
menus that you created elsewhere.

To load existing .RC menu files,

1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in
itself.

2 Right-click and choose Insert From Resource.

The Insert Menu From Resource dialog box appears.

3 In the dialog box, select the resource file you want to load, and choose OK.

The menu appears in the Menu Designer window.

Note If your resource file contains more than one menu, you first need to save each menu
as a separate resource file before importing it.

Designing toolbars and cool bars
A toolbar is a panel, usually across the top of a form (under the menu bar), that holds
buttons and other controls. A cool bar (also called a rebar) is a kind of toolbar that
displays controls on movable, resizable bands. If you have multiple panels aligned to
the top of the form, they stack vertically in the order added.

Note Cool bars are not available in CLX for cross-platform applications.

You can put controls of any sort on a toolbar. In addition to buttons, you may want to
put use color grids, scroll bars, labels, and so on.

You can add a toolbar to a form in several ways:

• Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-43

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

• Use a toolbar component (TToolBar) instead of TPanel, and add controls to it.
TToolBar manages buttons and other controls, arranging them in rows and
automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

• Use a cool bar (TCoolBar) component and add controls to it. The cool bar displays
controls on independently movable and resizable bands.

How you implement your toolbar depends on your application. The advantage of
using the Panel component is that you have total control over the look and feel of the
toolbar.

By using the toolbar and cool bar components, you are ensuring that your
application has the look and feel of a Windows application because you are using the
native Windows controls. If these operating system controls change in the future,
your application could change as well. Also, since the toolbar and cool bar rely on
common components in Windows, your application requires the COMCTL32.DLL.
Toolbars and cool bars are not supported in WinNT 3.51 applications.

The following sections describe how to:

• Add a toolbar and corresponding speed button controls using the panel
component.

• Add a toolbar and corresponding tool button controls using the Toolbar
component.

• Add a cool bar using the cool bar component.

• Respond to clicks.

• Add hidden toolbars and cool bars.

• Hide and show toolbars and cool bars.

Adding a toolbar using a panel component

To add a toolbar to a form using the panel component,

1 Add a panel component to the form (from the Standard page of the Component
palette).

2 Set the panel’s Align property to alTop. When aligned to the top of the form, the
panel maintains its height, but matches its width to the full width of the form’s
client area, even if the window changes size.

3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no
caption, only a small graphic (called a glyph), which represents the button’s function.

Speed buttons have three possible modes of operation. They can

• Act like regular pushbuttons
• Toggle on and off when clicked
• Act like a set of radio buttons

8-44 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

To implement speed buttons on toolbars, do the following:

• Add a speed button to a toolbar panel.
• Assign a speed button’s glyph.
• Set the initial condition of a speed button.
• Create a group of speed buttons.
• Allow toggle buttons.

Adding a speed button to a panel
To add a speed button to a toolbar panel, place the speed button component (from the
Additional page of the Component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the
panel also moves or hides the speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If
you set the Top property of each button to 8, they’ll be vertically centered. The default
grid setting snaps the speed button to that vertical position for you.

Assigning a speed button’s glyph
Each speed button needs a graphic image called a glyph to indicate to the user what
the button does. If you supply the speed button only one image, the button
manipulates that image to indicate whether the button is pressed, unpressed,
selected, or disabled. You can also supply separate, specific images for each state if
you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign
different glyphs at runtime.

To assign a glyph to a speed button at design time,

1 Select the speed button.

2 In the Object Inspector, select the Glyph property.

3 Double-click the Value column beside Glyph to open the Picture Editor and select
the desired bitmap.

Setting the initial condition of a speed button
Speed buttons use their appearance to give the user clues as to their state and
purpose. Because they have no caption, it’s important that you use the right visual
cues to assist users.

Table 8.6 lists some actions you can set to change a speed button’s appearance:

Table 8.6 Setting speed buttons’ appearance

To make a speed button: Set the toolbar’s:

Appear pressed GroupIndex property to a value other than zero and its
Down property to true.

Appear disabled Enabled property to false.

Have a left margin Indent property to a value greater than 0.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-45

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

If your application has a default drawing tool, ensure that its button on the toolbar is
pressed when the application starts. To do so, set its GroupIndex property to a value
other than zero and its Down property to true.

Creating a group of speed buttons
A series of speed buttons often represents a set of mutually exclusive choices. In that
case, you need to associate the buttons into a group, so that clicking any button in the
group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to
each speed button’s GroupIndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with
the whole group selected, set GroupIndex to a unique value.

Allowing toggle buttons
Sometimes you want to be able to click a button in a group that’s already pressed and
have it pop up, leaving no button in the group pressed. Such a button is called a
toggle. Use AllowAllUp to create a grouped button that acts as a toggle: click it once,
it’s down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to true.

Setting AllowAllUp to true for any speed button in a group automatically sets the
same property value for all buttons in the group. This enables the group to act as a
normal group, with only one button pressed at a time, but also allows every button to
be up at the same time.

Adding a toolbar using the toolbar component

The toolbar component (TToolBar) offers button management and display features
that panel components do not. To add a toolbar to a form using the toolbar
component,

1 Add a toolbar component to the form (from the Win32 page of the Component
palette). The toolbar automatically aligns to the top of the form.

2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool
buttons can:

• Act like regular pushbuttons.
• Toggle on and off when clicked.
• Act like a set of radio buttons.

To implement tool buttons on a toolbar, do the following:

• Add a tool button
• Assign images to tool buttons
• Set the tool buttons’ appearance
• Create a group of tool buttons
• Allow toggled tool buttons

8-46 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Adding a tool button
To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or
hides the button. In addition, all tool buttons on the toolbar automatically maintain
the same height and width. You can drop other controls from the Component palette
onto the toolbar, and they will automatically maintain a uniform height. Controls
will also wrap around and start a new row when they do not fit horizontally on the
toolbar.

Assigning images to tool buttons
Each tool button has an ImageIndex property that determines what image appears on
it at runtime. If you supply the tool button only one image, the button manipulates
that image to indicate whether the button is disabled. To assign images to tool
buttons at design time,

1 Select the toolbar on which the buttons appear.

2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property.
An image list is a collection of same-sized icons or bitmaps.

3 Select a tool button.

4 In the Object Inspector, assign an integer to the tool button’s ImageIndex property
that corresponds to the image in the image list that you want to assign to the
button.

You can also specify separate images to appear on the tool buttons when they are
disabled and when they are under the mouse pointer. To do so, assign separate
image lists to the toolbar’s DisabledImages and HotImages properties.

Setting tool button appearance and initial conditions
Table 8.7 lists some actions you can set to change a tool button’s appearance:

Note Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.

To force a new row of controls after a specific tool button, Select the tool button that
you want to appear last in the row and set its Wrap property to true.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to
false.

Table 8.7 Setting tool buttons’ appearance

To make a tool button: Set the toolbar’s:

Appear pressed (on tool button) Style property to tbsCheck and Down
property to true.

Appear disabled Enabled property to false.

Have a left margin Indent property to a value greater than 0.

Appear to have “pop-up” borders,
thus making the toolbar appear
transparent

Flat property to true.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-47

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Creating groups of tool buttons
To create a group of tool buttons, select the buttons you want to associate and set
their Style property to tbsCheck; then set their Grouped property to true. Selecting a
grouped tool button causes other buttons in the group to pop up, which is helpful to
represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and
Grouped set to true forms a single group. To break up a group of tool buttons,
separate the buttons with any of the following:

• A tool button whose Grouped property is false.

• A tool button whose Style property is not set to tbsCheck. To create spaces or
dividers on the toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.

• Another control besides a tool button.

Allowing toggled tool buttons
Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is
down; click it again, it pops up. To make a grouped tool button a toggle, set its
AllowAllUp property to true.

As with speed buttons, setting AllowAllUp to true for any tool button in a group
automatically sets the same property value for all buttons in the group.

Adding a cool bar component

Note The TCoolBar component requires version 4.70 or later of COMCTL32.DLL and is not
available in CLX.

The cool bar component (TCoolBar)—also called a rebar—displays windowed controls
on independently movable, resizable bands. The user can position the bands by
dragging the resizing grips on the left side of each band.

To add a cool bar to a form in a Windows application:

1 Add a cool bar component to the form (from the Win32 page of the Component
palette). The cool bar automatically aligns to the top of the form.

2 Add windowed controls from the Component palette to the bar.

Only VCL components that descend from TWinControl are windowed controls. You
can add graphic controls—such as labels or speed buttons—to a cool bar, but they
will not appear on separate bands.

8-48 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Setting the appearance of the cool bar
The cool bar component offers several useful configuration options. Table 8.8 lists
some actions you can set to change a tool button’s appearance:

To assign images to individual bands, select the cool bar and double-click on the
Bands property in the Object Inspector. Then select a band and assign a value to its
ImageIndex property.

Responding to clicks

When the user clicks a control, such as a button on a toolbar, the application
generates an OnClick event which you can respond to with an event handler. Since
OnClick is the default event for buttons, you can generate a skeleton handler for the
event by double-clicking the button at design time.

Assigning a menu to a tool button
If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can
associate menu with a specific button:

1 Select the tool button.

2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s
DropDownMenu property.

If the menu’s AutoPopup property is set to true, it will appear automatically when the
button is pressed.

Table 8.8 Setting a cool button’s appearance

To make the cool bar: Set the toolbar’s:

Resize automatically to accommodate
the bands it contains

AutoSize property to true.

Bands maintain a uniform height FixedSize property to true.

Reorient to vertical rather than
horizontal

Vertical property to true. This changes the effect of the
FixedSize property.

Prevent the Text properties of the bands
from displaying at runtime

ShowText property to false. Each band in a cool bar has
its own Text property.

Remove the border around the bar BandBorderStyle to bsNone.

Keep users from changing the bands’
order at runtime. (The user can still
move and resize the bands.)

FixedOrder to true.

Create a background image for the cool
bar

Bitmap property to TBitmap object.

Choose a list of images to appear on the
left of any band

Images property to TImageList object.

D e v e l o p i n g t h e a p p l i c a t i o n u s e r i n t e r f a c e 8-49

D e s i g n i n g t o o l b a r s a n d c o o l b a r s

Adding hidden toolbars

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a
number of toolbars available, but show them only when the user wants to use them.
Often you create a form that has several toolbars, but hide some or all of them.

To create a hidden toolbar:

1 Add a toolbar, cool bar, or panel component to the form.
2 Set the component’s Visible property to false.

Although the toolbar remains visible at design time so you can modify it, it remains
hidden at runtime until the application specifically makes it visible.

Hiding and showing toolbars

Often, you want an application to have multiple toolbars, but you do not want to
clutter the form with them all at once. Or you may want to let users decide whether
to display toolbars. As with all components, toolbars can be shown or hidden at
runtime as needed.

To hide or show a toolbar at runtime, set its Visible property to false or true,
respectively. Usually you do this in response to particular user events or changes in
the operating mode of the application. To do this, you typically have a close button
on each toolbar. When the user clicks that button, the application hides the
corresponding toolbar.

You can also provide a means of toggling the toolbar. In the following example, a
toolbar of pens is toggled from a button on the main toolbar. Since each click presses
or releases the button, an OnClick event handler can show or hide the Pen toolbar
depending on whether the button is up or down.

void __fastcall TForm1::PenButtonClick(TObject *Sender)
{

PenBar->Visible = PenButton->Down;
}

8-50 D e v e l o p e r ’ s G u i d e

T y p e s o f c o n t r o l s 9-1

C h a p t e r

9
Chapter9Types of controls

Controls are visual components that help you design your user interface.

This chapter describes the different controls you can use, including text controls,
input controls, buttons, list controls, grouping controls, display controls, grids, value
list editors, and graphics controls.

To create a graphic control, see Chapter 54, “Creating a graphic control.” To learn
how to implement these controls, see Chapter 6, “Working with controls.”

Text controls
Many applications use text controls to display text to the user. You can use:

• Edit controls, which allow the user to add text.

• Text viewing controls and labels, which do not allow user to add text:

Use this component: When you want users to do this:

TEdit Edit a single line of text.

TMemo Edit multiple lines of text.

TMaskEdit Adhere to a particular format, such as a postal code or phone number.

TRichEdit Edit multiple lines of text using rich text format (VCL only).

Use this component: When you want users to do this:

TTextBrowser Display a text file or simple HTML page that users can scroll through.

TTextViewer Display a text file or simple HTML page. Users can scroll through the
page or click links to view other pages and images.

TLCDNumber Display numeric information in a digital display form.

TLabel Display text on a nonwindowed control.
TStaticText Display text on a windowed control.

9-2 D e v e l o p e r ’ s G u i d e

T e x t c o n t r o l s

Edit controls

Edit controls display text to the user and allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

TEdit and TMaskEdit are simple edit controls that include a single line text edit box in
which you can type information. When the edit box has focus, a blinking insertion
point appears.

You can include text in the edit box by assigning a string value to its Text property.
You control the appearance of the text in the edit box by assigning values to its Font
property. You can specify the typeface, size, color, and attributes of the font. The
attributes affect all of the text in the edit box and cannot be applied to individual
characters.

An edit box can be designed to change its size depending on the size of the font it
contains. You do this by setting the AutoSize property to true. You can limit the
number of characters an edit box can contain by assigning a value to the MaxLength
property.

TMaskEdit is a special edit control that validates the text entered against a mask that
encodes the valid forms the text can take. The mask can also format the text that is
displayed to the user.

TMemo and TRichEdit allows the user to add several lines of text.

Edit control properties

Following are some of the important properties of edit controls:

Memo and rich edit controls
Both the TMemo and TRichEdit controls handle multiple lines of text.

VCL The rich edit controls are in the VCL only.

TMemo is another type of edit box that handles multiple lines of text. The lines in a
memo control can extend beyond the right boundary of the edit box, or they can

Table 9.1 Edit control properties

Property Description

Text Determines the text that appears in the edit box or memo control.

Font Controls the attributes of text written in the edit box or memo control.

AutoSize Enables the edit box to dynamically change its height depending on the
currently selected font.

ReadOnly Specifies whether the user is allowed to change the text.

MaxLength Limits the number of characters in simple edit controls.

SelText Contains the currently selected (highlighted) part of the text.

SelStart,
SelLength

Indicate the position and length of the selected part of the text.

T y p e s o f c o n t r o l s 9-3

T e x t c o n t r o l s

wrap onto the next line. You control whether the lines wrap using the WordWrap
property.

TRichEdit is a memo control that supports rich text formatting, printing, searching,
and drag-and-drop of text. It allows you to specify font properties, alignment, tabs,
indentation, and numbering.

In addition to the properties that all edit controls have, memo and rich edit controls
include other properties, such as the following:

• Alignment specifies how text is aligned (left, right, or center) in the component.
• The Text property contains the text in the control. Your application can tell if the

text changes by checking the Modified property.
• Lines contains the text as a list of strings.
• OEMConvert determines whether the text is temporarily converted from ANSI to

OEM as it is entered. This is useful for validating file names (VCL only).
• WordWrap determines whether the text will wrap at the right margin.
• WantReturns determines whether the user can insert hard returns in the text.
• WantTabs determines whether the user can insert tabs in the text.
• AutoSelect determines whether the text is automatically selected (highlighted)

when the control becomes active.

At runtime, you can select all the text in the memo with the SelectAll method.

Text viewing controls (CLX only)

The text viewing controls display text but are read-only. TTextViewer acts as a simple
viewer so that users can read and scroll through documents. With TTextBrowser,
users can also click links to navigate to other documents and other parts of the same
document. Documents visited are stored in a history list, which can be navigated
using the Backward, Forward, and Home methods. TTextViewer and TTextBrowser are
best used to display HTML-based text or to implement an HTML-based Help system.

TTextBrowser has the same properties as TTextViewer plus Factory. Factory determines
the MIME factory object used to determine file types for embedded images. For
example, you can associate filename extensions—such as .txt, .html, and .xml—with
MIME types and have the factory load this data into the control.

Use the FileName property to add a text file, such as .html, to appear in the control at
runtime.

Labels

Labels (TLabel and TStaticText (VCL only)) display text and are usually placed next to
other controls. You place a label on a form when you need to identify or annotate
another component such as an edit box or when you want to include text on a form.
The standard label component, TLabel, is a non-windowed control (widget-based in
CLX), so it cannot receive focus; when you need a label with a window handle, use
TStaticText instead.

9-4 D e v e l o p e r ’ s G u i d e

S p e c i a l i z e d i n p u t c o n t r o l s

Label properties include the following:

• Caption contains the text string for the label.

• Font, Color, and other properties determine the appearance of the label. Each label
can use only one typeface, size, and color.

• FocusControl links the label to another control on the form. If Caption includes an
accelerator key, the control specified by FocusControl receives focus when the user
presses the accelerator key.

• ShowAccelChar determines whether the label can display an underlined accelerator
character. If ShowAccelChar is true, any character preceded by an ampersand (&)
appears underlined and enables an accelerator key.

• Transparent determines whether items under the label (such as graphics) are
visible.

Labels usually display read-only static text that cannot be changed by the application
user. The application can change the text while it is executing by assigning a new
value to the Caption property. To add a text object to a form that a user can scroll or
edit, use TEdit.

Specialized input controls
The following components provide additional ways of capturing input.

Scroll bars

The scroll bar component creates a scroll bar that you can use to scroll the contents of
a window, form, or other control. In the OnScroll event handler, you write code that
determines how the control behaves when the user moves the scroll bar.

The scroll bar component is not used very often, because many visual components
include scroll bars of their own and thus don’t require additional coding. For
example, TForm has VertScrollBar and HorzScrollBar properties that automatically
configure scroll bars on the form. To create a scrollable region within a form, use
TScrollBox.

Use this component: When you want users to do this:

TScrollBar Select values on a continuous range

TTrackBar Select values on a continuous range (more visually effective than a scroll
bar)

TUpDown Select a value from a spinner attached to an edit component (VCL only)

THotKey Enter Ctrl/Shift/Alt keyboard sequences (VCL only)

TSpinEdit Select a value from a spinner widget (CLX only)

T y p e s o f c o n t r o l s 9-5

S p e c i a l i z e d i n p u t c o n t r o l s

Track bars

A track bar can set integer values on a continuous range. It is useful for adjusting
properties like color, volume and brightness. The user moves the slide indicator by
dragging it to a particular location or clicking within the bar.

• Use the Max and Min properties to set the upper and lower range of the track bar.
• Use SelEnd and SelStart to highlight a selection range. See Figure 9.1.
• The Orientation property determines whether the track bar is vertical or horizontal.
• By default, a track bar has one row of ticks along the bottom. Use the TickMarks

property to change their location. To control the intervals between ticks, use the
TickStyle property and SetTick method.

Figure 9.1 Three views of the track bar component

• Position sets a default position for the track bar and tracks the position at runtime.
• By default, users can move one tick up or down by pressing the up and down

arrow keys. Set LineSize to change that increment.
• Set PageSize to determine the number of ticks moved when the user presses Page Up

and Page Down.

Up-down controls (VCL only)

An up-down control (TUpDown) consists of a pair of arrow buttons that allow users
to change an integer value in fixed increments. The current value is given by the
Position property; the increment, which defaults to 1, is specified by the Increment
property. Use the Associate property to attach another component (such as an edit
control) to the up-down control.

Spin edit controls (CLX only)

A spin edit control (TSpinEdit) is also called an up-down widget, little arrows widget,
or spin button. This control lets the application user change an integer value in fixed
increments, either by clicking the up or down arrow buttons to increase or decrease
the value currently displayed, or by typing the value directly into the spin box.

The current value is given by the Value property; the increment, which defaults to 1,
is specified by the Increment property.

Hot key controls (VCL only)

Use the hot key component (THotKey) to assign a keyboard shortcut that transfers
focus to any control. The HotKey property contains the current key combination and
the Modifiers property determines which keys are available for HotKey.

9-6 D e v e l o p e r ’ s G u i d e

B u t t o n s a n d s i m i l a r c o n t r o l s

The hot key component can be assigned as the ShortCut property of a menu item.
Then, when a user enters the key combination specified by the HotKey and Modifiers
properties, Windows activates the menu item.

Splitter controls

A splitter (TSplitter) placed between aligned controls allows users to resize the
controls. Used with components like panels and group boxes, splitters let you divide
a form into several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same
alignment as the control. The last control should be client-aligned, so that it fills up
the remaining space when the others are resized. For example, you can place a panel
at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned
to alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or
alClient) to the right of the splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its
neighboring control. Set Beveled to true to give the splitter’s edge a 3D look.

Buttons and similar controls
Aside from menus, buttons provide the most common way to invoke a command in
an application. C++Builder offers several button-like controls:

Button controls

Users click button controls with the mouse to initiate actions. Buttons are labeled
with text that represent the action. The text is specified by assigning a string value to
the Caption property. Most buttons can also be selected by pressing a key on the
keyboard as a keyboard shortcut. The shortcut is shown as an underlined letter on
the button.

Use this component: To do this:

TButton Present command choices on buttons with text

TBitBtn Present command choices on buttons with text and glyphs

TSpeedButton Create grouped toolbar buttons

TCheckBox Present on/off options

TRadioButton Present a set of mutually exclusive choices

TToolBar Arrange tool buttons and other controls in rows and automatically adjust
their sizes and positions

TCoolBar Display a collection of windowed controls within movable, resizable
bands (VCL only)

T y p e s o f c o n t r o l s 9-7

B u t t o n s a n d s i m i l a r c o n t r o l s

Users click button controls to initiate actions. You can assign an action to a TButton
component by creating an OnClick event handler for it. Double-clicking a button at
design time takes you to the button’s OnClick event handler in the Code editor.

• Set Cancel to true if you want the button to trigger its OnClick event when the user
presses Esc.

• Set Default to true if you want the Enter key to trigger the button’s OnClick event.

Bitmap buttons

A bitmap button (BitBtn) is a button control that presents a bitmap image on its face.

• To choose a bitmap for your button, set the Glyph property.
• Use Kind to automatically configure a button with a glyph and default behavior.
• By default, the glyph is to the left of any text. To move it, use the Layout property.
• The glyph and text are automatically centered in the button. To move their

position, use the Margin property. Margin determines the number of pixels
between the edge of the image and the edge of the button.

• By default, the image and the text are separated by 4 pixels. Use Spacing to increase
or decrease the distance.

• Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs
property to 3 to show a different bitmap for each state.

Speed buttons

Speed buttons, which usually have images on their faces, can function in groups.
They are commonly used with panels to create toolbars.

• To make speed buttons act as a group, give the GroupIndex property of all the
buttons the same nonzero value.

• By default, speed buttons appear in an up (unselected) state. To initially display a
speed button as selected, set the Down property to true.

• If AllowAllUp is true, all of the speed buttons in a group can be unselected. Set
AllowAllUp to false if you want a group of buttons to act like a radio group.

For more information on speed buttons, refer to the section “Adding a toolbar using
a panel component” on page 8-43 and “Organizing actions for toolbars and menus”
on page 8-16.

Check boxes

A check box is a toggle that lets the user select an on or off state. When the choice is
turned on, the check box is checked. Otherwise, the check box is blank. You create
check boxes using TCheckBox.

• Set Checked to true to make the box appear checked by default.
• Set AllowGrayed to true to give the check box three possible states: checked,

unchecked, and grayed.
• The State property indicates whether the check box is checked (cbChecked),

unchecked (cbUnchecked), or grayed (cbGrayed).

9-8 D e v e l o p e r ’ s G u i d e

B u t t o n s a n d s i m i l a r c o n t r o l s

Note Check box controls display one of two binary states. The indeterminate state is used
when other settings make it impossible to determine the current value for the check
box.

Radio buttons

Radio buttons present a set of mutually exclusive choices. You can create individual
radio buttons using TRadioButton or use the radio group component (TRadioGroup) to
arrange radio buttons into groups automatically. You can group radio buttons to let
the user select one from a limited set of choices. See “Grouping controls” on
page 9-11 for more information.

A selected radio button is displayed as a circle filled in the middle. When not
selected, the radio button shows an empty circle. Assign the value true or false to the
Checked property to change the radio button’s visual state.

Toolbars

Toolbars provide an easy way to arrange and manage visual controls. You can create
a toolbar out of a panel component and speed buttons, or you can use the ToolBar
component, then right-click and choose New Button to add buttons to the toolbar.

The TToolBar component has several advantages: buttons on a toolbar automatically
maintain uniform dimensions and spacing; other controls maintain their relative
position and height; controls can automatically wrap around to start a new row when
they do not fit horizontally; and TToolBar offers display options like transparency,
pop-up borders, and spaces and dividers to group controls.

You can use a centralized set of actions on toolbars and menus, by using action lists or
action bands. See “Using action lists” on page 8-23 for details on how to use action lists
with buttons and toolbars.

Toolbars can also parent other controls such as edit boxes, combo boxes, and so on.

Cool bars (VCL only)

A cool bar contains child controls that can be moved and resized independently.
Each control resides on an individual band. The user positions the controls by
dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the
Windows\System or Windows\System32 directory) at both design time and
runtime. Cool bars cannot be used in cross-platform applications.

• The Bands property holds a collection of TCoolBand objects. At design time, you
can add, remove, or modify bands with the Bands editor. To open the Bands
editor, select the Bands property in the Object Inspector, then double-click in the
Value column to the right, or click the ellipsis (...) button. You can also create
bands by adding new windowed controls from the palette.

• The FixedOrder property determines whether users can reorder the bands.
• The FixedSize property determines whether the bands maintain a uniform height.

T y p e s o f c o n t r o l s 9-9

L i s t c o n t r o l s

List controls
Lists present the user with a collection of items to select from. Several components
display lists:

Use the nonvisual TStringList and TImageList components to manage sets of strings
and images. For more information about string lists, see “Working with string lists”
on page 4-15.

List boxes and check-list boxes

List boxes (TListBox) and check-list boxes display lists from which users can select
items.

• Items uses a TStrings object to fill the control with values.
• ItemIndex indicates which item in the list is selected.
• MultiSelect specifies whether a user can select more than one item at a time.
• Sorted determines whether the list is arranged alphabetically.
• Columns specifies the number of columns in the list control.
• IntegralHeight specifies whether the list box shows only entries that fit completely

in the vertical space (VCL only).
• ItemHeight specifies the height of each item in pixels. The Style property can cause

ItemHeight to be ignored.
• The Style property determines how a list control displays its items. By default,

items are displayed as strings. By changing the value of Style, you can create
owner-draw list boxes that display items graphically or in varying heights. For
information on owner-draw controls, see “Adding graphics to controls” on
page 6-11.

To create a simple list box,

1 Within your project, drop a list box component from the Component palette onto a
form.

2 Size the list box and set its alignment as needed.

Use this component: To display:

TListBox A list of text strings

TCheckListBox A list with a check box in front of each item

TComboBox An edit box with a scrollable drop-down list

TTreeView A hierarchical list

TListView A list of (draggable) items with optional icons, columns, and headings

TIconView (CLX only) A list of items or data in rows and columns displayed as either small or
large icons

TDateTimePicker A list box for entering dates or times (VCL only)

TMonthCalendar A calendar for selecting dates (VCL only)

9-10 D e v e l o p e r ’ s G u i d e

L i s t c o n t r o l s

3 Double-click the right side of the Items property or choose the ellipsis button to
display the String List Editor.

4 Use the editor to enter free form text arranged in lines for the contents of the list
box.

5 Then choose OK.

To let users select multiple items in the list box, you can use the ExtendedSelect and
MultiSelect properties.

Combo boxes

A combo box (TComboBox) combines an edit box with a scrollable list. When users
enter data into the control—by typing or selecting from the list—the value of the Text
property changes. If AutoComplete is enabled, the application looks for and displays
the closest match in the list as the user types the data.

Three types of combo boxes are: standard, drop-down (the default), and drop-down
list.

• Use the Style property to select the type of combo box you need.
• Use csDropDown if you want an edit box with a drop-down list. Use

csDropDownList to make the edit box read-only (forcing users to choose from the
list). Set the DropDownCount property to change the number of items displayed in
the list.

• Use csSimple to create a combo box with a fixed list that does not close. Be sure to
resize the combo box so that the list items are displayed.

• Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes
that display items graphically or in varying heights. For information on owner-
draw controls, see “Adding graphics to controls” on page 6-11.

At runtime, CLX combo boxes work differently than VCL combo boxes. In CLX (but
not in the VCL combo box), you can add a item to a drop down by entering text and
pressing Enter in the edit field of a combo box. You can turn this feature off by setting
InsertMode to ciNone. It is also possible to add empty (no string) items to the list in
the combo box. Also, if you keep pressing the down arrow key, it does not stop at the
last item of the combo box list. It cycles around to the top again.

Tree views

A tree view (TTreeView) displays items in an indented outline. The control provides
buttons that allow nodes to be expanded and collapsed. You can include icons with
items’ text labels and display different icons to indicate whether a node is expanded
or collapsed. You can also include graphics, such as check boxes, that reflect state
information about the items.

• Indent sets the number of pixels horizontally separating items from their parents.
• ShowButtons enables the display of '+' and '–' buttons to indicate whether an item

can be expanded.

T y p e s o f c o n t r o l s 9-11

G r o u p i n g c o n t r o l s

• ShowLines enables display of connecting lines to show hierarchical relationships
(VCL only).

• ShowRoot determines whether lines connecting the top-level items are displayed
(VCL only).

To add items to a tree view control at design time, double-click on the control to
display the TreeView Items editor. The items you add become the value of the Items
property. You can change the items at runtime by using the methods of the Items
property, which is an object of type TTreeNodes. TTreeNodes has methods for adding,
deleting, and navigating the items in the tree view.

Tree views can display columns and subitems similar to list views in vsReport mode.

List views

List views, created using TListView, display lists in various formats. Use the
ViewStyle property to choose the kind of list you want:

• vsIcon and vsSmallIcon display each item as an icon with a label. Users can drag
items within the list view window (VCL only).

• vsList displays items as labeled icons that cannot be dragged.
• vsReport displays items on separate lines with information arranged in columns.

The leftmost column contains a small icon and label, and subsequent columns
contain subitems specified by the application. Use the ShowColumnHeaders
property to display headers for the columns.

Date-time pickers and month calendars (VCL only)

The DateTimePicker component displays a list box for entering dates or times, while
the MonthCalendar component presents a calendar for entering dates or ranges of
dates. To use these components, you must have version 4.70 or later of
COMCTL32.DLL (usually located in the Windows\System or Windows\System32
directory) at both design time and runtime. They are not available for use in cross-
platform applications.

Grouping controls
A graphical interface is easier to use when related controls and information are
presented in groups. C++Builder provides several components for grouping
components:

Use this component: When you want this:

TGroupBox A standard group box with a title

TRadioGroup A simple group of radio buttons

TPanel A more visually flexible group of controls

TScrollBox A scrollable region containing controls

9-12 D e v e l o p e r ’ s G u i d e

G r o u p i n g c o n t r o l s

Group boxes and radio groups

A group box (TGroupBox) arranges related controls on a form. The most commonly
grouped controls are radio buttons. After placing a group box on a form, select
components from the Component palette and place them in the group box. The
Caption property contains text that labels the group box at runtime.

The radio group component (TRadioGroup) simplifies the task of assembling radio
buttons and making them work together. To add radio buttons to a radio group, edit
the Items property in the Object Inspector; each string in Items makes a radio button
appear in the group box with the string as its caption. The value of the ItemIndex
property determines which radio button is currently selected. Display the radio
buttons in a single column or in multiple columns by setting the value of the Columns
property. To respace the buttons, resize the radio group component.

Panels

The TPanel component provides a generic container for other controls. Panels are
typically used to visually group components together on a form. Panels can be
aligned with the form to maintain the same relative position when the form is
resized. The BorderWidth property determines the width, in pixels, of the border
around a panel.

You can also place other controls onto a panel and use the Align property to ensure
proper positioning of all the controls in the group on the form. You can make a panel
alTop aligned so that its position will remain in place even if the form is resized.

The look of the panel can be changed to a raised or lowered look by using the
BevelOuter and BevelInner properties. You can vary the values of these properties to
create different visual 3-D effects. Note that if you merely want a raised or lowered
bevel, you can use the less resource intensive TBevel control instead.

You can also use one or more panels to build various status bars or information
display areas.

Scroll boxes

Scroll boxes (TScrollBox) create scrolling areas within a form. Applications often need to
display more information than will fit in a particular area. Some controls—such as
list boxes, memos, and forms themselves—can automatically scroll their contents.

TTabControl A set of mutually exclusive notebook-style tabs

TPageControl A set of mutually exclusive notebook-style tabs with corresponding
pages, each of which may contain other controls

THeaderControl Resizable column headers

Use this component: When you want this:

T y p e s o f c o n t r o l s 9-13

G r o u p i n g c o n t r o l s

Another use of scroll boxes is to create multiple scrolling areas (views) in a window.
Views are common in commercial word-processor, spreadsheet, and project
management applications. Scroll boxes give you the additional flexibility to define
arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls, such as TButton and
TCheckBox objects. But a scroll box is normally invisible. If the controls in the scroll
box cannot fit in its visible area, the scroll box automatically displays scroll bars.

Another use of a scroll box is to restrict scrolling in areas of a window, such as a
toolbar or status bar (TPanel components). To prevent a toolbar and status bar from
scrolling, hide the scroll bars, and then position a scroll box in the client area of the
window between the toolbar and status bar. The scroll bars associated with the scroll
box will appear to belong to the window, but will scroll only the area inside the scroll
box.

Tab controls

The tab control component (TTabControl) creates a set of tabs that look like notebook
dividers. You can create tabs by editing the Tabs property in the Object Inspector;
each string in Tabs represents a tab. The tab control is a single panel with one set of
components on it. To change the appearance of the control when the tabs are clicked,
you need to write an OnChange event handler. To create a multipage dialog box, use a
page control instead.

Page controls

The page control component (TPageControl) is a page set suitable for multipage
dialog boxes. A page control displays multiple overlapping pages that are TTabSheet
objects. A page is selected in the user interface by clicking a tab on top of the control.

To create a new page in a page control at design time, right-click the control and
choose New Page. At runtime, you add new pages by creating the object for the page
and setting its PageControl property:

TTabSheet *pTabSheet = new TTabSheet(PageControl1);
pTabSheet->PageControl = PageControl1;

To access the active page, use the ActivePage property. To change the active page, you
can set either the ActivePage or the ActivePageIndex property.

Header controls

A header control (THeaderControl) is a is a set of column headers that the user can
select or resize at runtime. Edit the control’s Sections property to add or modify
headers. You can place the header sections above columns or fields. For example,
header sections might be placed over a list box (TListBox).

9-14 D e v e l o p e r ’ s G u i d e

D i s p l a y c o n t r o l s

Display controls
There are many ways to provide users with information about the state of an
application. For example, some components—including TForm—have a Caption
property that can be set at runtime. You can also create dialog boxes to display
messages. In addition, the following components are especially useful for providing
visual feedback at runtime.

Status bars

Although you can use a panel to make a status bar, it is simpler to use the status bar
component. By default, the status bar’s Align property is set to alBottom, which takes
care of both position and size.

If you only want to display one text string at a time in the status bar, set its
SimplePanel property to true and use the SimpleText property to control the text
displayed in the status bar.

You can also divide a status bar into several text areas, called panels. To create
panels, edit the Panels property in the Object Inspector, setting each panel’s Width,
Alignment, and Text properties from the Panels editor. Each panel’s Text property
contains the text displayed in the panel.

Progress bars

When your application performs a time-consuming operation, you can use a
progress bar to show how much of the task is completed. A progress bar displays a
dotted line that grows from left to right.

Figure 9.2 A progress bar

The Position property tracks the length of the dotted line. Max and Min determine the
range of Position. To make the line grow, increment Position by calling the StepBy or
StepIt method. The Step property determines the increment used by StepIt.

Use this component or
property: To do this:

TStatusBar Display a status region (usually at the bottom of a window)

TProgressBar Show the amount of work completed for a particular task

Hint and ShowHint Activate fly-by or “tooltip” help

HelpContext and HelpFile Link context-sensitive online Help

T y p e s o f c o n t r o l s 9-15

G r i d s

Help and hint properties

Most visual controls can display context-sensitive Help as well as fly-by hints at
runtime. The HelpContext and HelpFile properties establish a Help context number
and Help file for the control.

The Hint property contains the text string that appears when the user moves the
mouse pointer over a control or menu item. To enable hints, set ShowHint to true;
setting ParentShowHint to true causes the control’s ShowHint property to have the
same value as its parent’s.

Grids
Grids display information in rows and columns. If you’re writing a database
application, use the TDBGrid or TDBCtrlGrid component described in Chapter 19,
“Using data controls.” Otherwise, use a standard draw grid or string grid.

Draw grids

A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an
OnDrawCell event handler to fill in the cells of the grid.

• The CellRect method returns the screen coordinates of a specified cell, while the
MouseToCell method returns the column and row of the cell at specified screen
coordinates. The Selection property indicates the boundaries of the currently
selected cells.

• The TopRow property determines which row is currently at the top of the grid. The
LeftCol property determines the first visible column on the left. VisibleColCount and
VisibleRowCount are the number of columns and rows visible in the grid.

• You can change the width or height of a column or row with the ColWidths and
RowHeights properties. Set the width of the grid lines with the GridLineWidth
property. Add scroll bars to the grid with the ScrollBars property.

• You can choose to have fixed or non-scrolling columns and rows with the
FixedCols and FixedRows properties. Assign a color to the fixed columns and rows
with the FixedColor property.

• The Options, DefaultColWidth, and DefaultRowHeight properties also affect the
appearance and behavior of the grid.

String grids

The string grid component is a descendant of TDrawGrid that adds specialized
functionality to simplify the display of strings. The Cells property lists the strings for
each cell in the grid; the Objects property lists objects associated with each string. All
the strings and associated objects for a particular column or row can be accessed
through the Cols or Rows property.

9-16 D e v e l o p e r ’ s G u i d e

V a l u e l i s t e d i t o r s (V C L o n l y)

Value list editors (VCL only)
TValueListEditor is a specialized grid for editing string lists that contain name/value
pairs in the form Name=Value. The names and values are stored as a TStrings
descendant that is the value of the Strings property. You can look up the value for
any name using the Values property. TValueListEditor is not available for cross-
platform programming.

The grid contains two columns, one for the names and one for the values. By default,
the Name column is named “Key” and the Value column is named “Value”. You can
change these defaults by setting the TitleCaptions property. You can omit these titles
using the DisplayOptions property (which also controls resize when you resize the
control.)

You can control whether users can edit the Name column using the KeyOptions
property. KeyOptions contains separate options to allow editing, adding new names,
deleting names, and controlling whether new names must be unique.

You can control how users edit the entries in the Value column using the ItemProps
property. Each item has a separate TItemProp object that lets you

• Supply an edit mask to limit the valid input.

• Specify a maximum length for values.

• Mark the value as read-only.

• Specify that the value list editor displays a drop-down arrow that opens a pick list
of values from which the user can choose or an ellipsis button that triggers an
event you can use for displaying a dialog in which users enter values.

If you specify that there is a drop-down arrow, you must supply the list of values
from which the user chooses. These can be a static list (the PickList property of the
TItemProp object) or they can be dynamically added at runtime using the value list
editor’s OnGetPickList event. You can also combine these approaches and have a
static list that the OnGetPickList event handler modifies.

If you specify that there is an ellipsis button, you must supply the response that
occurs when the user clicks that button (including the setting of a value, if
appropriate). You provide this response by writing an OnEditButtonClick event
handler.

Graphic controls
The following components make it easy to incorporate graphics into an application.

Use this component: To display:

TImage Graphics files

TShape Geometric shapes

TBevel 3-D lines and frames

TPaintBox Graphics drawn by your program at runtime

TAnimate AVI files (VCL only)

T y p e s o f c o n t r o l s 9-17

G r a p h i c c o n t r o l s

Notice that these include common paint routines (Repaint, Invalidate, and so on) that
never need to receive focus.

Images

The image component displays a graphical image, like a bitmap, icon, or metafile.
The Picture property determines the graphic to be displayed. Use Center, AutoSize,
Stretch, and Transparent to set display options. For more information, see “Overview
of graphics programming” on page 10-1.

Shapes

The shape component displays a geometric shape. It is a nonwindowed control (not
widget-based in CLX) and therefore, cannot receive user input. The Shape property
determines which shape the control assumes. To change the shape’s color or add a
pattern, use the Brush property, which holds a TBrush object. How the shape is
painted depends on the Color and Style properties of TBrush.

Bevels

The bevel component (TBevel) is a line that can appear raised or lowered. Some
components, such as TPanel, have built-in properties to create beveled borders. When
such properties are unavailable, use TBevel to create beveled outlines, boxes, or
frames.

Paint boxes

The paint box (TPaintBox) allows your application to draw on a form. Write an
OnPaint event handler to render an image directly on the paint box's Canvas.
Drawing outside the boundaries of the paint box is prevented. For more information,
see “Overview of graphics programming” on page 10-1.

Animation control (VCL only)

The animation component is a window that silently displays an Audio Video
Interleaved (AVI) clip. An AVI clip is a series of bitmap frames, like a movie.
Although AVI clips can have sound, animation controls work only with silent AVI
clips. The files you use must be either uncompressed AVI files or AVI clips
compressed using run-length encoding (RLE). Animation control cannot be used in
cross-platform programming.

Following are some of the properties of an animation component:

• ResHandle is the Windows handle for the module that contains the AVI clip as a
resource. Set ResHandle at runtime to the instance handle or module handle of the
module that includes the animation resource. After setting ResHandle, set the

9-18 D e v e l o p e r ’ s G u i d e

G r a p h i c c o n t r o l s

ResID or ResName property to specify which resource in the indicated module is
the AVI clip that should be displayed by the animation control.

• Set AutoSize to true to have the animation control adjust its size to the size of the
frames in the AVI clip.

• StartFrame and StopFrame specify in which frames to start and stop the clip.
• Set CommonAVI to display one of the common Windows AVI clips provided in

Shell32.DLL.
• Specify when to start and interrupt the animation by setting the Active property to

true and false, respectively, and how many repetitions to play by setting the
Repetitions property.

• The Timers property lets you display the frames using a timer. This is useful for
synchronizing the animation sequence with other actions, such as playing a sound
track.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-1

C h a p t e r

10
Chapter10Working with graphics and

multimedia
Graphics and multimedia elements can add polish to your applications. C++Builder
offers a variety of ways to introduce these features into your application. To add
graphical elements, you can insert pre-drawn pictures at design time, create them
using graphical controls at design time, or draw them dynamically at runtime. To
add multimedia capabilities, C++Builder includes special components that can play
audio and video clips.

CLX Multimedia components are available in the VCL only.

Overview of graphics programming
The VCL graphics components defined in the Graphics unit encapsulate the
Windows Graphics Device Interface (GDI), making it easy to add graphics to your
Windows applications. CLX graphics components defined in the QGraphics unit
encapsulate the Qt graphics widgets for adding graphics to cross-platform
applications.

To draw graphics in a C++Builder application, you draw on an object’s canvas, rather
than directly on the object. The canvas is a property of the object, and is itself an
object. A main advantage of the canvas object is that it handles resources effectively
and it takes care of device context, so your programs can use the same methods
regardless of whether you are drawing on the screen, to a printer, or on bitmaps or
metafiles (drawings in CLX). Canvases are available only at runtime, so you do all
your work with canvases by writing code.

VCL Since TCanvas is a wrapper resource manager around the Windows device context,
you can also use all Windows GDI functions on the canvas. The Handle property of
the canvas is the device context Handle.

10-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

CLX TCanvas is a wrapper resource manager around a Qt painter. The Handle property of
the canvas is a typed pointer to an instance of a Qt painter object. Having this
exposed allows you to use low-level Qt graphics library functions that require
QPainterH.

How graphic images appear in your application depends on the type of object whose
canvas you draw on. If you are drawing directly onto the canvas of a control, the
picture is displayed immediately. However, if you draw on an offscreen image such
as a TBitmap canvas, the image is not displayed until a control copies from the bitmap
onto the control’s canvas. That is, when drawing bitmaps and assigning them to an
image control, the image appears only when the control has an opportunity to
process its OnPaint message (VCL) or event (CLX).

When working with graphics, you often encounter the terms drawing and painting:

• Drawing is the creation of a single, specific graphic element, such as a line or a
shape, with code. In your code, you tell an object to draw a specific graphic in a
specific place on its canvas by calling a drawing method of the canvas.

• Painting is the creation of the entire appearance of an object. Painting usually
involves drawing. That is, in response to OnPaint events, an object generally
draws some graphics. An edit box, for example, paints itself by drawing a
rectangle and then drawing some text inside. A shape control, on the other hand,
paints itself by drawing a single graphic.

The examples in the beginning of this chapter demonstrate how to draw various
graphics, but they do so in response to OnPaint events. Later sections show how to do
the same kind of drawing in response to other events.

Refreshing the screen

At certain times, the operating system determines that objects onscreen need to
refresh their appearance, so it generates WM_PAINT messages on Windows, which
the VCL routes to OnPaint events. (If you are using CLX for cross-platform
development, a paint event is generated, which CLX routes to OnPaint events.) If you
have written an OnPaint event handler for that object, it is called when you use the
Refresh method. The default name generated for the OnPaint event handler in a form
is FormPaint. You may want to use the Refresh method at times to refresh a
component or form. For example, you might call Refresh in the form’s OnResize event
handler to redisplay any graphics or if using the VCL, you want to paint a
background on a form.

While some operating systems automatically handle the redrawing of the client area
of a window that has been invalidated, Windows does not. In the Windows
operating system anything drawn on the screen is permanent. When a form or
control is temporarily obscured, for example during window dragging, the form or
control must repaint the obscured area when it is re-exposed. For more information
about the WM_PAINT message, see the Windows online Help.

If you use the TImage control to display a graphical image on a form, the painting and
refreshing of the graphic contained in the TImage is handled automatically. The
Picture property specifies the actual bitmap, drawing, or other graphic object that

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-3

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

TImage displays. You can also set the Proportional property to ensure that the image
can be fully displayed in the image control without any distortion. Drawing on a
TImage creates a persistent image. Consequently, you do not need to do anything to
redraw the contained image. In contrast, TPaintBox’s canvas maps directly onto the
screen device (VCL) or the painter (CLX), so that anything drawn to the PaintBox’s
canvas is transitory. This is true of nearly all controls, including the form itself.
Therefore, if you draw or paint on a TPaintBox in its constructor, you will need to add
that code to your OnPaint event handler in order for the image to be repainted each
time the client area is invalidated.

Types of graphic objects

The VCL/CLX provides the graphic objects shown in Table 10.1. These objects have
methods to draw on the canvas, which are described in “Using Canvas methods to
draw graphic objects” on page 10-10 and to load and save to graphics files, as
described in “Loading and saving graphics files” on page 10-19.

Table 10.1 Graphic object types

Object Description

Picture Used to hold any graphic image. To add additional graphic file formats,
use the Picture Register method. Use this to handle arbitrary files such as
displaying images in an image control.

Bitmap A powerful graphics object used to create, manipulate (scale, scroll,
rotate, and paint), and store images as files on a disk. Creating copies of a
bitmap is fast since the handle is copied, not the image.

Clipboard Represents the container for any text or graphics that are cut, copied, or
pasted from or to an application. With the clipboard, you can get and
retrieve data according to the appropriate format; handle reference
counting, and opening and closing the clipboard; manage and
manipulate formats for objects in the clipboard.

Icon Represents the value loaded from an icon file (::ICO file).

Metafile (VCL only)
Drawing (CLX only)

Contains a file that records the operations required to construct an
image, rather than contain the actual bitmap pixels of the image.
Metafiles or drawings are extremely scalable without the loss of image
detail and often require much less memory than bitmaps, particularly
for high-resolution devices, such as printers. However, metafiles and
drawings do not display as fast as bitmaps. Use a metafile or drawing
when versatility or precision is more important than performance.

10-4 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Common properties and methods of Canvas

Table 10.2 lists the commonly used properties of the Canvas object. For a complete
list of properties and methods, see the TCanvas component in online Help.

These properties are described in more detail in “Using the properties of the Canvas
object” on page 10-5.

Table 10.3 is a list of several methods you can use:

Table 10.2 Common properties of the Canvas object

Properties Descriptions

Font Specifies the font to use when writing text on the image. Set the
properties of the TFont object to specify the font face, color, size, and
style of the font.

Brush Determines the color and pattern the canvas uses for filling graphical
shapes and backgrounds. Set the properties of the TBrush object to
specify the color and pattern or bitmap to use when filling in spaces on
the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines and outlining
shapes. Set the properties of the TPen object to specify the color, style,
width, and mode of the pen.

PenPos Specifies the current drawing position of the pen.

Pixels Specifies the color of the area of pixels within the current ClipRect.

Table 10.3 Common methods of the Canvas object

Method Descriptions

Arc Draws an arc on the image along the perimeter of the ellipse bounded by
the specified rectangle.

Chord Draws a closed figure represented by the intersection of a line and an
ellipse.

CopyRect Copies part of an image from another canvas into the canvas.

Draw Renders the graphic object specified by the Graphic parameter on the
canvas at the location given by the coordinates (X, Y).

Ellipse Draws the ellipse defined by a bounding rectangle on the canvas.

FillRect Fills the specified rectangle on the canvas using the current brush.

FloodFill (VCL only) Fills an area of the canvas using the current brush.

FrameRect Draws a rectangle using the Brush of the canvas to draw the border.

LineTo Draws a line on the canvas from PenPos to the point specified by X and
Y, and sets the pen position to (X, Y).

MoveTo Changes the current drawing position to the point (X,Y).

Pie Draws a pie-shaped the section of the ellipse bounded by the rectangle
(X1, Y1) and (X2, Y2) on the canvas.

Polygon Draws a series of lines on the canvas connecting the points passed in and
closing the shape by drawing a line from the last point to the first point.

Polyline Draws a series of lines on the canvas with the current pen, connecting
each of the points passed to it in Points.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-5

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

These methods are described in more detail in “Using Canvas methods to draw
graphic objects” on page 10-10.

Using the properties of the Canvas object

With the Canvas object, you can set the properties of a pen for drawing lines, a brush
for filling shapes, a font for writing text, and an array of pixels to represent the image.

This section describes:

• Using pens.
• Using brushes.
• Reading and setting pixels.

Using pens
The Pen property of a canvas controls the way lines appear, including lines drawn as
the outlines of shapes. Drawing a straight line is really just changing a group of pixels
that lie between two points.

The pen itself has four properties you can change: Color, Width, Style, and Mode.

• Color property changes the pen color.

• Width property changes the pen width.

• Style property changes the pen style.

• Mode property changes the pen mode.

The values of these properties determine how the pen changes the pixels in the line.
By default, every pen starts out black, with a width of 1 pixel, a solid style, and a
mode called copy that overwrites anything already on the canvas.

You can use TPenRecall for quick saving off and restoring the properties of pens.

Rectangle Draws a rectangle on the canvas with its upper left corner at the point
(X1, Y1) and its lower right corner at the point (X2, Y2). Use Rectangle to
draw a box using Pen and fill it using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.

StretchDraw Draws a graphic on the canvas so that the image fits in the specified
rectangle. The graphic image may need to change its magnitude or
aspect ratio to fit.

TextHeight,
TextWidth

Returns the height and width, respectively, of a string in the current font.
Height includes leading between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y), and then
updates the PenPos to the end of the string.

TextRect Writes a string inside a region; any portions of the string that fall outside
the region do not appear.

Table 10.3 Common methods of the Canvas object (continued)

Method Descriptions

10-6 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Changing the pen color
You can set the color of a pen as you would any other Color property at runtime. A
pen’s color determines the color of the lines the pen draws, including lines drawn as
the boundaries of shapes, as well as other lines and polylines. To change the pen
color, assign a value to the Color property of the pen.

To let the user choose a new color for the pen, put a color grid on the pen’s toolbar. A
color grid can set both foreground and background colors. For a non-grid pen style,
you must consider the background color, which is drawn in the gaps between line
segments. Background color comes from the Brush color property.

Since the user chooses a new color by clicking the grid, this code changes the pen’s
color in response to the OnClick event:

void __fastcall TForm1::PenColorClick(TObject *Sender)
{

Canvas->Pen->Color = PenColor->ForegroundColor;
}

Changing the pen width
A pen’s width determines the thickness, in pixels, of the lines it draws.

Note When the thickness is greater than 1, Windows always draw solid lines, regardless of
the value of the pen’s Style property.

To change the pen width, assign a numeric value to the pen’s Width property.

Suppose you have a scroll bar on the pen’s toolbar to set width values for the pen.
And suppose you want to update the label next to the scroll bar to provide feedback
to the user. Using the scroll bar’s position to determine the pen width, you update the
pen width every time the position changes.

This is how to handle the scroll bar’s OnChange event:

void __fastcall TForm1::PenWidthChange(TObject *Sender)
{

Canvas->Pen->Width = PenWidth->Position; // set the pen width directly
PenSize->Caption = IntToStr(PenWidth->Position); // convert to string

}

Changing the pen style
A pen’s Style property allows you to set solid lines, dashed lines, dotted lines, and so
on.

VCL Note For cross-platform applications deployed under Windows, Windows does not
support dashed or dotted line styles for pens wider than one pixel and makes all
larger pens solid, no matter what style you specify.

The task of setting the properties of pen is an ideal case for having different controls
share same event handler to handle events. To determine which control actually got
the event, you check the Sender parameter.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-7

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

To create one click-event handler for six pen-style buttons on a pen’s toolbar, do the
following:

1 Select all six pen-style buttons and select the Object Inspector|Events|OnClick
event and in the Handler column, type SetPenStyle.

C++Builder generates an empty click-event handler called SetPenStyle and
attaches it to the OnClick events of all six buttons.

2 Fill in the click-event handler by setting the pen’s style depending on the value of
Sender, which is the control that sent the click event:

void __fastcall TForm1::SetPenStyle(TObject *Sender)
{

if (Sender == SolidPen)
Canvas->Pen->Style = psSolid;

else if (Sender == DashPen)
Canvas->Pen->Style = psDash;

else if (Sender == DotPen)
Canvas->Pen->Style = psDot;

else if (Sender == DashDotPen)
Canvas->Pen->Style = psDashDot;

else if (Sender == DashDotDotPen)
Canvas->Pen->Style = psDashDotDot;

‘ else if (Sender == ClearPen)
Canvas->Pen->Style = psClear;

}

The above event handler code could be further reduced by putting the pen style
constants into the Tag properties of the pen style buttons. Then this event code would
be something like:

void __fastcall TForm1::SetPenStyle(TObject *Sender)
{

if (Sender->InheritsFrom (__classid(TSpeedButton))
Canvas->Pen->Style = (TPenStyle) ((TSpeedButton *)Sender)->Tag;

}

Changing the pen mode
A pen’s Mode property lets you specify various ways to combine the pen’s color with
the color on the canvas. For example, the pen could always be black, be an inverse of
the canvas background color, inverse of the pen color, and so on. See TPen in online
Help for details.

Getting the pen position
The current drawing position—the position from which the pen begins drawing its
next line—is called the pen position. The canvas stores its pen position in its PenPos
property. Pen position affects the drawing of lines only; for shapes and text, you
specify all the coordinates you need.

To set the pen position, call the MoveTo method of the canvas. For example, the
following code moves the pen position to the upper left corner of the canvas:

Canvas->MoveTo(0, 0);

10-8 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Note Drawing a line with the LineTo method also moves the current position to the
endpoint of the line.

Using brushes
The Brush property of a canvas controls the way you fill areas, including the interior
of shapes. Filling an area with a brush is a way of changing a large number of
adjacent pixels in a specified way.

The brush has three properties you can manipulate:

• Color property changes the fill color.

• Style property changes the brush style.

• Bitmap property uses a bitmap as a brush pattern.

The values of these properties determine the way the canvas fills shapes or other
areas. By default, every brush starts out white, with a solid style and no pattern
bitmap.

You can use TBrushRecall for quick saving off and restoring the properties of brushes.

Changing the brush color
A brush’s color determines what color the canvas uses to fill shapes. To change the
fill color, assign a value to the brush’s Color property. Brush is used for background
color in text and line drawing so you typically set the background color property.

You can set the brush color just as you do the pen color, in response to a click on a
color grid on the brush’s toolbar (see “Changing the pen color” on page 10-6):

void __fastcall TForm1::BrushColorClick(TObject *Sender)
{

Canvas->Brush->Color = BrushColor->BackgroundColor;
}

Changing the brush style
A brush style determines what pattern the canvas uses to fill shapes. It lets you
specify various ways to combine the brush’s color with any colors already on the
canvas. The predefined styles include solid color, no color, and various line and
hatch patterns.

To change the style of a brush, set its Style property to one of the predefined values:
bsSolid, bsClear, bsHorizontal, bsVertical, bsFDiagonal, bsBDiagonal, bsCross, or
bsDiagCross.

This example sets brush styles by sharing a click-event handler for a set of eight
brush-style buttons. All eight buttons are selected, the Object Inspector|Events|
OnClick is set, and the OnClick handler is named SetBrushStyle. Here is the handler
code:

void __fastcall TForm1::SetBrushStyle(TObject *Sender)
{

if (Sender == SolidBrush)
Canvas->Brush->Style = bsSolid;

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-9

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

else if (Sender == ClearBrush)
Canvas->Brush->Style = bsClear;

else if (Sender == HorizontalBrush)
Canvas->Brush->Style = bsHorizontal;

else if (Sender == VerticalBrush)
Canvas->Brush->Style = bsVertical;

else if (Sender == FDiagonalBrush)
Canvas->Brush->Style = bsFDiagonal;

else if (Sender == BDiagonalBrush)
Canvas->Brush->Style = bsBDiagonal;

else if (Sender == CrossBrush)
Canvas->Brush->Style = bsCross;

else if (Sender == DiagCrossBrush)
Canvas->Brush->Style = bsDiagCross;

}

The above event handler code could be further reduced by putting the brush style
constants into the Tag properties of the brush style buttons. Then this event code
would be something like:

void __fastcall TForm1::SetBrushStyle(TObject *Sender)
{

if (Sender->InheritsFrom (__classid(TSpeedButton))
Canvas->Brush->Style = (TBrushStyle) ((TSpeedButton *)Sender)->Tag;

}

Setting the Brush Bitmap property
A brush’s Bitmap property lets you specify a bitmap image for the brush to use as a
pattern for filling shapes and other areas.

The following example loads a bitmap from a file and assigns it to the Brush of the
Canvas of Form1:

BrushBmp->LoadFromFile("MyBitmap.bmp");
 Form1->Canvas->Brush->Bitmap = BrushBmp;
 Form1->Canvas->FillRect(Rect(0,0,100,100));

Note The brush does not assume ownership of a bitmap object assigned to its Bitmap
property. You must ensure that the Bitmap object remains valid for the lifetime of the
Brush, and you must free the Bitmap object yourself afterwards.

Reading and setting pixels
You will notice that every canvas has an indexed Pixels property that represents the
individual colored points that make up the image on the canvas. You rarely need to
access Pixels directly, it is available only for convenience to perform small actions
such as finding or setting a pixel’s color.

Note Setting and getting individual pixels is thousands of times slower than performing
graphics operations on regions. Do not use the Pixel array property to access the
image pixels of a general array. For high-performance access to image pixels, see the
TBitmap::ScanLine property.

10-10 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Using Canvas methods to draw graphic objects

This section shows how to use some common methods to draw graphic objects. It
covers:

• Drawing lines and polylines.

• Drawing shapes.

• Drawing rounded rectangles.

• Drawing polygons.

Drawing lines and polylines
A canvas can draw straight lines and polylines. A straight line is just a line of pixels
connecting two points. A polyline is a series of straight lines, connected end-to-end.
The canvas draws all lines using its pen.

Drawing lines
To draw a straight line on a canvas, use the LineTo method of the canvas.

LineTo draws a line from the current pen position to the point you specify and makes
the endpoint of the line the current position. The canvas draws the line using its pen.

For example, the following method draws crossed diagonal lines across a form
whenever the form is painted:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->MoveTo(0,0);
Canvas->LineTo(ClientWidth, ClientHeight);
Canvas->MoveTo(0, ClientHeight);
Canvas->LineTo(ClientWidth, 0);

}

Drawing polylines
In addition to individual lines, the canvas can also draw polylines, which are groups
of any number of connected line segments.

To draw a polyline on a canvas, call the Polyline method of the canvas.

The parameter passed to the Polyline method is an array of points. You can think of a
polyline as performing a MoveTo on the first point and LineTo on each successive
point. For drawing multiple lines, Polyline is faster than using the MoveTo method
and the LineTo method because it eliminates a lot of call overhead.

The following method, for example, draws a rhombus in a form:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

TPoint vertices[5];
vertices[0] = Point(0, 0);
vertices[1] = Point(50, 0);
vertices[2] = Point(75, 50);

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-11

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

vertices[3] = Point(25, 50);
vertices[4] = Point(0, 0);
Canvas->Polyline(vertices, 4);

}

Note that the last parameter to Polyline is the index of the last point, not the number
of points.

Drawing shapes
Canvases have methods for drawing different kinds of shapes. The canvas draws the
outline of a shape with its pen, then fills the interior with its brush. The line that
forms the border for the shape is controlled by the current Pen object.

This section covers:

• Drawing rectangles and ellipses.
• Drawing rounded rectangles.
• Drawing polygons.

Drawing rectangles and ellipses
To draw a rectangle or ellipse on a canvas, call the canvas’s Rectangle method or
Ellipse method, passing the coordinates of a bounding rectangle.

The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that
touches all sides of the rectangle.

The following method draws a rectangle filling a form’s upper left quadrant, then
draws an ellipse in the same area:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->Rectangle(0, 0, ClientWidth/2, ClientHeight/2);
Canvas->Ellipse(0, 0, ClientWidth/2, ClientHeight/2);

}

Drawing rounded rectangles

To draw a rounded rectangle on a canvas, call the canvas’s RoundRect method.

The first four parameters passed to RoundRect are a bounding rectangle, just as for
the Rectangle method or the Ellipse method. RoundRect takes two more parameters
that indicate how to draw the rounded corners.

The following method, for example, draws a rounded rectangle in a form’s upper left
quadrant, rounding the corners as sections of a circle with a diameter of 10 pixels:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->RoundRect(0, 0, ClientWidth/2, ClientHeight/2, 10, 10);
}

Drawing polygons
To draw a polygon with any number of sides on a canvas, call the Polygon method of
the canvas.

10-12 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Polygon takes an array of points as its only parameter and connects the points with
the pen, then connects the last point to the first to close the polygon. After drawing
the lines, Polygon uses the brush to fill the area inside the polygon.

For example, the following code draws a right triangle in the lower left half of a form:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

TPoint vertices[3];
vertices[0] = Point(0, 0);
vertices[1] = Point(0, ClientHeight);
vertices[2] = Point(ClientWidth,ClientHeight);
Canvas->Polygon(vertices,2);

}

Handling multiple drawing objects in your application

Various drawing methods (rectangle, shape, line, and so on) are typically available
on the toolbar and button panel. Applications can respond to clicks on speed buttons
to set the desired drawing objects. This section describes how to:

• Keep track of which drawing tool to use.
• Change the tool with speed buttons.
• Use drawing tools.

Keeping track of which drawing tool to use
A graphics program needs to keep track of what kind of drawing tool (such as a line,
rectangle, ellipse, or rounded rectangle) a user might want to use at any given time.
Typically, you would use the C++ enumerated type to list the available tools. Since
an enumerated type is also a type declaration, you can use C++’s type-checking to
ensure that you assign only those specific values.

For example, the following code declares an enumerated type for each drawing tool
available in a graphics application:

typedef enum {dtLine, dtRectangle, dtEllipse, dtRoundRect} TDrawingTool;

A variable of type TDrawingTool can be assigned only one of the constants dtLine,
dtRectangle, dtEllipse, or dtRoundRect.

By convention, type identifiers begin with the letter T, and groups of similar
constants (such as those making up an enumerated type) begin with a 2-letter prefix
(such as dt for “drawing tool”).

In the following code, a field added to a form keeps track of the form’s drawing tool:

enum TDrawingTool {dtLine, dtRectangle, dtEllipse, dtRoundRect};

class TForm1 : public TForm
{
__published: // IDE-managed Components

void __fastcall FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-13

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

void __fastcall FormMouseMove(TObject *Sender, TShiftState Shift, int X,
int Y);
void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);

private:// User declarations
public:// User declarations

__fastcall TForm1(TComponent* Owner);
bool Drawing; //field to track whether button was pressed
TPoint Origin, MovePt; // fields to store points
TDrawingTool DrawingTool; // field to hold current tool

};

Changing the tool with speed buttons
Each drawing tool needs an associated OnClick event handler. Suppose your
application had a toolbar button for each of four drawing tools: line, rectangle,
ellipse, and rounded rectangle. You would attach the following event handlers to the
OnClick events of the four drawing-tool buttons, setting DrawingTool to the
appropriate value for each:

void __fastcall TForm1::LineButtonClick(TObject *Sender) // LineButton
{

DrawingTool = dtLine;
}

void __fastcall TForm1::RectangleButtonClick(TObject *Sender) // RectangleButton
{

DrawingTool = dtRectangle;
}

void __fastcall TForm1::EllipseButtonClick(TObject *Sender) // EllipseButton
{

DrawingTool = dtEllipse;
}

void __fastcall TForm1::RoundedRectButtonClick(TObject *Sender) // RoundRectBtn
{

DrawingTool = dtRoundRect;
}

Using drawing tools
Now that you can tell what tool to use, you must indicate how to draw the different
shapes. The only methods that perform any drawing are the mouse-move and
mouse-up handlers, and the only drawing code draws lines, no matter what tool is
selected.

To use different drawing tools, your code needs to specify how to draw, based on the
selected tool. You add this instruction to each tool’s event handler.

This section describes:

• Drawing shapes.

• Sharing code among event handlers.

10-14 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Drawing shapes
Drawing shapes is just as easy as drawing lines. Each one takes a single statement;
you just need the coordinates.

Here’s a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y){

switch (DrawingTool)
{

case dtLine:
Canvas->MoveTo(Origin.x, Origin.y);
Canvas->LineTo(X, Y);
break;

case dtRectangle:
Canvas->Rectangle(Origin.x, Origin.y, X, Y);
break;

case dtEllipse:
Canvas->Ellipse(Origin.x, Origin.y, X, Y);
break;

case dtRoundRect:
Canvas->Rectangle(Origin.x, Origin.y, X, Y, (Origin.x - X)/2,

(Origin.y - Y)/2);
break;

}
Drawing = false;

}

Of course, you also need to update the OnMouseMove handler to draw shapes:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)
{

Canvas->Pen->Mode = pmNotXor; // use XOR mode to draw/erase
switch (DrawingTool)
{

case dtLine:
Canvas->MoveTo(Origin.x, Origin.y);
Canvas->LineTo(MovePt.x, MovePt.y);
Canvas->MoveTo(Origin.x, Origin.y);
Canvas->LineTo(X, Y);
break;

case dtRectangle:
Canvas->Rectangle(Origin.x, Origin.y, MovePt.x, MovePt.y);
Canvas->Rectangle(Origin.x, Origin.y, X, Y);
break;

case dtEllipse:
Canvas->Ellipse(Origin.x, Origin.y, MovePt.x, MovePt.y);
Canvas->Ellipse(Origin.x, Origin.y, X, Y);
break;

case dtRoundRect:
Canvas->Rectangle(Origin.x, Origin.y, MovePt.x, MovePt.y,

 (Origin.x - MovePt.x)/2,(Origin.y - MovePt.y)/2);

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-15

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Canvas->Rectangle(Origin.x, Origin.y, X, Y,
(Origin.x - X)/2, (Origin.y - Y)/2);

break;
}
MovePt = Point(X, Y);

}
Canvas->Pen->Mode = pmCopy;

}

Typically, all the repetitious code that is in the above example would be in a separate
routine. The next section shows all the shape-drawing code in a single routine that all
mouse-event handlers can call.

Sharing code among event handlers
Any time you find that many your event handlers use the same code, you can make
your application more efficient by moving the repeated code into a routine that all
event handlers can share.

To add a method to a form:

1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the
form object’s declaration. If the code is just sharing the details of handling some
events, it’s probably safest to make the shared method private.

2 Write the method implementation in the .cpp file for the form’s unit.

The header for the method implementation must match the declaration exactly, with
the same parameters in the same order.

The following code adds a method to the form called DrawShape and calls it from
each of the handlers. First, the declaration of DrawShape is added to the form object’s
declaration:

enum TDrawingTool {dtLine, dtRectangle, dtEllipse, dtRoundRect};

class TForm1 : public TForm
{
__published: // IDE-managed Components

void __fastcall FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);
void __fastcall FormMouseMove(TObject *Sender, TShiftState Shift, int X,
int Y);
void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);

private:// User declarations
void __fastcall DrawShape(TPoint TopLeft, TPoint BottomRight, TPenMode AMode);

public:// User declarations
__fastcall TForm1(TComponent* Owner);
bool Drawing; //field to track whether button was pressed
TPoint Origin, MovePt; // fields to store points
TDrawingTool DrawingTool; // field to hold current tool

};

10-16 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Then, the implementation of DrawShape is written in the .cpp file for the unit

void __fastcall TForm1::DrawShape(TPoint TopLeft, TPoint BottomRight,
TPenMode AMode)

{
Canvas->Pen->Mode = AMode;
switch (DrawingTool)
{

case dtLine:
Canvas->MoveTo(TopLeft.x, TopLeft.y);
Canvas->LineTo(BottomRight.x, BottomRight.y);
break;

case dtRectangle:
Canvas->Rectangle(TopLeft.x, TopLeft.y, BottomRight.x, BottomRight.y);
break;

case dtEllipse:
Canvas->Ellipse(TopLeft.x, TopLeft.y, BottomRight.x, BottomRight.y);
break;

case dtRoundRect:
Canvas->Rectangle(TopLeft.x, TopLeft.y, BottomRight.x, BottomRight.y,

 (TopLeft.x - BottomRight.x)/2,(TopLeft.y - BottomRight.y)/2);
break;

}
}

The other event handlers are modified to call DrawShape.

void __fastcall TForm1::FormMouseUp(TObject *Sender)
{

DrawShape(Origin, Point(X,Y), pmCopy); // draw the final shape
Drawing = false;

}

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)
{

DrawShape(Origin, MovePt, pmNotXor); // erase previous shape
MovePt = Point(X, Y);
DrawShape(Origin, MovePt, pmNotXor); // draw current shape

}
}

Drawing on a graphic

You don’t need any components to manipulate your application’s graphic objects.
You can construct, draw on, save, and destroy graphic objects without ever drawing
anything on screen. In fact, your applications rarely draw directly on a form. More
often, an application operates on graphics and then uses an image control component
to display the graphic on a form.

Once you move the application’s drawing to the graphic in the image control, it is
easy to add printing, clipboard, and loading and saving operations for any graphic

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-17

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

objects. graphic objects can be bitmap files, drawings, icons or whatever other
graphics classes that have been installed such as jpeg graphics.

Note Because you are drawing on an offscreen image such as a TBitmap canvas, the image
is not displayed until a control copies from a bitmap onto the control’s canvas. That
is, when drawing bitmaps and assigning them to an image control, the image
appears only when the control has an opportunity to process its paint message. But if
you are drawing directly onto the canvas property of a control, the picture object is
displayed immediately.

Making scrollable graphics
The graphic need not be the same size as the form: it can be either smaller or larger.
By adding a scroll box control to the form and placing the graphic image inside it,
you can display graphics that are much larger than the form or even larger than the
screen. To add a scrollable graphic first you add a TScrollBox component and then
you add the image control.

Adding an image control
An image control is a container component that allows you to display your bitmap
objects. You use an image control to hold a bitmap that is not necessarily displayed
all the time, or which an application needs to use to generate other pictures.

Note “Adding graphics to controls” on page 6-11 shows how to use graphics in controls.

Placing the control
You can place an image control anywhere on a form. If you take advantage of the
image control’s ability to size itself to its picture, you need to set the top left corner
only. If the image control is a nonvisible holder for a bitmap, you can place it
anywhere, just as you would a nonvisual component.

If you drop the image control on a scroll box already aligned to the form’s client area,
this assures that the scroll box adds any scroll bars necessary to access offscreen
portions of the image’s picture. Then set the image control’s properties.

Setting the initial bitmap size
When you place an image control, it is simply a container. However, you can set the
image control’s Picture property at design time to contain a static graphic. The control
can also load its picture from a file at runtime, as described in “Loading and saving
graphics files” on page 10-19.

To create a blank bitmap when the application starts,

1 Attach a handler to the OnCreate event for the form that contains the image.

2 Create a bitmap object, and assign it to the image control’s Picture->Graphic
property.

10-18 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

In this example, the image is in the application’s main form, Form1, so the code
attaches a handler to Form1’s OnCreate event:

void __fastcall TForm1::FormCreate(TObject *Sender)
{

Graphics::TBitmap *Bitmap = new Graphics::TBitmap(); // create the bitmap object
Bitmap->Width = 200; // assign the initial width...
Bitmap->Height = 200; // ...and the initial height
Image->Picture->Graphic = Bitmap; // assign the bitmap to the image control
delete Bitmap; // free the bitmap object

}

Assigning the bitmap to the picture’s Graphic property copies the bitmap to the
picture object. However, the picture object does not take ownership of the bitmap, so
after making the assignment, you must free it.

If you run the application now, you see that client area of the form has a white region,
representing the bitmap. If you size the window so that the client area cannot display
the entire image, you’ll see that the scroll box automatically shows scroll bars to
allow display of the rest of the image. But if you try to draw on the image, you don’t
get any graphics, because the application is still drawing on the form, which is now
behind the image and the scroll box.

Drawing on the bitmap
To draw on a bitmap, use the image control’s canvas and attach the mouse-event
handlers to the appropriate events in the image control. Typically, you would use
region operations (fills, rectangles, polylines, and so on). These are fast and efficient
methods of drawing.

An efficient way to draw images when you need to access individual pixels is to use
the bitmap ScanLine property. For general-purpose usage, you can set up the bitmap
pixel format to 24 bits and then treat the pointer returned from ScanLine as an array
of RGB. Otherwise, you will need to know the native format of the ScanLine property.
This example shows how to use ScanLine to get pixels one line at a time.

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 Graphics::TBitmap *pBitmap = new Graphics::TBitmap();
// This example shows drawing directly to the Bitmap
 Byte *ptr;
 try
 {
 pBitmap->LoadFromFile("C:\\Program Files\\Borland\\CBuilder\\Images\\Splash\\256color\\
factory.bmp ");
 for (int y = 0; y < pBitmap->Height; y++)
 {
 ptr = pBitmap->ScanLine[y];
 for (int x = 0; x < pBitmap->Width; x++)
 ptr[x] = (Byte)y;
 }
 Canvas->Draw(0,0,pBitmap);
 }

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-19

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

 catch (...)
 {
 ShowMessage("Could not load or alter bitmap");
 }
 delete pBitmap;
}

CLX For cross-platform applications, change Windows- and VCL-specific code so that
your application can run on Linux. For example, the pathnames in Linux use a
forward slash / as a delimiter. For more information on CLX and cross-platform
applications, see Chapter 14, “Developing cross-platform applications.”

Loading and saving graphics files

Graphic images that exist only for the duration of one running of an application are
of very limited value. Often, you either want to use the same picture every time, or
you want to save a created picture for later use. The image component makes it easy
to load pictures from a file and save them again.

The components you use to load, save, and replace graphic images support many
graphic formats including bitmap files, metafiles, glyphs, and so on. They also
support installable graphic classes.

The way to load and save graphics files is the similar to any other files and is
described in the following sections:

• Loading a picture from a file.

• Saving a picture to a file.

• Replacing the picture.

Loading a picture from a file
Your application should provide the ability to load a picture from a file if your
application needs to modify the picture or if you want to store the picture outside the
application so a person or another application can modify the picture.

To load a graphics file into an image control, call the LoadFromFile method of the
image control’s Picture object.

The following code gets a file name from an open picture file dialog box, and then
loads that file into an image control named Image:

void __fastcall TForm1::Open1Click(TObject *Sender)
{

if (OpenPictureDialog1->Execute())
{

CurrentFile = OpenPictureDialog1->FileName;
Image->Picture->LoadFromFile(CurrentFile);

}
}

10-20 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Saving a picture to a file
The picture object can load and save graphics in several formats, and you can create
and register your own graphic-file formats so that picture objects can load and store
them as well.

To save the contents of an image control in a file, call the SaveToFile method of the
image control’s Picture object.

The SaveToFile method requires the name of a file in which to save. If the picture is
newly created, it might not have a file name, or a user might want to save an existing
picture in a different file. In either case, the application needs to get a file name from
the user before saving, as shown in the next section.

The following pair of event handlers, attached to the File|Save and File|Save As
menu items, respectively, handle the resaving of named files, saving of unnamed
files, and saving existing files under new names.

void __fastcall TForm1::Save1Click(TObject *Sender)
{

if (!CurrentFile.IsEmpty())
Image->Picture->SaveToFile(CurrentFile); // save if already named

else SaveAs1Click(Sender); // otherwise get a name
}

void __fastcall TForm1::SaveAs1Click(TObject *Sender)
{

if (SaveDialog1->Execute()) // get a file name
{

CurrentFile = SaveDialog1->FileName; // save user-specified name
Save1Click(Sender); // then save normally

}
}

Replacing the picture
You can replace the picture in an image control at any time. If you assign a new
graphic to a picture that already has a graphic, the new graphic replaces the existing
one.

To replace the picture in an image control, assign a new graphic to the image
control’s Picture object.

Creating the new graphic is the same process you used to create the initial graphic
(see “Setting the initial bitmap size” on page 10-17), but you should also provide a
way for the user to choose a size other than the default size used for the initial
graphic. An easy way to provide that option is to present a dialog box, such as the
one in Figure 10.1.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-21

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Figure 10.1 Bitmap-dimension dialog box from the BMPDlg unit

This particular dialog box is created in the BMPDlg unit included with the GraphEx
project (in the EXAMPLES\DOC\GRAPHEX directory).

With such a dialog box in your project, add an include statement for BMPDlg.hpp in
the .cpp file for your main form. You can then attach an event handler to the File|
New menu item’s OnClick event. Here’s an example:

void __fastcall TForm1::New1Click(TObject *Sender)
{
 Graphics::TBitmap *Bitmap;

// make sure focus is on width field
 NewBMPForm->ActiveControl = NewBMPForm->WidthEdit;

// initialize to current dimensions as default ...
NewBMPForm->WidthEdit->Text = IntToStr(Image->Picture->Graphic->Width);

 NewBMPForm->HeightEdit->Text = IntToStr(Image->Picture->Graphic->Height);
 if (NewBMPForm->ShowModal() != IDCANCEL){ // if user does not cancel dialog...

 Bitmap = new Graphics::TBitmap(); // create a new bitmap object
 // use specified dimensions

Bitmap->Width = StrToInt(NewBMPForm->WidthEdit->Text);
 Bitmap->Height = StrToInt(NewBMPForm->HeightEdit->Text);
 Image->Picture->Graphic = Bitmap; // replace graphic with new bitmap
 CurrentFile = EmptyStr; //indicate unnamed file

delete Bitmap;
 }
}

Note Assigning a new bitmap to the picture object’s Graphic property causes the picture
object to copy the new graphic, but it does not take ownership of it. The picture object
maintains its own internal graphic object. Because of this, the previous code frees the
bitmap object after making the assignment.

Using the clipboard with graphics

You can use the Windows clipboard to copy and paste graphics within your
applications or to exchange graphics with other applications. The VCL’s clipboard
object makes it easy to handle different kinds of information, including graphics.

Before you can use the clipboard object in your application, you must add an include
statement for Clipbrd.hpp to any .cpp file that needs to access clipboard data.

WidthEdit

HeightEdit

10-22 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

For cross-platform applications, data that is stored on the clipboard when using CLX
is stored as a MIME type with an associated TStream object. CLX provides predefined
constants for the following MIME types.

Copying graphics to the clipboard
You can copy any picture, including the contents of image controls, to the clipboard.
Once on the clipboard, the picture is available to all applications.

To copy a picture to the clipboard, assign the picture to the clipboard object using the
Assign method.

This code shows how to copy the picture from an image control named Image to the
clipboard in response to a click on an Edit|Copy menu item:

void __fastcall TForm1::Copy1Click(TObject *Sender)
{

Clipboard()->Assign(Image->Picture);
}

Cutting graphics to the clipboard
Cutting a graphic to the clipboard is exactly like copying it, but you also erase the
graphic from the source.

To cut a graphic from a picture to the clipboard, first copy it to the clipboard, then
erase the original.

In most cases, the only issue with cutting is how to show that the original image is
erased. Setting the area to white is a common solution, as shown in the following
code that attaches an event handler to the OnClick event of the Edit|Cut menu item:

void __fastcall TForm1::Cut1Click(TObject *Sender)
{

TRect ARect;
Copy1Click(Sender); // copy picture to clipboard
Image->Canvas->CopyMode = cmWhiteness; // copy everything as white
ARect = Rect(0, 0, Image->Width, Image->Height); // get dimensions of image
Image->Canvas->CopyRect(ARect, Image->Canvas, ARect); // copy bitmap over self
Image->Canvas->CopyMode = cmSrcCopy; // restore default mode

}

Pasting graphics from the clipboard
If the clipboard contains a bitmapped graphic, you can paste it into any image object,
including image controls and the surface of a form.

Table 10.4 CLX MIME types and constants

MIME type CLX constant

‘image/delphi.bitmap’ SDelphiBitmap

‘image/delphi.component’ SDelphiComponent

‘image/delphi.picture’ SDelphiPicture

‘image/delphi.drawing’ SDelphiDrawing

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-23

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

To paste a graphic from the clipboard:

1 Call the clipboard’s HasFormat method (if using the VCL) or Provides method (if
using CLX) to see whether the clipboard contains a graphic.

HasFormat (or Provides in CLX) is a Boolean function. It returns true if the
clipboard contains an item of the type specified in the parameter. To test for
graphics on the Windows platform, you pass CF_BITMAP. In cross-platform
applications, you pass SDelphiBitmap.

2 Assign the clipboard to the destination.

VCL This VCL code shows how to paste a picture from the clipboard into an image control
in response to a click on an Edit|Paste menu item:

void __fastcall TForm1::Paste1Click(TObject *Sender)
{
 Graphics::TBitmap *Bitmap;
 if (Clipboard()->HasFormat(CF_BITMAP)){

Image1->Picture->Bitmap->Assign(Clipboard());
}

}

CLX The same example in CLX for cross-platform development would look as follows:

void __fastcall TForm1::Paste1Click(TObject *Sender)
{
 QGraphics::TBitmap *Bitmap;
 if (Clipboard()->Provides(SDelphiBitmap)){

Image1->Picture->Bitmap->Assign(Clipboard());
}

}

The graphic on the clipboard could come from this application, or it could have been
copied from another application, such as Microsoft Paint. You do not need to check
the clipboard format in this case because the paste menu should be disabled when
the clipboard does not contain a supported format.

Rubber banding example

This example describes the details of implementing the “rubber banding” effect in an
graphics application that tracks mouse movements as the user draws a graphic at
runtime. The example code in this section is taken from a sample application located
in the Examples\Doc\GraphEx directory. The application draws lines and shapes on
a window’s canvas in response to clicks and drags: pressing a mouse button starts
drawing, and releasing the button ends the drawing.

To start with, the example code shows how to draw on the surface of the main form.
Later examples demonstrate drawing on a bitmap.

The following topics describe the example:

• Responding to the mouse.
• Adding a field to a form object to track mouse actions.
• Refining line drawing.

10-24 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Responding to the mouse
Your application can respond to the mouse actions: mouse-button down, mouse
moved, and mouse-button up. It can also respond to a click (a complete press-and-
release, all in one place) that can be generated by some kinds of keystrokes (such as
pressing Enter in a modal dialog box).

This section covers:

• What’s in a mouse event.
• Responding to a mouse-down action.
• Responding to a mouse-up action.
• Responding to a mouse move.

What’s in a mouse event?
C++Builder has three mouse events: OnMouseDown event, OnMouseMove event, and
OnMouseUp event.

When an application detects a mouse action, it calls whatever event handler you’ve
defined for the corresponding event, passing five parameters. Use the information in
those parameters to customize your responses to the events. The five parameters are as
follows:

Most of the time, you need the coordinates returned in a mouse-event handler, but
sometimes you also need to check Button to determine which mouse button caused
the event.

Note C++Builder uses the same criteria as Microsoft Windows in determining which
mouse button has been pressed. Thus, if you have switched the default “primary”
and “secondary” mouse buttons (so that the right mouse button is now the primary
button), clicking the primary (right) button will record mbLeft as the value of the
Button parameter.

Responding to a mouse-down action
Whenever the user presses a button on the mouse, an OnMouseDown event goes to
the object the pointer is over. The object can then respond to the event.

To respond to a mouse-down action, attach an event handler to the OnMouseDown
event.

Table 10.5 Mouse-event parameters

Parameter Meaning

Sender The object that detected the mouse action

Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight
Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse action

X, Y The coordinates where the event occurred

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-25

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

C++Builder generates an empty handler for a mouse-down event on the form:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{

}

Responding to a mouse-down action
The following code displays the string 'Here!' at the location on a form clicked with
the mouse:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->TextOut(X, Y, "Here!");// write text at (X, Y)

}

When the application runs, you can press the mouse button down with the mouse
cursor on the form and have the string, “Here!” appear at the point clicked. This code
sets the current drawing position to the coordinates where the user presses the
button:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->MoveTo(X, Y);// set pen position

}

Pressing the mouse button now sets the pen position, setting the line’s starting point.
To draw a line to the point where the user releases the button, you need to respond to
a mouse-up event.

Responding to a mouse-up action
An OnMouseUp event occurs whenever the user releases a mouse button. The event
usually goes to the object the mouse cursor is over when the user presses the button,
which is not necessarily the same object the cursor is over when the button is
released. This enables you, for example, to draw a line as if it extended beyond the
border of the form.

To respond to mouse-up actions, define a handler for the OnMouseUp event.

Here’s a simple OnMouseUp event handler that draws a line to the point of the
mouse-button release:

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->LineTo(X, Y);// draw line from PenPos to (X, Y)

}

This code lets a user draw lines by clicking, dragging, and releasing. In this case, the
user cannot see the line until the mouse button is released.

10-26 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Responding to a mouse move
An OnMouseMove event occurs periodically when the user moves the mouse. The
event goes to the object that was under the mouse pointer when the user pressed the
button. This allows you to give the user some intermediate feedback by drawing
temporary lines while the mouse moves.

To respond to mouse movements, define an event handler for the OnMouseMove
event. This example uses mouse-move events to draw intermediate shapes on a form
while the user holds down the mouse button, thus providing some feedback to the
user. The OnMouseMove event handler draws a line on a form to the location of the
OnMouseMove event:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->LineTo(X, Y);// draw line to current position

}

With this code, moving the mouse over the form causes drawing to follow the mouse,
even before the mouse button is pressed.

Mouse-move events occur even when you haven’t pressed the mouse button.

If you want to track whether there is a mouse button pressed, you need to add an
object field to the form object.

Adding a field to a form object to track mouse actions
To track whether a mouse button was pressed, you must add an object field to the
form object. When you add a component to a form, C++Builder adds a field that
represents that component to the form object, so that you can refer to the component
by the name of its field. You can also add your own fields to forms by editing the
type declaration in the form unit’s header file.

In the following example, the form needs to track whether the user has pressed a
mouse button. To do that, it adds a Boolean field and sets its value when the user
presses the mouse button.

To add a field to an object, edit the object’s type definition, specifying the field
identifier and type after the public directive at the bottom of the declaration.

C++Builder “owns” any declarations before the public directive: that’s where it puts
the fields that represent controls and the methods that respond to events.

The following code gives a form a field called Drawing of type bool, in the form
object’s declaration. It also adds two fields to store points Origin and MovePt of type
TPoint.

class TForm1 : public TForm
{
__published: // IDE-managed Components

void __fastcall FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y);
void __fastcall FormMouseMove(TObject *Sender, TShiftState Shift, int X,
int Y);
void __fastcall FormMouseUp(TObject *Sender, TMouseButton Button,

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-27

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

TShiftState Shift, int X, int Y);
private:// User declarations
public:// User declarations

__fastcall TForm1(TComponent* Owner);
bool Drawing; //field to track whether button was pressed
TPoint Origin, MovePt; // fields to store points

};

When you have a Drawing field to track whether to draw, set it to true when the user
presses the mouse button, and false when the user releases it:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Drawing = true; // set the Drawing flag
Canvas->MoveTo(X, Y); // set pen position

}

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->LineTo(X, Y); // draw line from PenPos to (X, Y)
Drawing = false; // clear the Drawing flag

}

Then you can modify the OnMouseMove event handler to draw only when Drawing is
true:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)

Canvas->LineTo(X, Y);// only draw if mouse is down
}

This results in drawing only between the mouse-down and mouse-up events, but
you still get a scribbled line that tracks the mouse movements instead of a straight
line.

The problem is that each time you move the mouse, the mouse-move event handler
calls LineTo, which moves the pen position, so by the time you release the button,
you’ve lost the point where the straight line was supposed to start.

Refining line drawing
With fields in place to track various points, you can refine an application’s line
drawing.

Tracking the origin point
When drawing lines, track the point where the line starts with the Origin field.

10-28 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s p r o g r a m m i n g

Origin must be set to the point where the mouse-down event occurs, so the mouse-up
event handler can use Origin to place the beginning of the line, as in this code:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Drawing = true; // set the Drawing flag
Canvas->MoveTo(X, Y); // set pen position
Origin = Point(X, Y); // record where the line starts

}

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
Canvas->LineTo(X, Y); // draw line from PenPos to (X, Y)
Drawing = false; // clear the Drawing flag

}

Those changes get the application to draw the final line again, but they do not draw
any intermediate actions--the application does not yet support “rubber banding.”

Tracking movement
The problem with this example as the OnMouseMove event handler is currently
written is that it draws the line to the current mouse position from the last mouse
position, not from the original position. You can correct this by moving the drawing
position to the origin point, then drawing to the current point:

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
if (Drawing)
{

Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
Canvas->LineTo(X, Y);

}
}

The above tracks the current mouse position, but the intermediate lines do not go
away, so you can hardly see the final line. The example needs to erase each line
before drawing the next one, by keeping track of where the previous one was. The
MovePt field allows you to do this.

MovePt must be set to the endpoint of each intermediate line, so you can use MovePt
and Origin to erase that line the next time a line is drawn:

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)

{
Drawing = true; // set the Drawing flag
Canvas->MoveTo(X, Y); // set pen position
Origin = Point(X, Y); // record where the line starts
MovePt = Point(X, Y); // record last endpoint

}

void __fastcall TForm1::FormMouseMove(TObject *Sender, TMouseButton Button,

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-29

W o r k i n g w i t h m u l t i m e d i a

TShiftState Shift, int X, int Y)
{

if (Drawing)
{

Canvas->Pen->Mode = pmNotXor; // use XOR mode to draw/erase
Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point
Canvas->LineTo(MovePt.x, MovePt.y); // erase old line
Canvas->MoveTo(Origin.x, Origin.y); // move pen to starting point again
Canvas->LineTo(X, Y); // draw new line

}
MovePt = Point(X, Y); // record new endpoint
Canvas->Pen->Mode = pmCopy;

}

Now you get a “rubber band” effect when you draw the line. By changing the pen’s
mode to pmNotXor, you have it combine your line with the background pixels. When
you go to erase the line, you’re actually setting the pixels back to the way they were.
By changing the pen mode back to pmCopy (its default value) after drawing the lines,
you ensure that the pen is ready to do its final drawing when you release the mouse
button.

Working with multimedia
C++Builder allows you to add multimedia components to your Windows (not CLX
or Linux) applications. To do this, you can use either the TAnimate component on the
Win32 page or the TMediaPlayer component on the System page of the Component
palette. Use the animate component when you want to add silent video clips to your
application. Use the media player component when you want to add audio and/or
video clips to an application.

For more information on the TAnimate and TMediaPlayer components, see the VCL
online help.

The following topics are discussed in this section:

• Adding silent video clips to an application
• Adding audio and/or video clips to an application

Adding silent video clips to an application

The animation control in C++ Builder allows you to add silent video clips to your
application.

To add a silent video clip to an application:

1 Double-click the animate icon on the Win32 page of the Component palette. This
automatically puts an animation control on the form window in which you want
to display the video clip.

2 Using the Object Inspector, select the Name property and enter a new name for
your animation control. You will use this name when you call the animation
control. (Follow the standard rules for naming C++ identifiers).

10-30 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

3 Do one of the following:

• Select the Common AVI property and choose one of the AVIs available from the
drop down list; or

• Select the FileName property and click the ellipsis (…) button, choose an AVI file
from any available local or network directories and click Open in the Open AVI
dialog; or

• Select the resource of an AVI using the ResName or ResID properties. Use
ResHandle to indicate the module that contains the resource identified by
ResName or ResID.

This loads the AVI file into memory. If you want to display the first frame of the
AVI clip on-screen until it is played using the Active property or the Play method,
then set the Open property to true.

4 Set the Repetitions property to the number of times you want to the AVI clip to
play. If this value is 0, then the sequence is repeated until the Stop method is called.

5 Make any other changes to the animation control settings. For example, if you
want to change the first frame displayed when animation control opens, then set
the StartFrame property to the desired frame value.

6 Set the Active property to true using the drop down list or write an event handler
to run the AVI clip when a specific event takes place at runtime. For example, to
activate the AVI clip when a button object is clicked, write the button’s OnClick
event specifying that. You may also call the Play method to specify when to play
the AVI.

Note If you make any changes to the form or any of the components on the form after
setting Active to true, the Active property becomes false and you have to reset it to
true. Do this either just before runtime or at runtime.

Example of adding silent video clips
Suppose you want to display an animated logo as the first screen that appears when
your application starts. After the logo finishes playing the screen disappears.

To run this example, create a new project and save the Unit1.cpp file as Frmlogo.cpp
and save the Project1.bpr file as Logo.bpr. Then:

1 Double-click the animate icon from the Win32 page of the Component palette.

2 Using the Object Inspector, set its Name property to Logo1.

3 Select its FileName property, click the ellipsis (…) button, choose the dillo.avi file
from your ..\Examples\MFC\General\Cmnctrls directory. Then click Open in
the Open AVI dialog.

This loads the dillo.avi file into memory.

4 Position the animation control box on the form by clicking and dragging it to the
top right hand side of the form.

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-31

W o r k i n g w i t h m u l t i m e d i a

5 Set its Repetitions property to 5.

6 Click the form to bring focus to it and set its Name property to LogoForm1 and its
Caption property to Logo Window. Now decrease the height of the form to right-
center the animation control on it.

7 Double-click the form’s OnActivate event and write the following code to run the
AVI clip when the form is in focus at runtime:

Logo1->Active = true;

8 Double-click the Label icon on the Standard page of the Component palette. Select
its Caption property and enter Welcome to Armadillo Enterprises 4.0. Now select its
Font property, click the ellipsis (…) button and choose Font Style: Bold, Size: 18,
Color: Navy from the Font dialog and click OK. Click and drag the label control to
center it on the form.

9 Click the animation control to bring focus back to it. Double-click its OnStop event
and write the following code to close the form when the AVI file stops:

LogoForm1->Close();

10 Select Run|Run to execute the animated logo window.

Adding audio and/or video clips to an application

The media player component in C++ Builder allows you to add audio and/or video
clips to your application. It opens a media device and plays, stops, pauses, records,
etc., the audio and/or video clips used by the media device. The media device may
be hardware or software.

Note Audio and video clip support is not provided for cross-platform programming.

 To add an audio and/or video clip to an application:

1 Double-click the media player icon on the System page of the Component palette.
This automatically put a media player control on the form window in which you
want the media feature.

2 Using the Object Inspector, select the Name property and enter a new name for
your media player control. You will use this when you call the media player
control. (Follow the standard rules for naming C++ identifiers.)

Always work directly with the Object Inspector when setting design time
properties and creating event handlers.

3 Select the DeviceType property and choose the appropriate device type to open
using the AutoOpen property or the Open method. (If DeviceType is dtAutoSelect
the device type is selected based on the file extension of the media file specified by
the FileName property.) For more information on device types and their functions,
see Table 10.6.

4 If the device stores its media in a file, specify the name of the media file using the
FileName property. Select the FileName property, click the ellipsis (…) button, and
choose a media file from any available local or network directories and click Open
in the Open dialog. Otherwise, insert the hardware the media is stored in (disk,
cassette, and so on) for the selected media device, at runtime.

10-32 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h m u l t i m e d i a

5 Set the AutoOpen property to true. This way the media player automatically opens
the specified device when the form containing the media player control is created
at runtime. If AutoOpen is false, the device must be opened with a call to the Open
method.

6 Set the AutoEnable property to true to automatically enable or disable the media
player buttons as required at runtime; or, double-click the EnabledButtons property
to set each button to true or false depending on which ones you want to enable or
disable.

The multimedia device is played, paused, stopped, and so on when the user clicks
the corresponding button on the media player component. The device can also be
controlled by the methods that correspond to the buttons (Play, Pause, Stop, Next,
Previous, and so on).

7 Position the media player control bar on the form by either clicking and dragging
it to the appropriate place on the form or by selecting the Align property and
choosing the appropriate align position from the drop down list.

If you want the media player to be invisible at runtime, set the Visible property to
false and control the device by calling the appropriate methods (Play, Pause, Stop,
Next, Previous, Step, Back, Start Recording, Eject).

8 Make any other changes to the media player control settings. For example, if the
media requires a display window, set the Display property to the control that
displays the media. If the device uses multiple tracks, set the Tracks property to the
desired track.

Table 10.6 Multimedia device types and their functions

Device Type Software/Hardware used Plays
Uses
Tracks

Uses a
Display
Window

dtAVIVideo AVI Video Player for
Windows

 AVI Video files No Yes

dtCDAudio CD Audio Player for
Windows or a CD Audio
Player

CD Audio Disks Yes No

dtDAT Digital Audio Tape Player Digital Audio Tapes Yes No

dtDigitalVideo Digital Video Player for
Windows

AVI, MPG, MOV files No Yes

dtMMMovie MM Movie Player MM film No Yes

dtOverlay Overlay device Analog Video No Yes

dtScanner Image Scanner N/A for Play (scans
images on Record)

No No

dtSequencer MIDI Sequencer for
Windows

MIDI files Yes No

dtVCR Video Cassette Recorder Video Cassettes No Yes

dtWaveAudio Wave Audio Player for
Windows

WAV files No No

W o r k i n g w i t h g r a p h i c s a n d m u l t i m e d i a 10-33

W o r k i n g w i t h m u l t i m e d i a

Example of adding audio and/or video clips (VCL only)
This example runs an AVI video clip of a multimedia advertisement for C++Builder.
To run this example, create a new project and save the Unit1.cpp file to FrmAd.cpp
and save the Project1.bpr file to MmediaAd.bpr. Then:

1 Double-click the media player icon on the System page of the Component palette.

2 Using the Object Inspector, set the Name property of the media player to
VideoPlayer1.

3 Select its DeviceType property and choose dtAVIVideo from the drop down list.

4 Select its FileName property, click the ellipsis (…) button, choose the file from
your ..\Examples\Coolstuf directory. Click Open in the Open dialog.

5 Set its AutoOpen property to true and its Visible property to false.

6 Double-click the Animate icon from the Win32 page of the Component palette. Set
its AutoSize property to false, its Height property to 175 and Width property to
200. Click and drag the animation control to the top left corner of the form.

7 Click the media player to bring back focus to it. Select its Display property and
choose Animate1 from the drop down list.

8 Click the form to bring focus to it and select its Name property and enter C++_Ad.
Now resize the form to the size of the animation control.

9 Double-click the form’s OnActivate event and write the following code to run the
AVI video when the form is in focus:

VideoPlayer1->Play();

10 Choose Run|Run to execute the AVI video.

10-34 D e v e l o p e r ’ s G u i d e

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 11-1

C h a p t e r

11
Chapter11Writing multi-threaded applications

C++Builder provides several objects that make writing multi-threaded applications
easier. Multi-threaded applications are applications that include several
simultaneous paths of execution. While using multiple threads requires careful
thought, it can enhance your programs by:

• Avoiding bottlenecks. With only one thread, a program must stop all execution
when waiting for slow processes such as accessing files on disk, communicating
with other machines, or displaying multimedia content. The CPU sits idle until the
process completes. With multiple threads, your application can continue execution
in separate threads while one thread waits for the results of a slow process.

• Organizing program behavior. Often, a program’s behavior can be organized into
several parallel processes that function independently. Use threads to launch a
single section of code simultaneously for each of these parallel cases. Use threads
to assign priorities to various program tasks so that you can give more CPU time
to more critical tasks.

• Multiprocessing. If the system running your program has multiple processors,
you can improve performance by dividing the work into several threads and
letting them run simultaneously on separate processors.

Note Not all operating systems implement true multi-processing, even when it is
supported by the underlying hardware. For example, Windows 9x only simulates
multiprocessing, even if the underlying hardware supports it.

Defining thread objects
For most applications, you can use a thread object to represent an execution thread in
your application. Thread objects simplify writing multi-threaded applications by
encapsulating the most commonly needed uses of threads.

11-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Note Thread objects do not allow you to control the security attributes or stack size of your
threads. If you need to control these, you must use the Windows API CreateThread or
the BeginThread function. Even when using Windows Thread API calls or
BeginThread, you can still benefit from some of the thread synchronization objects and
methods described in “Coordinating threads” on page 11-7. For more information on
using CreateThread or BeginThread, see the Windows online Help.

To use a thread object in your application, you must create a new descendant of
TThread. To create a descendant of TThread, choose File|New|Other from the main
menu. In the New Items dialog box, double-click Thread Object and enter a class
name, such as TMyThread. To name this new thread, check the Named Thread check
box and enter a thread name. Naming your thread makes it easier to track the thread
while debugging. After you click OK, C++Builder creates a new .cpp and header file
to implement the thread. For more information on naming threads, see “Naming a
thread” on page 11-12.

Note Unlike most dialog boxes in the IDE that require a class name, the New Thread
Object dialog box does not automatically prepend a ‘T’ to the front of the class name
you provide.

The automatically generated .cpp file contains the skeleton code for your new thread
class. If you named your thread TMyThread, it would look like the following:

//---
#include <vcl.h>
#pragma hdrstop

#include "Unit2.h"
#pragma package(smart_init)
//---
__fastcall TMyThread::TMyThread(bool CreateSuspended): TThread(CreateSuspended)
{
}
//---
void __fastcall TMyThread::Execute()
{
 // ---- Place thread code here ----
}
//---

You must fill in the code forthe constructor and the Execute method. These steps are
described in the following sections.

Initializing the thread

Use the constructor to initialize your new thread class. This is where you can assign a
default priority for your thread and indicate whether it should be freed automatically
when it finishes executing.

Assigning a default priority
Priority indicates how much preference the thread gets when the operating system
schedules CPU time among all the threads in your application. Use a high priority

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 11-3

D e f i n i n g t h r e a d o b j e c t s

thread to handle time critical tasks, and a low priority thread to perform other tasks.
To indicate the priority of your thread object, set the Priority property.

If writing a Windows application, Priority values fall along a

scale, as described in Table 11.1:

Note If writing a cross-platform application, you must use separate code for assigning
priorities on Windows and Linux. On Linux, Priority is a numeric value that depends
on the threading policy which can only be changed by root. See the CLX version of
TThread and Priority online Help for details.

Warning Boosting the thread priority of a CPU intensive operation may “starve” other threads
in the application. Only apply priority boosts to threads that spend most of their time
waiting for external events.

The following code shows the constructor of a low-priority thread that performs
background tasks which should not interfere with the rest of the application’s
performance:

//---
__fastcall TMyThread::TMyThread(bool CreateSuspended): TThread(CreateSuspended)
{
 Priority = tpIdle;
}

//---

Indicating when threads are freed
Usually, when threads finish their operation, they can simply be freed. In this case, it
is easiest to let the thread object free itself. To do this, set the FreeOnTerminate
property to true.

There are times, however, when the termination of a thread must be coordinated
with other threads. For example, you may be waiting for one thread to return a value
before performing an action in another thread. To do this, you do not want to free the
first thread until the second has received the return value. You can handle this
situation by setting FreeOnTerminate to false and then explicitly freeing the first
thread from the second.

Table 11.1 Thread priorities

Value Priority

tpIdle The thread executes only when the system is idle. Windows won't interrupt
other threads to execute a thread with tpIdle priority.

tpLowest The thread's priority is two points below normal.

tpLower The thread's priority is one point below normal.

tpNormal The thread has normal priority.

tpHigher The thread's priority is one point above normal.

tpHighest The thread's priority is two points above normal.

tpTimeCritical The thread gets highest priority.

11-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Writing the thread function

The Execute method is your thread function. You can think of it as a program that is
launched by your application, except that it shares the same process space. Writing
the thread function is a little trickier than writing a separate program because you
must make sure that you don’t overwrite memory that is used by other threads in
your application. On the other hand, because the thread shares the same process
space with other threads, you can use the shared memory to communicate between
threads.

Using the main VCL/CLX thread
When you use objects from the VCL or CLX object hierarchies, their properties and
methods are not guaranteed to be thread-safe. That is, accessing properties or
executing methods may perform some actions that use memory which is not
protected from the actions of other threads. Because of this, a main thread is set aside
to access VCL and CLX objects. This is the thread that handles all Windows messages
received by components in your application.

If all objects access their properties and execute their methods within this single
thread, you need not worry about your objects interfering with each other. To use the
main thread, create a separate routine that performs the required actions. Call this
separate routine from within your thread’s Synchronize method. For example:

void __fastcall TMyThread::PushTheButton(void)
{
 Button1->Click();
}
ƒ
void __fastcall TMyThread::Execute()
{
 ƒ
 Synchronize((TThreadMethod)PushTheButton);
 ƒ
}

Synchronize waits for the main thread to enter the message loop and then executes the
passed method.

Note Because Synchronize uses the message loop, it does not work in console applications.
You must use other mechanisms, such as critical sections, to protect access to VCL or
CLX objects in console applications.

You do not always need to use the main thread. Some objects are thread-aware.
Omitting the use of the Synchronize method when you know an object’s methods are
thread-safe will improve performance because you don’t need to wait for the VCL or
CLX thread to enter its message loop. You do not need to use the Synchronize method
for the following objects:

• Data access components are thread-safe as follows: For BDE-enabled datasets,
each thread must have its own database session component. The one exception to
this is when you are using Microsoft Access drivers, which are built using a
Microsoft library that is not thread-safe. For dbDirect, as long as the vendor client

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 11-5

D e f i n i n g t h r e a d o b j e c t s

library is thread-safe, the dbDirect components will be thread-safe. ADO and
InterbaseExpress components are thread-safe.

When using data access components, you must still wrap all calls that involve
data-aware controls in the Synchronize method. Thus, for example, you need to
synchronize calls that link a data control to a dataset by setting the DataSet
property of the data source object, but you don’t need to synchronize to access the
data in a field of the dataset.

For more information about using database sessions with threads in BDE-enabled
applications, see “Managing multiple sessions” on page 24-28.

• DataCLX objects are thread-safe although VisualCLX objects are not.

• Graphics objects are thread-safe. You do not need to use the main VCL or CLX
thread to access TFont, TPen, TBrush, TBitmap, TMetafile (VCL only), TDrawing
(CLX only), or TIcon. Canvas objects can be used outside the Synchronize method
by locking them (see “Locking objects” on page 11-7).

• While list objects are not thread-safe, you can use a thread-safe version,
TThreadList, instead of TList.

Call the CheckSynchronize routine periodically within the main thread of your
application so that background threads can synchronize their execution with the
main thread. The best place to call CheckSynchronize is when the application is idle
(for example, from an OnIdle event handler). This ensures that it is safe to make
method calls in the background thread.

Using thread-local variables
Your Execute method and any of the routines it calls have their own local variables,
just like any other C++ routines. These routines also can access any global variables.
In fact, global variables provide a powerful mechanism for communicating between
threads.

Sometimes, however, you may want to use variables that are global to all the routines
running in your thread, but not shared with other instances of the same thread class.
You can do this by declaring thread-local variables. Make a variable thread-local by
adding the __thread modifier to the variable declaration. For example,

int __thread x;

declares an integer type variable that is private to each thread in the application, but
global within each thread.

The __thread modifier can only be used for global (file-scope) and static variables.
Pointer and Function variables can’t be thread variables. Types that use copy-on-
write semantics, such as AnsiStrings don’t work as thread variables either. A
program element that requires runtime initialization or runtime finalization cannot
be declared to be a __thread type.

The following declarations require runtime initialization and are therefore illegal.

int f();
int __thread x = f(); // illegal

11-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g t h r e a d o b j e c t s

Instantiation of a class with a user-defined constructor or destructor requires runtime
initialization and is therefore illegal:

class X {
 X();
 ~X();
};
X __thread myclass; // illegal

Checking for termination by other threads
Your thread begins running when the Execute method is called (see “Executing
thread objects” on page 11-11) and continues until Execute finishes. This reflects the
model that the thread performs a specific task, and then stops when it is finished.
Sometimes, however, an application needs a thread to execute until some external
criterion is satisfied.

You can allow other threads to signal that it is time for your thread to finish
executing by checking the Terminated property. When another thread tries to
terminate your thread, it calls the Terminate method. Terminate sets your thread’s
Terminated property to true. It is up to your Execute method to implement the
Terminate method by checking and responding to the Terminated property. The
following example shows one way to do this:

void __fastcall TMyThread::Execute()
{
 while (!Terminated)
 PerformSomeTask();
}

Handling exceptions in the thread function
The Execute method must catch all exceptions that occur in the thread. If you fail to
catch an exception in your thread function, your application can cause access
violations. This may not be obvious when you are developing your application,
because the IDE catches the exception, but when you run your application outside of
the debugger, the exception will cause a runtime error and the application will stop
running.

To catch the exceptions that occur inside your thread function, add a try...catch block
to the implementation of the Execute method:

void __fastcall TMyThread::Execute()
{

try
{

while (!Terminated)
PerformSomeTask();

}
catch (...)
{

// do something with exceptions
}

}

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 11-7

C o o r d i n a t i n g t h r e a d s

Writing clean-up code

You can centralize the code that cleans up when your thread finishes executing. Just
before a thread shuts down, an OnTerminate event occurs. Put any clean-up code in
the OnTerminate event handler to ensure that it is always executed, no matter what
execution path the Execute method follows.

The OnTerminate event handler is not run as part of your thread. Instead, it is run in
the context of the main VCL or CLX thread of your application. This has two
implications:

• You can’t use any thread-local variables in an OnTerminate event handler (unless
you want the main VCL or CLX thread values).

• You can safely access any components and VCL or CLX objects from the
OnTerminate event handler without worrying about clashing with other threads.

For more information about the main VCL or CLX thread, see “Using the main VCL/
CLX thread” on page 11-4.

Coordinating threads
When writing the code that runs when your thread is executed, you must consider
the behavior of other threads that may be executing simultaneously. In particular,
care must be taken to avoid two threads trying to use the same global object or
variable at the same time. In addition, the code in one thread can depend on the
results of tasks performed by other threads.

Avoiding simultaneous access

To avoid clashing with other threads when accessing global objects or variables, you
may need to block the execution of other threads until your thread code has finished
an operation. Be careful not to block other execution threads unnecessarily. Doing so
can cause performance to degrade seriously and negate most of the advantages of
using multiple threads.

Locking objects
Some objects have built-in locking that prevents the execution of other threads from
using that object instance.

For example, canvas objects (TCanvas and descendants) have a Lock method that
prevents other threads from accessing the canvas until the Unlock method is called.

The VCL and CLX also both include a thread-safe list object, TThreadList. Calling
TThreadList::LockList returns the list object while also blocking other execution
threads from using the list until the UnlockList method is called. Calls to
TCanvas::Lock or TThreadList::LockList can be safely nested. The lock is not released
until the last locking call is matched with a corresponding unlock call in the same
thread.

11-8 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

Using critical sections
If objects do not provide built-in locking, you can use a critical section. Critical
sections work like gates that allow only a single thread to enter at a time. To use a
critical section, create a global instance of TCriticalSection. TCriticalSection has two
methods, Acquire (which blocks other threads from executing the section) and Release
(which removes the block).

Each critical section is associated with the global memory you want to protect. Every
thread that accesses that global memory should first use the Acquire method to
ensure that no other thread is using it. When finished, threads call the Release method
so that other threads can access the global memory by calling Acquire.

Warning Critical sections only work if every thread uses them to access the associated global
memory. Threads that ignore the critical section and access the global memory
without calling Acquire can introduce problems of simultaneous access.

For example, consider an application that has a global critical section variable,
pLockXY, that blocks access to global variables X and Y. Any thread that uses X or Y
must surround that use with calls to the critical section such as the following:

pLockXY->Acquire(); // lock out other threads
try
{
 Y = sin(X);
}
__finally
{
 pLockXY->Release();
}

Using the multi-read exclusive-write synchronizer
When you use critical sections to protect global memory, only one thread can use the
memory at a time. This can be more protection than you need, especially if you have
an object or variable that must be read often but to which you very seldom write.
There is no danger in multiple threads reading the same memory simultaneously, as
long as no thread is writing to it.

When you have some global memory that is read often, but to which threads
occasionally write, you can protect it using TMultiReadExclusiveWriteSynchronizer.
This object acts like a critical section, but allows multiple threads to read the memory
it protects as long as no thread is writing to it. Threads must have exclusive access to
write to memory protected by TMultiReadExclusiveWriteSynchronizer.

To use a multi-read exclusive-write synchronizer, create a global instance of
TMultiReadExclusiveWriteSynchronizer that is associated with the global memory you
want to protect. Every thread that reads from this memory must first call the
BeginRead method. BeginRead ensures that no other thread is currently writing to the
memory. When a thread finishes reading the protected memory, it calls the EndRead
method. Any thread that writes to the protected memory must call BeginWrite first.
BeginWrite ensures that no other thread is currently reading or writing to the
memory. When a thread finishes writing to the protected memory, it calls the
EndWrite method, so that threads waiting to read the memory can begin.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 11-9

C o o r d i n a t i n g t h r e a d s

Warning Like critical sections, the multi-read exclusive-write synchronizer only works if every
thread uses it to access the associated global memory. Threads that ignore the
synchronizer and access the global memory without calling BeginRead or BeginWrite
introduce problems of simultaneous access.

Other techniques for sharing memory
When using objects in the VCL or CLX, use the main thread to execute your code.
Using the main thread ensures that the object does not indirectly access any memory
that is also used by VCL or CLX objects in other threads. See “Using the main VCL/
CLX thread” on page 11-4 for more information on the main thread.

If the global memory does not need to be shared by multiple threads, consider using
thread-local variables instead of global variables. By using thread-local variables,
your thread does not need to wait for or lock out any other threads. See “Using
thread-local variables” on page 11-5 for more information about thread-local
variables.

Waiting for other threads

If your thread must wait for another thread to finish some task, you can tell your
thread to temporarily suspend execution. You can either wait for another thread to
completely finish executing, or you can wait for another thread to signal that it has
completed a task.

Waiting for a thread to finish executing
To wait for another thread to finish executing, use the WaitFor method of that other
thread. WaitFor doesn’t return until the other thread terminates, either by finishing
its own Execute method or by terminating due to an exception. For example, the
following code waits until another thread fills a thread list object before accessing the
objects in the list:

if (pListFillingThread->WaitFor())
{

TList *pList = ThreadList1->LockList();
 for (int i = 0; i < pList->Count; i++)
 ProcessItem(pList->Items[i]);
 ThreadList1->UnlockList();
}

In the previous example, the list items were only accessed when the WaitFor method
indicated that the list was successfully filled. This return value must be assigned by
the Execute method of the thread that was waited for. However, because threads that
call WaitFor want to know the result of thread execution, not code that calls Execute,
the Execute method does not return any value. Instead, the Execute method sets the
ReturnValue property. ReturnValue is then returned by the WaitFor method when it is
called by other threads. Return values are integers. Your application determines their
meaning.

11-10 D e v e l o p e r ’ s G u i d e

C o o r d i n a t i n g t h r e a d s

Waiting for a task to be completed
Sometimes, you need to wait for a thread to finish some operation rather than
waiting for a particular thread to complete execution. To do this, use an event object.
Event objects (TEvent) should be created with global scope so that they can act like
signals that are visible to all threads.

When a thread completes an operation that other threads depend on, it calls
TEvent::SetEvent. SetEvent turns on the signal, so any other thread that checks will
know that the operation has completed. To turn off the signal, use the ResetEvent
method.

For example, consider a situation where you must wait for several threads to
complete their execution rather than a single thread. Because you don’t know which
thread will finish last, you can’t simply use the WaitFor method of one of the threads.
Instead, you can have each thread increment a counter when it is finished, and have
the last thread signal that they are all done by setting an event.

The following code shows the end of the OnTerminate event handler for all of the
threads that must complete. CounterGuard is a global critical section object that
prevents multiple threads from using the counter at the same time. Counter is a global
variable that counts the number of threads that have completed.

void __fastcall TDataModule::TaskThreadTerminate(TObject *Sender)
{
 ƒ
 CounterGuard->Acquire(); // lock the counter
 if (--Counter == 0) // decrement the global counter
 Event1->SetEvent(); // signal if this is the last thread
 CounterGuard->Release(); // release the lock on the counter
}

The main thread initializes the Counter variable, launches the task threads, and waits
for the signal that they are all done by calling the WaitFor method. WaitFor waits for a
specified time period for the signal to be set, and returns one of the values from Table
11.2.

The following shows how the main thread launches the task threads and then
resumes when they have all completed:

Event1->ResetEvent(); // clear the event before launching the threads
for (int i = 0; i < Counter; i++)
 new TaskThread(false); // create and launch task threads
if (Event1->WaitFor(20000) != wrSignaled)
 throw Exception;
// now continue with the main thread, all task threads have finished

Table 11.2 WaitFor return values

Value Meaning

wrSignaled The signal of the event was set.

wrTimeout The specified time elapsed without the signal being set.

wrAbandoned The event object was destroyed before the time-out period elapsed.

wrError An error occurred while waiting.

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 11-11

E x e c u t i n g t h r e a d o b j e c t s

Note If you do not want to stop waiting for an event after a specified time period, pass the
WaitFor method a parameter value of INFINITE. Be careful when using INFINITE,
because your thread will hang if the anticipated signal is never received.

Executing thread objects
Once you have implemented a thread class by giving it an Execute method, you can
use it in your application to launch the code in the Execute method. To use a thread,
first create an instance of the thread class. You can create a thread instance that starts
running immediately, or you can create your thread in a suspended state so that it
only begins when you call the Resume method. To create a thread so that it starts up
immediately, set the constructor’s CreateSuspended parameter to false. For example,
the following line creates a thread and starts its execution:

TMyThread *SecondThread = new TMyThread(false); // create and run the thread

Warning Do not create too many threads in your application. The overhead in managing
multiple threads can impact performance. The recommended limit is 16 threads per
process on single processor systems. This limit assumes that most of those threads
are waiting for external events. If all threads are active, you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code.
For example, you can launch a new instance of a thread in response to some user
action, allowing each thread to perform the expected response.

Overriding the default priority

When the amount of CPU time the thread should receive is implicit in the thread’s
task, its priority is set in the constructor. This is described in “Initializing the thread”
on page 11-2. However, if the thread priority varies depending on when the thread is
executed, create the thread in a suspended state, set the priority, and then start the
thread running:

TMyThread *SecondThread = new TMyThread(true); // create but don’t run
SecondThread->Priority = tpLower; // set the priority lower than normal
SecondThread->Resume(); // now run the thread

Note If writing a cross-platform application, you must use separate code for assigning
priorities on Windows and Linux. On Linux, Priority is a numeric value that depends
on the threading policy which can only be changed by root. See the CLX version of
TThread and Priority online Help for details.

Starting and stopping threads

A thread can be started and stopped any number of times before it finishes executing.
To stop a thread temporarily, call its Suspend method. When it is safe for the thread to
resume, call its Resume method. Suspend increases an internal counter, so you can nest
calls to Suspend and Resume. The thread does not resume execution until all
suspensions have been matched by a call to Resume.

11-12 D e v e l o p e r ’ s G u i d e

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

You can request that a thread end execution prematurely by calling the Terminate
method. Terminate sets the thread’s Terminated property to true. If you have
implemented the Execute method properly, it checks the Terminated property
periodically, and stops execution when Terminated is true.

Debugging multi-threaded applications
When debugging multi-threaded applications, it can be confusing trying to keep
track of the status of all the threads that are executing simultaneously, or even to
determine which thread is executing when you stop at a breakpoint. You can use the
Thread Status box to help you keep track of and manipulate all the threads in your
application. To display the Thread status box, choose View|Debug Windows|
Threads from the main menu.

When a debug event occurs (breakpoint, exception, paused), the thread status view
indicates the status of each thread. Right-click the Thread Status box to access
commands that locate the corresponding source location or make a different thread
current. When a thread is marked as current, the next step or run operation is relative
to that thread.

The Thread Status box lists all your application’s execution threads by their thread
ID. If you are using thread objects, the thread ID is the value of the ThreadID
property. If you are not using thread objects, the thread ID for each thread is returned
by the call to CreateThread or BeginThread.

For additional details on the Thread Status box, see online Help.

Naming a thread

Because it is difficult to tell which thread ID refers to which thread in the Thread
Status box, you can name your thread classes. When you are creating a thread class in
the Thread Object dialog box, besides entering a class name, also check the Named
Thread check box, enter a thread name, and click OK.

Naming the thread class adds a method to your thread class called SetName. When
the thread starts running, it calls the SetName method first.

CLX You can name threads in VCL applications only.

Converting an unnamed thread to a named thread
You can convert an unnamed thread to a named thread. For example, if you have a
thread class that was created using C++Builder 5 or earlier, convert it into a named
thread using the following steps.

1 Add the SetName method to your thread class:

//---
void TMyThread::SetName()
{
 THREADNAME_INFO info;

W r i t i n g m u l t i - t h r e a d e d a p p l i c a t i o n s 11-13

D e b u g g i n g m u l t i - t h r e a d e d a p p l i c a t i o n s

 info.dwType = 0x1000;
 info.szName = "MyThreadName";
 info.dwThreadID = -1;
 info.dwFlags = 0;

 __try
 {
 RaiseException(0x406D1388, 0, sizeof(info)/sizeof(DWORD),(DWORD*)&info);
 }
 __except (EXCEPTION_CONTINUE_EXECUTION)
 {
 }
}
//---

Note Set info.szName to the name of your thread class.

The debugger sees the exception and looks up the thread name in the structure
you pass in. When debugging, the debugger displays the name of the thread in the
Thread Status box’s thread ID field.

2 Add a call to the new SetName method at the beginning of your thread’s Execute
method:

//---
void __fastcall TMyThread::Execute()
{
 SetName();
 //---- Place existing Execute method code here ----
}
//---

Assigning separate names to similar threads
All thread instances from the same thread class have the same name. However, you
can assign a different name for each thread instance at runtime using the following
steps.

1 Add a ThreadName property to the thread class by adding the following in the class
definition:

__property AnsiString ThreadName = {read=FName, write=FName};

2 In the SetName method, change where it says:

info.szName = “MyThreadName”;

to:

info.szName = ThreadName;

3 When you create the thread object:

1 Create it suspended. See “Executing thread objects” on page 11-11.

2 Assign a name, such as MyThread.ThreadName=”SearchForFiles”;

3 Resume the thread. See “Starting and stopping threads” on page 11-11.

11-14 D e v e l o p e r ’ s G u i d e

E x c e p t i o n h a n d l i n g 12-1

C h a p t e r

12
Chapter12Exception handling

C++Builder supports C++ exception handling, C-based structured exception
handling, and VCL and CLX exception handling.

You can throw Ansi Standard C++ exceptions as well as VCL-type exceptions, which
include built-in error handling routines.

Support is also provided for C-based Win32 structured exceptions, so your code can
properly react to exceptions thrown by the Windows operating system.

C++ exception handling
Exceptions are exceptional conditions that require special handling and can include
errors that occur at runtime, such as divide by zero, and the exhaustion of free store.
Exception handling provides a standard way of dealing with errors, discovering both
anticipated and unanticipated problems, and enables developers to recognize, track
down, and fix bugs.

When an error occurs, the program throws an exception. The exception usually
contains information about what happened. This allows another part of the program
to diagnose the cause of the exception.

Programs prepare for exceptions by placing statements that might throw them in a
try block. If one of these statements does throw an exception, control is transferred to
an exception handler that handles that type of exception. The exception handler is said
to catch the exception and specifies the actions to take before terminating the
program.

Exception handling syntax

Exception handling requires the use of three keywords: try, throw, and catch. The
throw keyword is used to generate an exception. The try block contains statements

12-2 D e v e l o p e r ’ s G u i d e

E x c e p t i o n h a n d l i n g s y n t a x

that might throw exceptions and is followed by one or more catch statements. Each
catch statement handles a specific type of exception.

Note The try, catch, and throw keywords are not allowed in C programs.

The try block
The try block contains a statement or statements that can throw an exception. A
program throws an exception by executing a throw statement. The throw statement
generally occurs within a function. For example:

void SetFieldValue(DF *dataField, int userValue)
{
 if ((userValue < 0) || userValue > 10)

throw EIntegerRange(0, 10, userValue);
. . .

}

Another part of the program can catch the thrown exception object and handle it
accordingly. For example:

try
{
 SetFieldValue(dataField, userValue);
}
catch (EIntegerRange &rangeErr)
{
 printf("Expected value between %d and %d, but got %d\n",

 rangeErr.min, rangeErr.max, rangeErr.value);
}

In the previous example, if the function SetFieldValue finds that its input parameters
are invalid, it can throw an exception to indicate this. The try/catch block wrapping
SetFieldValue to catch the exception that SetFieldValue throws, and executes the printf
statement. If no exception is thrown, the printf statement will not be executed.

A try block specified by try must be followed immediately by the handler specified by
catch. The try block is a statement that specifies the flow of control as the program
executes. If an exception is thrown in the try block, program control is transferred to
the appropriate exception handler.

The handler is a block of code designed to handle the exception. The C++ language
requires at least one handler immediately after a try block. The program should
include a handler for each exception that the program can generate.

The throw statement
The throw statement can throw various types of objects. Objects in C++ may
generally be thrown by value, reference, or pointer. For example:

// throw an object, to be caught by value or reference
throw EIntegerRange(0, 10, userValue);

// throw an object to be caught by pointer
throw new EIntegerRange(0, 10, userValue);

E x c e p t i o n h a n d l i n g 12-3

E x c e p t i o n h a n d l i n g s y n t a x

The next two examples show features that are provided largely for completeness in
the standard. It is better to throw more descriptive exceptions. There are special cases
for throwing built-in types, such as integers. Also, it is preferable not to throw
exceptions by pointer.

// throw an integer
throw 1;

// throw a char *
throw "foo";

For most cases, you want to catch exceptions by reference, and especially by const
reference. There are some cases where you want to be careful about catching objects
by value. Objects that are caught by value must be copied before they are assigned to
the catch parameter. If a user supplies a copy constructor, this is called, and this can
add inefficiency.

The catch statement
The catch statement has several forms. Objects may be caught by value, reference, or
pointer. In addition const modifiers can be applied to the catch parameter. There can
be multiple catch statements for a single try block to allow a block to catch multiple
different kinds of exceptions, and there should be a catch statement for each
exception that might be thrown. For example:

try
CommitChange(dataBase, recordMods);

catch (const EIntegerRange &rangeErr)
printf("Got an integer range exception");

catch (const EFileError &fileErr)
printf("Got a file I/O error");

If the function CommitChange uses multiple subsystems, and these subsystems can
throw different types of exceptions, you may want to handle each type of exception
separately. With multiple catch statements for a single try statement, you can have
handlers for each type of exception.

If an exception object is derived from some base class, you may want to add
specialized handlers for some derived exceptions, but also include a generic handler
for the base class. You do this by placing the catch statements in the order that you
want them to be searched when an exception is thrown. For example, the following
code handles EIntegerRange first and then ERange, from which EIntegerRange is
derived.

try
SetFieldValue(dataField, userValue);

catch (const EIntegerRange &rangeErr)
printf("Got an integer range exception");

catch (const ERange &rangeErr)
printf("Got a range exception");

12-4 D e v e l o p e r ’ s G u i d e

R e t h r o w i n g e x c e p t i o n s

Lastly, if you want your handler to catch all exceptions that might be thrown past the
try block, you use the special form catch(…). This tells the exception handling system
that the handler should be invoked for any exception. For example:

try
SetFieldValue(dataField, userValue);

catch (...)
printf("Got an exception of some kind");

Rethrowing exceptions

In some cases, an exception handler may process an exception, then either rethrow
the same exception or throw a different exception.

If the handler wants to rethrow the current exception, it can just use the throw
statement with no parameters. This instructs the compiler/RTL to take the current
exception object and throw it again. For example:

catch (EIntegerRange &rangeErr)
{
 // Code here to do local handling for the exception
 throw; // rethrow the exception
}

If the handler wants to throw a different exception, it just uses the throw statement in
the normal way.

Exception specifications

It is possible to specify which exceptions a function may throw. It is a runtime error
to throw an exception of the wrong type past a function. The syntax for an exception
specification is:

exception-specification:
throw (type-id-list) //type-id-list is optional
type-id-list:

type-id
type-id-list, type-id

The following examples are functions with exception specifications.

void f1(); // The function can throw any exception

void f2() throw(); // Should not throw any exceptions

void f3() throw(A, B*); // Can throw exceptions publicly derived from A,
 // or a pointer to publicly derived B

The definition and all declarations of such a function must have an exception
specification containing the same set of type-ids. If a function throws an exception not
listed in its specification, the program calls unexpected.

You may not want to specify an exception for the following reasons:

First, there is a runtime performance hit on Windows for providing an exception
specification for a function.

E x c e p t i o n h a n d l i n g 12-5

U n w i n d i n g e x c e p t i o n s

Second, you can get unexpected errors at runtime. For example, suppose your system
uses exception specifications and uses another subsystem in its implementation.
Now suppose the subsystem is changed so that it throws new exception types. When
you use the new subsystem code, you could get runtime errors without ever getting
an indication from the compiler that this might happen.

Third, if you use virtual functions, you can violate the program design. This is
because the exception specification is not considered part of the function type. For
example, in the following code, the derived class BETA::vfunc is defined so that it
does not throw any exceptions—a departure from the original function declaration.

class ALPHA {
public:
 struct ALPHA_ERR {};
 virtual void vfunc(void) throw (ALPHA_ERR) {} // Exception specification
};

class BETA : public ALPHA {
 void vfunc(void) throw() {} // Exception specification is changed
};

Unwinding exceptions

When an exception is thrown, the runtime library takes the thrown object, gets the
type of the object, and looks upward in the call stack for a handler whose type
matches the type of the thrown object. Once a handler is found, the RTL unwinds the
stack to the point of the handler, and executes the handler.

In the unwind process, the RTL calls destructors for all local objects in the stack
frames between where the exception was thrown and where it is caught. If a
destructor causes an exception to be raised during stack unwinding and does not
handle it, terminate is called. Destructors are called by default, but you can switch off
the default by using the -xd compiler option.

Safe pointers
If you have local variables that are pointers to objects and an exception is thrown,
these pointers are not automatically deleted. This is because there is no good way for
the compiler to distinguish between a pointer to data that was allocated for this
function only and any other pointer. The class that you can use to ensure that objects
allocated for local use are destroyed in the even of an exception is auto_ptr. There is a
special case in which memory is freed for a pointer allocated in a function:

TMyObject *pMyObject = new TMyObject;

In this example, if the constructor for TMyObject throws an exception, then the
pointer to the object allocated for TMYObject will be deleted by the RTL when it
unwinds the exception. This is the only time that the compiler automatically deletes a
pointer value for you.

12-6 D e v e l o p e r ’ s G u i d e

C o n s t r u c t o r s i n e x c e p t i o n h a n d l i n g

Constructors in exception handling

Class constructors can throw exceptions if they cannot successfully construct an
object. If a constructor throws an exception, that object’s destructor is not necessarily
called. Destructors are called only for the base classes and for those objects that were
fully constructed inside the classes since entering the try block.

Handling uncaught and unexpected exceptions

If an exception is thrown and no exception handler is found—that is, the exception is
not caught—the program calls a termination function. You can specify your own
termination function with set_terminate. If you do not specify a termination function,
the terminate function is called. For example, the following code uses the my_terminate
function to handle exceptions not caught by any handler.

void SetFieldValue(DF *dataField, int userValue)
{

if ((userValue < 0) || (userValue) > 10));
throw EIntegerRange(0, 10, userValue);

. . .
}

void my_terminate()
{

printf("Exception not caught");
abort();

}

// Set my_terminate() as the termination function
set_terminate(my_terminate);
// Call SetFieldValue. This generates an exception because the user value is greater
// than 10. Because the call is not in a try block, my_terminate is called.
SetFieldValue(DF, 11);

If a function specifies which exceptions it throws and it throws an unspecified
exception, an unexpected function is called. You can specify your own unexpected
function with set_unexpected. If you do not specify an unexpected function, the
unexpected function is called.

Structured exceptions under Win32
Win32 supports C-based structured exception handling that is similar to C++
exceptions. There are some key differences, however, that require careful use when
they are mixed with C++ code that is exception-aware.

Keep the following in mind when using structured exception handling in
C++Builder applications:

• C-structured exceptions can be used in C++ programs.

E x c e p t i o n h a n d l i n g 12-7

S y n t a x o f s t r u c t u r e d e x c e p t i o n s

• C++ exceptions cannot be used in a C program because C++ exceptions require
that their handler be specified by the catch keyword, and catch is not allowed in a
C program.

• An exception generated by a call to the RaiseException function is handled by a
try/__except (C++) or __try/__except (C) block. (You can also use try/__finally or
__try/__finally blocks. See “Syntax of structured exceptions” on page 12-7.) All
handlers of try/catch blocks are ignored when RaiseException is called.

• Exceptions that are not handled by the application don't result in a call to
terminate(), but are instead passed to the operating system (in general, the end
result is termination of the process).

• Exception handlers do not receive a copy of the exception object, unless they
request it.

You can use the following C exception helper functions in C or C++ programs:

• GetExceptionCode
• GetExceptionInformation
• SetUnhandledExceptionFilter
• UnhandledExceptionFilter

C++Builder does not restrict the use of UnhandledExceptionFilter function to the
except filter of __try/__except or try/__except blocks. However, program behavior is
undefined when this function is called outside of a __try/__except or try/__except
block.

CLX CLX applications running on Linux do not support C/C++ structured exceptions.

Syntax of structured exceptions

In a C program, the ANSI-compatible keywords used to implement structured
exceptions are __except, __finally, and __try.

Note The __try keyword can only appear in C programs. If you want to write portable
code, do not use structured exception handling in your C++ programs.

try-except exception handling syntax
For try-except exception handling, the syntax is as follows:

try-block:
 __try compound-statement (in a C module)
 try compound-statement (in a C++ module)

handler:
 __except (expression) compound-statement

try-finally termination syntax
For try-finally termination, the syntax is as follows:

try-block:
 __try compound-statement (in a C module)
 try compound-statement (in a C++ module)

termination:
 __finally compound-statement

12-8 D e v e l o p e r ’ s G u i d e

H a n d l i n g s t r u c t u r e d e x c e p t i o n s

Handling structured exceptions

Structured exceptions can be handled using an extension of C++ exception handling:

try {
 foo();
 }
 __except(__expr__) {
 // handler here
 }

__expr__ is an expression that evaluates to one of three values:

Win32 provides two functions that can be used to query information about the active
exception: GetExceptionCode() and GetExceptionInformation(). If you want to call a
function as part of the “filter” expression above, these functions must be called from
within the context of the __except() directly:

#include <Windows.h>
#include <excpt.h>

int filter_func(EXCEPTION_POINTERS *);
...
EXCEPTION_POINTERS *xp = 0;
 try {
 foo();
 }
 __except(filter_func(xp = GetExceptionInformation())) {
 //...
 }

Or, if you prefer using the comma operator to assignments nested in function calls,
see the following example:

__except((xp = GetExceptionInformation()), filter_func(xp))

Exception filters

A filter expression can invoke a filter function but the filter function cannot call
GetExceptionInformation. You can pass the return value of GetExceptionInformation as a
parameter to a filter function.

Value Description

EXCEPTION_CONTINUE_SEARCH (0) The handler is not entered, and the OS continues
searching for an exception handler.

EXCEPTION_CONTINUE_EXECUTION (-1) Continue execution at the point of the exception.

EXCEPTION_EXECUTE_HANDLER (1) Enter the exception handler. If the code was
compiled with destructor cleanup enabled (-xd, on
by default), all destructors for local objects created
between the point of the exception and the
exception handler are called when the stack is
unwound. Stack unwinding is completed before
entering the handler.

E x c e p t i o n h a n d l i n g 12-9

E x c e p t i o n f i l t e r s

To pass the EXCEPTION_POINTERS information to an exception handler, the filter
expression or filter function must copy the pointer or data from
GetExceptionInformation to a location where the handler can later access it.

In the case of nested try-except statements, each statement's filter expression is
evaluated until it locates EXCEPTION_EXECUTE_HANDLER or
EXCEPTION_CONTINUE_EXECUTION. A filter expression can invoke
GetExceptionInformation to get exception information.

As long as GetExceptionInformation or GetExceptionCode is called directly in the
expression provided to __except, you can use a function to determine what to do
with an exception rather than trying to create a complex C++ expression. Almost all
of the information needed to handle an exception can be extracted from the result of
GetExceptionInformation(). GetExceptionInformation() returns a pointer to an
EXCEPTION_POINTERS structure:

struct EXCEPTION_POINTERS {
 EXCEPTION_RECORD *ExceptionRecord;
 CONTEXT *Context;
 };

EXCEPTION_RECORD contains the machine-independent state:

struct EXCEPTION_RECORD {
 DWORD ExceptionCode;
 DWORD ExceptionFlags;
 struct EXCEPTION_RECORD *ExceptionRecord;
 void *ExceptionAddress;
 DWORD NumberParameters;
 DWORD ExceptionInformation[EXCEPTION_MAXIMUM_PARAMETERS];
 };

Typically, the filter function looks at the information in the ExceptionRecord to
decide how to respond. Sometimes more specific information is needed (especially if
the action to take is EXCEPTION_CONTINUE_EXECUTION: if nothing is done, the
code that caused the exception would be executed again). For this situation, the other
field of the EXCEPTION_POINTERS structure provides the processor state at the
time of the exception. If this structure is modified and the filter returns
EXCEPTION_CONTINUE_EXCEPTION, it is used to set the state of the thread
before continuing with execution. For example:

static int xfilter(EXCEPTION_POINTERS *xp)
 {
 int rc;

 EXCEPTION_RECORD *xr = xp->ExceptionRecord;
 CONTEXT *xc = xp->Context;

 switch (xr->ExceptionCode) {
 case EXCEPTION_BREAKPOINT:
 // whoops, someone left an embedded breakpoint.
 // just step over it (1 byte on x86)
 ++xc->Eip;
 rc = EXCEPTION_CONTINUE_EXECUTION;
 break;

12-10 D e v e l o p e r ’ s G u i d e

M i x i n g C + + w i t h s t r u c t u r e d e x c e p t i o n s

 case EXCEPTION_ACCESS_VIOLATION:
 rc = EXCEPTION_EXECUTE_HANDLER;
 break;

 default:
 // give up
 rc = EXCEPTION_CONTINUE_SEARCH;
 break;
 };

 return rc;
 }
 ...

 EXCEPTION_POINTERS *xp;

 try {
 func();
 }
 __except(xfilter(xp = GetExceptionInformation())) {

abort();
 }

Mixing C++ with structured exceptions

You need to be aware of a few issues when using structured exceptions in C++
programs. First, although C++Builder implements C++ exceptions with Win32
structured exceptions, C++ exceptions are transparent to an __except block.

A try block can be followed by either exactly one except block or at least one catch
block. Attempting to mix the two causes a compiler error. Code that needs to handle
both types of exceptions should simply be nested inside two try blocks:

try {
 EXCEPTION_POINTERS *xp;

 try {
 func();
 }
 __except(xfilter(xp = GetExceptionInformation())) {
 //...
 }
 }
 catch (...) {
 //...
 }

A function's throw() specification does not affect the behavior of a program with
regard to a Win32 exception. Also, an unhandled exception is eventually handled by
the operating system (if a debugger doesn't handle it first), unlike a C++ program
that calls terminate().

E x c e p t i o n h a n d l i n g 12-11

M i x i n g C + + w i t h s t r u c t u r e d e x c e p t i o n s

Any module compiled with the -xd compiler option (on by default) will invoke
destructors for all objects with auto storage. Stack unwinding occurs from the point
where the exception is thrown to the point where the exception is caught.

C-based exceptions in C++ program example
/* Program results:
Another exception:
Caught a C-based exception.
Caught C++ exception[Hardware error: Divide by 0]
C++ allows __finally too!
*/
#include <stdio.h>
#include <string.h>
#include <windows.h>

class Exception
{
 public:
 Exception(char* s = "Unknown"){ what = strdup(s); }
 Exception(const Exception& e){ what = strdup(e.what); }
 ~Exception() { delete[] what; }
 char* msg() const { return what; }
private:
 char* what;
};
int main()
{
 float e, f, g;

try
 {
 try
 {
 f = 1.0;
 g = 0.0;
 try
 {
 puts("Another exception:");
 e = f / g;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 puts("Caught a C-based exception.");
 throw(Exception("Hardware error: Divide by 0"));
 }
 }
 catch(const Exception& e)
 {
 printf("Caught C++ Exception: %s :\n", e.msg());
 }
 }
 __finally
 {

12-12 D e v e l o p e r ’ s G u i d e

D e f i n i n g e x c e p t i o n s

 puts("C++ allows __finally too!");
 }
return e;
}

Defining exceptions

Raising a Win32 exception that is handled within the same program does not
generally make much sense: C++ exceptions can do the job better, remain
significantly more portable, and use a simpler syntax. Win32 exceptions do have the
advantage, however, that they can be handled by components that may not have
been compiled with the same C++ compiler.

The first step is to define the exception. An exception is a 32-bit integer with the
following format (starting at bit 0):

In addition to defining the exception code, you need to decide whether or not to
include additional information with the exception (accessible to the filter/handler
from the exception record). There is no conventional method for encoding additional
parameters in the exception code. Refer to Win32 documentation (available in
C++Builder online Help) for more information.

Raising exceptions

A Win32 exception is raised with a call to RaiseException(), which is declared as
follows

void RaiseException(DWORD ec, DWORD ef, DWORD na, const DWORD *a);

where:

Bit Meaning

31-30 11 = error (normal)
00 = success,
01 = informational
10 = warning

29 1 = user-defined

28 Reserved

27-0 User-defined

ec Exception code

ef Exception flags, either 0 or EXCEPTION_NONCONTINUABLE
(If the exception is marked as not continuable and a filter tries to continue it,
EXCEPTION_NONCONTINUABLE_EXCEPTION is raised.)

na Number of elements in the arguments array

a Pointer to first element in the argument array–the meaning of these arguments depends on
the particular exception

E x c e p t i o n h a n d l i n g 12-13

T e r m i n a t i o n b l o c k s

Termination blocks

The structured exception handling model supports a “termination block” which is
executed whether a guarded block is exited normally or via an exception. The
C++Builder compiler supports this in C with the following syntax:

__try {
 func();
 }
 __finally {
 // this happens whether func() raises an exception or not
 }

Termination blocks are supported by a C++ extension where you can handle cleanup
in the __finally block:

try {
 func();
 }
 __finally {
 // this happens whether func() raises an exception or not
 }

The following example illustrates termination blocks:

/* Program results:
An exception:
Caught an exception.
The __finally is executed too!
No exception:
No exception happened, but __finally still executes!
*/
#include <stdio.h>
#include <windows.h>

int main()
{
 float e, f, g;

try
 {
 f = 1.0;
 g = 0.0;

try
 {
 puts("An exception:");
 e = f / g;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 puts("Caught an exception.");
 }
 }
 __finally
 {

12-14 D e v e l o p e r ’ s G u i d e

C + + B u i l d e r e x c e p t i o n h a n d l i n g o p t i o n s

 puts("The __finally is executed too!");
 }

try
 {
 f = 1.0;
 g = 2.0;

try
 {
 puts("No exception:");
 e = f / g;
 }
 __except(EXCEPTION_EXECUTE_HANDLER)
 {
 puts("Caught an exception.");
 }
 }
 __finally
 {
 puts("No exception happened, but __finally still executes!");
 }
return e;
}

C++ code can also handle a “termination block” by creating local objects with
destructors that are called when the scope is exited. Since C++Builder structured
exceptions support destructor cleanup, this will work regardless of the type of
exception raised.

Note One special case concerns what happens when an exception is raised and never
handled by the program. For a C++ exception, the C++Builder compiler calls
destructors for local objects (not required by the language definition), whereas with
an unhandled Win32 exception, destructor cleanup does not happen.

C++Builder exception handling options

Following are the exception handling options in the C++Builder compiler.

Table 12.1 Exception handling compiler options

Command-line
switch Description

-x Enable C++ exception handling (On by default)

-xd Enable destructor cleanup. Calls destructors for all automatically declared
objects between the scope of the catch and throw statements when an
exception is thrown. (Advanced option–on by default)

-xp Enable exception location information. Makes available runtime identification
of exceptions by providing line numbers in the source code at the exception
location. This lets the program query the file and line number where a C++
exception occurred using the __ThrowFileName and __ThrowLineNumber
globals. (Advanced option)

E x c e p t i o n h a n d l i n g 12-15

V C L / C L X e x c e p t i o n h a n d l i n g

VCL/CLX exception handling
If you use VCL and CLX components in your applications, you need to understand
the VCL/CLX exception handling mechanism. That is because exceptions are built
into many classes and they are thrown automatically when something unexpected
occurs. If you do not handle the exception, the VCL and CLX handle it in a default
manner. Typically, a message displays describing the type of error that occurred.

When you encounter an exception that displays a message indicating the type of
exception that was thrown, you can look up the exception class in online Help. The
information provided will often help you to determine where the error occurred and
its cause.

In addition, Chapter 13, “C++ language support for the VCL and CLX” describes
subtle language differences that can cause exceptions. The section “Exceptions
thrown from constructors” on page 13-13 provides an example to show what
happens if an exception is thrown during object construction.

Differences between C++ and VCL/CLX exception handling

Following are some noteworthy differences between C++ and VCL/CLX exception
handling.

Exceptions thrown from constructors:

• C++ destructors are called for members and base classes that are fully constructed.

• VCL and CLX base class destructors are called even if the object or base class isn’t
fully constructed.

Catching and throwing exceptions:

• C++ exceptions can be caught by reference, pointer, or value. VCL and CLX
exceptions, which are exceptions derived from TObject, can only be caught by
reference or pointer. An attempt to catch TObject exceptions by value results in a
compile-time error. Hardware or operating system exceptions, such as
EAccessViolation, should be caught by reference.

• VCL and CLX exceptions are caught by reference.

• You cannot use throw to reraise an exception that was caught within VCL or CLX
code.

Handling operating system exceptions

C++Builder allows you to handle exceptions thrown by the operating system.
Operating system exceptions include access violations, integer math errors, floating-
point math errors, stack overflow, and Ctrl+C interrupts. These are handled in the C++

12-16 D e v e l o p e r ’ s G u i d e

H a n d l i n g V C L a n d C L X e x c e p t i o n s

RTL and converted to VCL and CLX exception class objects before being dispatched
to your application. You can then write C++ code that looks like this:

try
{
 char * p = 0;
 *p = 0;
}
// You should always catch by reference.
catch (const EAccessViolation &e)
{
 printf("You can't do that!\n");
}

The classes C++Builder uses are the same as those that Delphi uses and are only
available to C++Builder VCL and CLX applications. They are derived from TObject
and require the VCL and CLX underpinnings.

Here are some characteristics of C++Builder exception handling:

• You are not responsible for freeing the exception object.

• Operating system exceptions should be caught by reference.

• You cannot rethrow an operating system exception once the catch frame has been
exited and have it be caught by intervening VCL and CLX catch frames.

• You cannot rethrow an operating system exception once the catch frame has been
exited and have it be caught by intervening operating system catch frames.

The last two points can be stated roughly as this: Once an operating system exception
is caught as a C++ exception, it cannot be rethrown as if it were an operating system
exception or a VCL or CLX exception unless you are in the catching stack frame.

Handling VCL and CLX exceptions

C++Builder broadens the semantics for handling software exceptions thrown from
the VCL and CLX or, equivalently, exceptions thrown from C++ where the exception
class being thrown is derived from TObject. In such a case, a couple of rules are
derived from the fact that VCL-style classes can only be allocated on the heap.

• VCL-style exception classes may only be caught by pointer, if it is a software
exception, or by reference (reference is preferred).

• VCL-style exceptions should be thrown with “by value” syntax.

VCL and CLX exception classes

C++Builder includes a large set of built-in exception classes for automatically
handling divide-by-zero errors, file I/O errors, invalid typecasts, and many other
exception conditions. All VCL and CLX exception classes descend from one root
object called Exception. Exception encapsulates the fundamental properties and

E x c e p t i o n h a n d l i n g 12-17

V C L a n d C L X e x c e p t i o n c l a s s e s

methods for all VCL-type exceptions and provides a consistent interface for
applications to handle exceptions.

You can pass exceptions to a catch block that takes a parameter of type Exception. Use
the following syntax to catch VCL and CLX exceptions:

catch (exception_class &exception_variable)

You specify the exception class that you want to catch and provide a variable by
which to refer to the exception.

Following is an example of how to throw a VCL or CLX exception:

void __fastcall TForm1::ThrowException(TObject *Sender)
{

try
{

throw Exception(“An error has occurred”);
}
catch(const Exception &E)
{

ShowMessage(AnsiString(E.ClassName())+ E.Message);
}

}

The throw statement in the previous example creates an instance of the Exception
class and calls its constructor. All exceptions descended from Exception have a
message that can be displayed, passed through constructors, and retrieved through
the Message property.

Selected VCL/CLX exception classes are described in Table 12.2.

Table 12.2 Selected exception classes

Exception class Description

EAbort Stops a sequence of events without displaying an error message dialog box.

EAccessViolation Checks for invalid memory access errors.

EBitsError Prevents invalid attempts to access a Boolean array.

EComponentError Signals an invalid attempt to register or rename a component.

EConvertError Indicates string or object conversion errors.

EDatabaseError Specifies a database access error.

EDBEditError Catches data incompatible with a specified mask.

EDivByZero Catches integer divide-by-zero errors.

EExternalException Signifies an unrecognized exception code.

EInOutError Represents a file I/O error.

EIntOverflow Specifies integer calculations whose results are too large for the allocated
register.

EInvalidCast Checks for illegal typecasting.

EInvalidGraphic Indicates an attempt to work with an unrecognized graphic file format.

EInvalidOperation Occurs when invalid operations are attempted on a component.

EInvalidPointer Results from invalid pointer operations.

EMenuError Involves a problem with menu item.

12-18 D e v e l o p e r ’ s G u i d e

P o r t a b i l i t y c o n s i d e r a t i o n s

As you can see from the selected list above, the built-in VCL and CLX exception
classes handle much of the exception handling for you and can simplify your code.
There are other times when you will need to create your own exception classes to
handle unique situations. You can declare a new exception class by making it a
descendant of type Exception and creating as many constructors as you need (or copy
the constructors from an existing class in Sysutils.hpp).

Portability considerations

Several runtime libraries (RTLs) are delivered with C++Builder. Most of them pertain
to C++Builder applications, but one of them, cw32mt.lib, is the normal multi-
threaded RTL that does not make any references to the VCL or CLX. This RTL is
provided for support of legacy applications that may be part of a project but do not
depend on the VCL or CLX. This RTL does not have support for catching operating
system exceptions because those exception objects are derived from TObject and
would require parts of the VCL and CLX to be linked into your application.

You can use the cp32mt.lib library, a multi-threaded runtime library, which provides
memory management and exception handling with the VCL and CLX.

You can use two import libraries, cw32mti.lib and cp32mti.lib, for using the RTL
DLL. Use cp32mti.lib for VCL and CLX exception support.

EOleCtrlError Detects problems with linking to ActiveX controls.

EOleError Specifies OLE automation errors.

EPrinterError Signals a printing error.

EPropertyError Occurs on unsuccessful attempts to set the value of a property.

ERangeError Indicates an integer value that is too large for the declared type to which it is
assigned.

ERegistryException Specifies registry errors.

EZeroDivide Catches floating-point divide-by-zero errors.

Table 12.2 Selected exception classes (continued)

Exception class Description

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-1

C h a p t e r

13
Chapter13C++ language support for the VCL

and CLX
C++Builder leverages the Rapid Application Development (RAD) capabilities of the
Visual Component Library (VCL) and Component Library for Cross-Platform (CLX)
written in Object Pascal. This chapter explains how Object Pascal language features,
constructs, and concepts were implemented in C++Builder to support the VCL and
CLX. It is written for programmers using VCL and CLX objects in their applications
and for developers creating new classes descended from VCL and CLX classes.

The first half of this chapter compares C++ and Object Pascal object models,
describing how C++Builder combines these two approaches. The second half of the
chapter describes how Object Pascal language constructs were translated into C++
counterparts in C++Builder. It includes details on keyword extensions that were
added to support the VCL and CLX. Some of these extensions, like closures and
properties, are useful features independent of their support for VCL- and CLX-based
code.

Note References to C++ classes derived from TObject refer to classes for which TObject is
the ultimate, but not necessarily immediate, ancestor. For consistency with the
compiler diagnostics, such classes are also referred to as “VCL-style classes.”

C++ and Object Pascal object models
The C++ and Object Pascal class models are different in both obvious and subtle
ways. One of the most obvious differences is that C++ allows multiple inheritance
while Object Pascal is restricted to a single inheritance model. In addition, C++ and
Object Pascal are subtly different in the way they create, initialize, reference, copy,
and destroy objects. These differences and their impact on C++Builder VCL-style
classes are described in this section.

13-2 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Inheritance and interfaces

Unlike C++, the Object Pascal language does not support multiple inheritance. Any
classes that you create that have VCL or CLX ancestors inherit this restriction. That is,
you can’t use multiple base classes for a VCL-style C++ class, even if the VCL or CLX
class is not the immediate ancestor.

Using interfaces instead of multiple inheritance
For many of the situations where you would use multiple inheritance in C++, Object
Pascal code makes use of interfaces instead. There is no C++ construct that maps
directly to the Object Pascal concept of interface. An Object Pascal interface acts like a
class with no implementation. That is, an interface is like a class where all the
methods are pure virtual and there are no data members. While an Object Pascal
class can have only a single parent class, it can support any number of interfaces.
Object Pascal code can assign a class instance to variables of any of those interface
types, just as it can assign the class instance to a variable of any ancestor class type.
This allows polymorphic behavior for classes that share the same interface, even if
they do not have a common ancestor.

In C++Builder, the compiler recognizes classes that have only pure virtual methods
and no data members as corresponding to Object Pascal interfaces. Thus, when you
create a VCL-style class, you are permitted to use multiple inheritance, but only if all
of the base classes except the one that is a VCL, CLX, or VCL-style class have no data
members and only pure virtual methods.

Note The interface classes do not need to be VCL-style classes, the only requirement is that
they have no data members and only pure virtual methods.

Declaring interface classes
You can declare a class that represents an interface just like any other C++ class.
However, by using certain conventions, you can make it clearer that the class is
intended to act as an interface. These conventions are as follows:

• Instead of using the class keyword, interfaces are declared using __interface.
__interface is a macro that maps to the class keyword. It is not necessary, but
makes it clearer that the class is intended to act as an interface.

• Interfaces typically have names that begin with the letter ‘I’. Examples are
IComponentEditor or IDesigner. By following this convention, you do not need to
look back at the class declaration to realize when a class is acting as an interface.

• Interfaces typically have an associated GUID. This is not an absolute requirement,
but most of the code that supports interfaces expects to find a GUID. You can use
the __declspec modifier with the uuid argument to associate an interface with a
GUID. For interfaces, the INTERFACE_UUID macro maps to the same thing.

The following interface declaration illustrates these conventions:

__interface INTERFACE_UUID("{C527B88F-3F8E-1134-80e0-01A04F57B270}") IHelloWorld :
public IInterface

{

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-3

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

public:
virtual void __stdcall SayHelloWorld(void) = 0 ;

};

Typically, when declaring an interface class, C++Builder code also declares a
corresponding DelphiInterface class that makes working with the interface more
convenient:

typedef System::DelphiInterface< IHelloWorld > _di_IHelloWorld;

For information about the DelphiInterface class, see “Delphi interfaces” on
page 13-20.

IUnknown and IInterface
All Object Pascal interfaces descend from a single common ancestor, IInterface. It is
not necessary for C++ interface classes to use IInterface as a base class, in the sense
that a VCL-style class can use them as additional base classes, but VCL and CLX code
that deals with interfaces assume that the IInterface methods are present.

In COM programming, all interfaces descend from IUnknown. COM support in the
VCL is based on a definition of IUnknown that maps directly to IInterface. That is, in
Object Pascal, IUnknown and IInterface are identical.

The Object Pascal definition of IUnknown, however, does not correspond to the
definition of IUnknown that is used in C++Builder. The file unknwn.h defines
IUnknown to include the following three methods:

virtual HRESULT STDCALL QueryInterface(const GUID &guid, void ** ppv) = 0;
virtual ULONG STDCALL AddRef() = 0;
virtual ULONG STDCALL Release() = 0;

This corresponds to the definition of IUnknown that is defined by Microsoft as part of
the COM specification.

Note For information on IUnknown and its use, see Chapter 38, “Overview of COM
technologies” or the Microsoft documentation.

Unlike the case in Object Pascal, the C++Builder definition of IInterface is not
equivalent to its definition of IUnknown. Instead, IInterface is a descendant of
IUnknown that includes an additional method, Supports:

template <typename T>
HRESULT __stdcall Supports(DelphiInterface<T>& smartIntf)
{

return QueryInterface(__uuidof(T),
reinterpret_cast<void**>(static_cast<T**>(&smartIntf)));

}

Supports lets you obtain a DelphiInterface for another supported interface from the
object that implements IInterface. Thus, for example, if you have a DelphiInterface for
an interface IMyFirstInterface, and the implementing object also implements
IMySecondInterface (whose DelphiInterface type is _di_IMySecondInterface), you can
obtain the DelphiInterface for the second interface as follows:

_di_IMySecondInterface MySecondIntf;
MyFirstIntf->Supports(MySecondIntf);

13-4 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

The VCL and CLX use a mapping of IUnknown into Object Pascal. This mapping
converts the types used in the IUnknown methods to Object Pascal types, and
renames the AddRef and Release methods to _AddRef and _Release in order to indicate
that they should never be called directly. (In Object Pascal, the compiler
automatically generates the necessary calls to IUnknown methods.) When the
IUnknown (or IInterface) methods that VCL and CLX objects support are mapped back
into C++, this results in the following method signatures:

virtual HRESULT __stdcall QueryInterface(const GUID &IID, void *Obj);
int __stdcall _AddRef(void);
int __stdcall _Release(void);

This means that VCL and CLX objects that support IUnknown or IInterface in Object
Pascal do not support the versions of IUnknown and IInterface that appear in
C++Builder.

Creating classes that support IUnknown
Many classes in the VCL and CLX include interface support. In fact, the base class for
all VCL-style classes, TObject, has a GetInterface method that lets you obtain a
DelphiInterface class for any interface that an object instance supports. TComponent
and TInterfacedObject both implement the IInterface (IUnknown) methods. Thus, any
descendant of TComponent or TInterfacedObject that you create automatically inherits
support for the common methods of all Object Pascal interfaces. In Object Pascal,
when you create a descendant of either of these classes, you can support a new
interface by implementing only those methods introduced by the new interface,
relying on a default implementation for the inherited IInterface methods.

Unfortunately, because the signatures of the IUnknown and IInterface methods differ
between C++Builder and the versions used in VCL and CLX classes, VCL-style
classes that you create do not automatically include IInterface or IUnknown support,
even if they are derived (directly or indirectly) from TComponent or TInterfacedObject.
That is, to support any interfaces you define in C++ that descend from IUnknown or
IInterface, you must still add an implementation of the IUnknown methods.

The easiest way to implement the IUnknown methods in a class that descends from
TComponent or TInterfacedObject is to take advantage of the built-in IUnknown
support, in spite of the differences in function signatures. Simply add
implementations for the C++ versions of the IUnknown methods, delegating to the
inherited Object Pascal-based versions. For example:

virtual HRESULT __stdcall QueryInterface(const GUID& IID, void **Obj)
{

return TInterfacedObject::QueryInterface(IID, (void *)Obj);
}

virtual ULONG __stdcall AddRef()
{

return TInterfacedObject::_AddRef();
}

virtual ULONG __stdcall Release()
{

return TInterfacedObject::_Release();
}

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-5

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

By adding the previous three method implementations to a descendant of
TInterfacedObject, your class obtains full IUnknown or IInterface support.

Interfaced classes and lifetime management
The IUnknown methods of interface classes have implications for the way you
allocate and free the objects that implement the interface. When IUnknown is
implemented by a COM object, the object uses the IUnknown methods to keep track
of how many references to its interface are in use. When that reference count drops to
zero, the object automatically frees itself. TInterfacedObject implements the IUnknown
methods to perform this same type of lifetime management.

This interpretation of the IUnknown methods, however, is not strictly necessary. The
default implementation of the IUnknown methods provided by TComponent, for
example, ignores the reference count on the interface, so that the component does not
free itself when its reference count drops to zero. This is because TComponent relies
on the object specified by its Owner property to free it.

Some components use a hybrid of these two models. If their Owner property is
NULL, they use the reference count on their interface for lifetime management, and
free themselves when that reference count drops to zero. If they have an owner, they
ignore the reference counting and allow the owner to free them. Note that for such
hybrid objects, as well as for any other objects that use reference counting for lifetime
management, the objects are not automatically freed if the application creates the
object but never obtains an interface from it.

Object identity and instantiation

In C++, an instance of a class is an actual object. That object can be directly
manipulated, or it can be accessed indirectly through either a reference or a pointer to
it. For example, given a C++ class CPP_class with a constructor that takes no
arguments, the following are all valid instance variables of that class:

CPP_class by_value;// an object of type CPP_class
CPP_class& ref = by_value;// a reference to the object by_value, above
CPP_class* ptr = new CPP_class();// a pointer to an object of type CPP_class

By contrast, in Object Pascal a variable of type object always refers to the object
indirectly. The memory for all objects is dynamically allocated. For example, given an
Object Pascal class OP_class

ref: OP_class;
ref := OP_class.Create;

ref is a “reference” to an object of type OP_class. Translated to C++Builder code, it
would be

OP_class* ref = new OP_class;

Distinguishing C++ and Object Pascal references
Documentation frequently refers to an Object Pascal class instance variable as a
reference, but describes its behavior as that of a pointer. This is because it has

13-6 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

properties of both. An Object Pascal object reference is like a C++ pointer with the
following exceptions:

• An Object Pascal reference is implicitly dereferenced (in which case it acts more
like a C++ reference).

• An Object Pascal reference does not have pointer arithmetic as a defined
operation.

When comparing an Object Pascal reference with a C++ reference, there are also
similarities and differences. References in both languages are implicitly dereferenced,
however,

• An Object Pascal reference can be rebound, whereas a C++ reference cannot.

• An Object Pascal reference can be nil, whereas a C++ reference must refer to a
valid object.

Some of the design decisions underlying the VCL and CLX framework are based
upon the use of this type of instance variable. A pointer is the closest C++ language
construct to an Object Pascal reference. Consequently, nearly all VCL and CLX object
identifiers are translated into C++ pointers in C++Builder.

Note The Object Pascal var parameter type is a close match to a C++ reference. For more
information about var parameters, see “Var parameters” on page 13-16.

Copying objects
Unlike C++, Object Pascal does not have built-in compiler support for making a copy
of an object. This section describes the impact of this difference on assignment
operators and copy constructors for VCL-style classes.

Assignment operators
The Object Pascal assignment operator (:=) is not a class assignment operator
(operator=()). The assignment operator copies the reference, not the object. In the
following code, B and C both refer to the same object:

B, C: TButton;
B:= TButton.Create(ownerCtrl);
C:= B;

This example translates to the following code in C++Builder:

TButton *B = NULL;
TButton *C = NULL;
B = new TButton(ownerCtrl);
C = B;// makes a copy of the pointer, not the object

VCL-style classes in C++Builder follow the Object Pascal language rules for
assignment operators. This means that, in the following code, assignments between
dereferenced pointers are not valid because they attempt to copy the object, not the
pointer:

TVCLStyleClass *p = new TVCLStyleClass;
TVCLStyleClass *q = new TVCLStyleClass;
*p = *q;// not allowed for VCL style class objects

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-7

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Note For VCL-style classes, it is still valid to use C++ syntax to bind a reference. For
example, the following code is valid:

TVCLStyleClass *ptr = new TVCLStyleClass;
TVCLStyleClass &ref = *ptr;// OK for VCL style classes

Although this is not the same as using an assignment operator, the syntax is similar
enough that it is mentioned here for clarification and comparison.

Copy constructors
Object Pascal does not have built-in copy constructors. Consequently, VCL-style
classes in C++Builder do not have built-in copy constructors. The following example
code attempts to create a TButton pointer by using a copy constructor:

TButton *B = new TButton(ownerCtrl);
TButton *C = new TButton(*B);// not allowed for VCL style class objects

Do not write code that depends upon a built-in copy constructor for VCL and CLX
classes. To create a copy of a VCL-style class object in C++Builder, you can write code
for a member function that copies the object. Alternatively, descendants of the VCL
and CLX TPersistent class can override the Assign method to copy data from one
object to another. This is typically done, for example, in graphics classes such as
TBitmap and TIcon that contain resource images. Ultimately, the manner of copying
an object can be determined by the programmer (component writer); but be aware
that some of the copy methods used in standard C++ are not available for VCL-style
classes.

Objects as function arguments
As discussed previously, instance variables in C++ and in Object Pascal are not
identical. You should be aware of this when passing objects as arguments to
functions. In C++, objects can be passed to functions either by value, by reference, or
by pointer. In Object Pascal, when an object is passed by value to a function,
remember that the object argument is already a reference to an object. So, it is, in fact,
the reference that is passed by value, not the actual object. There is no Object Pascal
equivalent to passing an actual object by value as in C++. VCL-style objects passed to
functions follow the Object Pascal rules.

Object construction for C++Builder VCL/CLX classes

C++ and Object Pascal construct objects differently. This section is an overview of
this topic and a description of how C++Builder combines these two approaches.

C++ object construction
In standard C++, the order of construction is virtual base classes, followed by base
classes, and finally the derived class. The C++ syntax uses the constructor
initialization list to call base class constructors. The runtime type of the object is that
of the class of the current constructor being called. Virtual method dispatching
follows the runtime type of the object and changes accordingly during construction.

13-8 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Object Pascal object construction
In Object Pascal, only the constructor for the instantiated class is guaranteed to be
called; however, the memory for base classes is allocated. Constructing each
immediate base class is done by calling inherited in the corresponding derived
class’s constructor. By convention, VCL and CLX classes use inherited to call (non-
empty) base class constructors. Be aware, however, that this is not a requirement of
the language. The runtime type of the object is established immediately as that of the
instantiated class and does not change as base class constructors are called. Virtual
method dispatching follows the runtime type of the object and, therefore, does not
change during construction.

C++Builder object construction
VCL-style objects are constructed like Object Pascal objects, but using C++ syntax.
This means that the method and order of calling base class constructors follows C++
syntax using the initialization list for all non-VCL and CLX base classes and the first
immediate VCL or CLX ancestor. This VCL or CLX base class is the first class to be
constructed. It constructs its own base class, optionally, using inherited, following
the Object Pascal method. Therefore, the VCL and CLX base classes are constructed
in the opposite order from which you might expect in C++. Then the C++ base classes
are all constructed, from the most distant ancestor to the derived class. The runtime
type of the object and virtual method dispatching are Object Pascal-based.

Figure 13.1 illustrates the construction of an instance of a VCL-style class, MyDerived,
descended from MyBase, which is a direct descendant of TWinControl. MyDerived and
MyBase are implemented in C++. TWinControl is a VCL class implemented in Object
Pascal.

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-9

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Figure 13.1 Order of VCL-style object construction

Note that the order of construction might seem backwards to a C++ programmer
because it starts from the leaf-most ancestor to TObject for true VCL and CLX classes,
then constructs MyBase, and finally constructs the derived class.

Note TComponent does not call inherited because TPersistent does not have a constructor.
TObject has an empty constructor, so it is not called. If these class constructors were
called, the order would follow the diagram in which these classes appear in gray.

TObject
TWinControl

(constructor calls
inherited)

TPersistent

TComponent

TControl

TWinControl

MyBase

MyDerived

TControl
(constructor calls

inherited)

TComponent

TPersistent
(no constructor)

TObject
(empty constructor)

MyBase

MyDerived

Inheritance Order of construction

C++/Object Pascal
boundary

13-10 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

The object construction models in C++, Object Pascal, and C++Builder are
summarized in Table 13.1:

The following section describes the significance of these differences.

Calling virtual methods in base class constructors

Virtual methods invoked from the body of VCL or CLX base class constructors, that
is, classes implemented in Object Pascal, are dispatched as in C++, according to the
runtime type of the object. Because C++Builder combines the Object Pascal model of
setting the runtime type of an object immediately, with the C++ model of
constructing base classes before the derived class is constructed, calling virtual
methods from base class constructors for VCL-style classes can have subtle side-
effects. The impact of this is described below, then illustrated in an example of an
instantiated class that is derived from at least one base. In this discussion, the
instantiated class is referred to as the derived class.

Object Pascal model
In Object Pascal, programmers can use the inherited keyword, which provides
flexibility for calling base class constructors anywhere in the body of a derived class

Table 13.1 Object model comparison

C++ Object Pascal C++Builder

Order of construction
Virtual base classes, then base
classes, finally the derived
class.

Instantiated class constructor
is the first and only
constructor to be called
automatically. If subsequent
classes are constructed, they
are constructed from leaf-most
to root.

Most immediate VCL or CLX
base class, then construction
follows the Object Pascal
model, then construction
follows the C++ model (except
that no virtual base classes are
allowed).

Method of calling base class constructors
Automatically, from the
constructor initialization list.

Optionally, explicitly, and at
any time during the body of
the derived class constructor,
by using the inherited
keyword.

Automatically from the
constructor initialization list
through the most immediate
ancestor that is a VCL or CLX
base class constructor. Then
according to the Object Pascal
method, calling constructors
with inherited.

Runtime type of the object as it is being constructed
Changes, reflecting the type of
the current constructor class.

Established immediately as
that of the instantiated class.

Established immediately as
that of the instantiated class.

Virtual method dispatching
Changes according to the
runtime type of the object as
base class constructors are
called.

Follows the runtime type of
the object, which remains the
same throughout calls to all
class constructors.

Follows the runtime type of
the object, which remains the
same throughout calls to all
class constructors.

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-11

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

constructor. Consequently, if the derived class overrides any virtual methods that
depend upon setting up the object or initializing data members, this can happen
before the base class constructor is called and the virtual methods are invoked.

C++ model
The C++ syntax does not have the inherited keyword to call the base class
constructor at any time during the construction of the derived class. For the C++
model, the use of inherited is not necessary because the runtime type of the object is
that of the current class being constructed, not the derived class. Therefore, the
virtual methods invoked are those of the current class, not the derived class.
Consequently, it is not necessary to initialize data members or set up the derived
class object before these methods are called.

C++Builder model
In C++Builder, the VCL-style objects have the runtime type of the derived class
throughout calls to base class constructors. Therefore, if the base class constructor
calls a virtual method, the derived class method is invoked if the derived class
overrides it. If this virtual method depends upon anything in the initialization list or
body of the derived class constructor, the method is called before this happens. For
example, CreateParams is a virtual member function that is called indirectly in the
constructor of TWinControl. If you derive a class from TWinControl and override
CreateParams so that it depends on anything in your constructor, this code is
processed after CreateParams is called. This situation applies to any derived classes of
a base. Consider a class C derived from B, which is derived from A. Creating an
instance of C, A would also call the overridden method of B, if B overrides the
method but C does not.

Note Be aware of virtual methods like CreateParams that are not obviously called in
constructors, but are invoked indirectly.

Example: calling virtual methods
The following example compares C++ and VCL-style classes that have overridden
virtual methods. This example illustrates how calls to those virtual methods from
base class constructors are resolved in both cases. MyBase and MyDerived are
standard C++ classes. MyVCLBase and MyVCLDerived are VCL-style classes
descended from TObject. The virtual method what_am_I() is overridden in both
derived classes, but is called only in the base class constructors, not in derived class
constructors.

#include <sysutils.hpp>
#include <iostream.h>
// non-VCL style classes
class MyBase {
public:

MyBase() { what_am_I(); }
virtual void what_am_I() { cout << "I am a base" << endl; }

};
class MyDerived : public MyBase {
public:

virtual void what_am_I() { cout << "I am a derived" << endl; }

13-12 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

};
// VCL style classes
class MyVCLBase : public TObject {
public:

__fastcall MyVCLBase() { what_am_I(); }
virtual void __fastcall what_am_I() { cout << "I am a base" << endl; }

};
class MyVCLDerived : public MyVCLBase {
public:

virtual void __fastcall what_am_I() { cout << "I am a derived" << endl; }
};
int main(void)
{

MyDerived d;// instantiation of the C++ class
MyVCLDerived *pvd = new MyVCLDerived;// instantiation of the VCL style class
return 0;

}

The output of this example is

I am a base
I am a derived

because of the difference in the runtime types of MyDerived and MyVCLDerived
during the calls to their respective base class constructors.

Constructor initialization of data members for virtual functions
Because data members may be used in virtual functions, it is important to
understand when and how they are initialized. In Object Pascal, all uninitialized data
is zero-initialized. This applies, for example, to base classes whose constructors are
not called with inherited. In standard C++, there is no guarantee of the value of
uninitialized data members. The following types of class data members must be
initialized in the initialization list of the class’s constructor:

• References
• Data members with no default constructor

Nevertheless, the value of these data members, or those initialized in the body of the
constructor, is undefined when the base class constructors are called. In C++Builder,
the memory for VCL-style classes is zero-initialized.

Note Technically, it is the memory of the VCL or CLX class that is zero, that is the bits are
zero, the values are actually undefined. For example, a reference is zero.

A virtual function which relies upon the value of member variables initialized in the
body of the constructor or in the initialization list may behave as if the variables were
initialized to zero. This is because the base class constructor is called before the
initialization list is processed or the constructor body is entered. The following
example illustrates this:

#include <sysutils.hpp>

class Base : public TObject {
public:

__fastcall Base() { init(); }
virtual void __fastcall init() { }

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-13

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

};

class Derived : public Base {
public:

Derived(int nz) : not_zero(nz) { }
virtual void __fastcall init()
{

if (not_zero == 0)
throw Exception("not_zero is zero!");

}
private:

int not_zero;
};

int main(void)
{

Derived *d42 = new Derived(42);
return 0;

}

This example throws an exception in the constructor of Base. Because Base is
constructed before Derived, not_zero, has not yet been initialized with the value of 42
passed to the constructor. Be aware that you cannot initialize data members of your
VCL-style class before its base class constructors are called.

Object destruction

Two mechanisms concerning object destruction work differently in C++ from the
way they do in Object Pascal. These are:

• Destructors called because of exceptions thrown from constructors
• Virtual methods called from destructors

VCL-style classes combine the methods of these two languages. The issues are
discussed below.

Exceptions thrown from constructors
Destructors are called differently in C++ than in Object Pascal if an exception is
thrown during object construction. Take as an example, class C, derived from class B,
which is derived from class A:

class A
{

// body
};

class B: public A
{

// body
};

class C: public B
{

// body
};

13-14 D e v e l o p e r ’ s G u i d e

C + + a n d O b j e c t P a s c a l o b j e c t m o d e l s

Consider the case where an exception is raised in the constructor of class B when
constructing an instance of C. What results in C++, Object Pascal, and VCL-style
classes is described here:

• In C++, first the destructors for all completely constructed object data members of
B are called, then A’s destructor is called, then the destructors for all completely
constructed data members of A are called. However, the destructors for B and C
are not called.

• In Object Pascal, only the instantiated class destructor is called automatically. This
is the destructor for C. As with constructors, it is entirely the programmer’s
responsibility to call inherited in destructors. In this example, if we assume all of
the destructors call inherited, then the destructors for C, B, and A are called in that
order. Moreover, whether or not inherited was already called in B’s constructor
before the exception occurred, A’s destructor is called because inherited was
called in B’s destructor. Calling the destructor for A is independent of whether its
constructor was actually called. More importantly, because it is common for
constructors to call inherited immediately, the destructor for C is called whether
or not the body of its constructor was completely executed.

• In VCL-style classes, the VCL or CLX bases (implemented in Object Pascal) follow
the Object Pascal method of calling destructors. The derived classes (implemented
in C++) do not follow either language method exactly. What happens is that all the
destructors are called; but the bodies of those that would not have been called,
according to C++ language rules, are not entered.

Classes implemented in Object Pascal thereby provide an opportunity to process any
cleanup code you write in the body of the destructor. This includes code that frees
memory for sub-objects (data members that are objects) that are constructed before a
constructor exception occurs. Be aware that, for VCL-style classes, the clean-up code
may not be processed for the instantiated class or for its C++-implemented bases,
even though the destructors are called.

For more information on handling exceptions in C++Builder, refer to “VCL/CLX
exception handling” on page 12-15.

Virtual methods called from destructors
Virtual method dispatching in destructors follows the same pattern that it did for
constructors. This means that for VCL-style classes, the derived class is destroyed
first, but the runtime type of the object remains that of the derived class throughout
subsequent calls to base class destructors. Therefore, if virtual methods are called in
VCL or CLX base class destructors, you are potentially dispatching to a class that has
already destroyed itself.

AfterConstruction and BeforeDestruction

TObject introduces two virtual methods, BeforeDestruction and AfterConstruction, that
allow programmers to write code that is processed before and after objects are
destroyed and created, respectively. AfterConstruction is called after the last

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-15

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

constructor is called. BeforeDestruction is called before the first destructor is called.
These methods are public and are called automatically.

Class virtual functions

Object Pascal has the concept of a class virtual function. The C++ analogy would be a
static virtual function, if it were possible; but C++ has no exact counterpart to this
type of function. These functions are safely called internally from the VCL and CLX.
However, you should never call a function of this type in C++Builder. You can
identify these functions in the header files because they are preceded by the
following comment:

/* virtual class method */

Support for Object Pascal data types and language concepts
To support the VCL and CLX, C++Builder implements, translates, or otherwise maps
most Object Pascal data types, constructs, and language concepts to the C++
language.This is done in the following ways:

• Typedefs to native C++ types
• Classes, structs, and class templates
• C++ language counterparts
• Macros
• Keywords that are ANSI-conforming language extensions

Not all aspects of the Object Pascal language map cleanly to C++. Occasionally, using
these parts of the language can lead to unexpected behavior in your application. For
example:

• Some types exist in both Object Pascal and in C++, but are defined differently.
These can require caution when sharing code between these two languages.

• Some extensions were added to Object Pascal for the purpose of supporting
C++Builder. Occasionally these can have subtle interoperability impact.

• Object Pascal types and language constructs that have no mapping to the C++
language should be avoided in C++Builder when sharing code between these
languages.

This section summarizes how C++Builder implements the Object Pascal language,
and suggests when to use caution.

Typedefs

Most Object Pascal intrinsic data types are implemented in C++Builder using a
typedef to a native C++ type. These are found in sysmac.h. Whenever possible you
should use the native C++ type, rather than the Object Pascal type.

13-16 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Classes that support the Object Pascal language

Some Object Pascal data types and language constructs that do not have a built-in
C++ counterpart are implemented as classes or structs. Class templates are also used
to implement data types as well as Object Pascal language constructs, like set, from
which a specific type can be declared. The declarations for these are found in the
following header files:

• dstring.h
• wstring.h
• sysclass.h
• syscomp.h
• syscurr.h
• sysdyn.h
• sysopen.h
• sysset.h
• systdate.h
• systobj.h
• systvar.h
• sysvari.h

The classes implemented in these header files were created to support native types
used in Object Pascal routines. They are intended to be used when calling these
routines in VCL or CLX-based code.

C++ language counterparts to the Object Pascal language

Object Pascal var and untyped parameters are not native to C++. Both have C++
language counterparts that are used in C++Builder.

Var parameters
Both C++ and Object Pascal have the concept of “pass by reference.” These are
modifiable arguments. In Object Pascal they are called var parameters. The syntax for
functions that take a var parameter is

procedure myFunc(var x : Integer);

In C++, you should pass these types of parameters by reference:

void myFunc(int& x);

Both C++ references and pointers can be used to modify the object. However, a
reference is a closer match to a var parameter because, unlike a pointer, a reference
cannot be rebound and a var parameter cannot be reassigned; although, either can
change the value of what it references.

Untyped parameters
Object Pascal allows parameters of an unspecified type. These parameters are passed
to functions with no type defined. The receiving function must cast the parameter to
a known type before using it. C++Builder interprets untyped parameters as pointers-

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-17

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

to-void (void *). The receiving function must cast the void pointer to a pointer of the
desired type. Following is an example:

int myfunc(void* MyName)
{

// Cast the pointer to the correct type; then dereference it.
int* pi = static_cast<int*>(MyName);
return 1 + *pi;

}

Open arrays

Object Pascal has an “open array” construct that permits an array of unspecified size
to be passed to a function. While there is no direct support in C++ for this type, an
Object Pascal function that has an open array parameter can be called by explicitly
passing both pointer to the first element of an array, and the value of the last index
(number of array elements, minus one). For example, the Mean function in math.hpp
has this declaration in Object Pascal:

function Mean(Data: array of Double): Extended;

The C++ declaration is

Extended __fastcall Mean(const double * Data, const int Data_Size);

The following code illustrates calling the Mean function from C++:

double d[] = { 3.1, 4.4, 5.6 };

// explicitly specifying last index
long double x = Mean(d, 2);

// better: use sizeof to ensure that the correct value is passed
long double y = Mean(d, (sizeof(d) / sizeof(d[0])) - 1);

// use macro in sysopen.h
long double z = Mean(d, ARRAYSIZE(d) - 1);

Note In cases similar to the above example, but where the Object Pascal function takes a
var parameter, the C++ function declaration parameters will not be const.

Calculating the number of elements
When using sizeof(), the ARRAYSIZE macro, or the EXISTINGARRAY macro to
calculate the number of elements in an array, be careful not to use a pointer to the
array. Instead, pass the name of the array itself:

double d[] = { 3.1, 4.4, 5.6 };
int n = ARRAYSIZE(d); // sizeof(d)/sizeof(d[0]) => 24/8 => 3

double *pd = d;
int m = ARRAYSIZE(pd); // sizeof(pd)/sizeof(pd[0]) => 4/8 => 0 => Error!

Taking the “sizeof” an array is not the same as taking the “sizeof” a pointer. For
example, given the following declarations,

double d[3];
double *p = d;

13-18 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

taking the size of the array as shown here

sizeof(d)/sizeof d[0]

does not evaluate the same way as taking the size of the pointer:

sizeof(p)/sizeof(p[0])

This example and those following use the ARRAYSIZE macro instead of the sizeof()
operator. For more information about the ARRAYSIZE macro, see the online Help.

Temporaries
Object Pascal provides support for passing unnamed temporary open arrays to
functions. There is no syntax for doing this in C++. However, since variable
definitions can be intermingled with other statements, one approach is to simply
provide the variable with a name.

Object Pascal:

Result := Mean([3.1, 4.4, 5.6]);

C++, using a named “temporary”:

double d[] = { 3.1, 4.4, 5.6 };
return Mean(d, ARRAYSIZE(d) - 1);

To restrict the scope of the named “temporary” to avoid clashing with other local
variables, open a new scope in place:

long double x;
{

double d[] = { 4.4, 333.1, 0.0 };
x = Mean(d, ARRAYSIZE(d) - 1);

}

For another solution, see “OPENARRAY macro” on page 13-19.

array of const
Object Pascal supports a language construct called an array of const. This argument
type is the same as taking an open array of TVarRec by value.

The following is an Object Pascal code segment declared to accept an array of const:

function Format(const Format: string; Args: array of const): string;

In C++, the prototype is

AnsiString __fastcall Format(const AnsiString Format,
TVarRec const *Args, const int Args_Size);

The function is called just like any other function that takes an open array:

void show_error(int error_code, AnsiString const &error_msg)
{

TVarRec v[] = { error_code, error_msg };
ShowMessage(Format("%d: %s", v, ARRAYSIZE(v) - 1));

}

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-19

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

OPENARRAY macro
The OPENARRAY macro defined in sysopen.h can be used as an alternative to using
a named variable for passing a temporary open array to a function that takes an open
array by value. The use of the macro looks like

OPENARRAY(T, (value1, value2, value3)) // up to 19 values

where T is the type of open array to construct, and the value parameters will be used
to fill the array. The parentheses around the value arguments are required. For
example:

void show_error(int error_code, AnsiString const &error_msg)
{

ShowMessage(Format("%d: %s", OPENARRAY(TVarRec, (error_code, error_msg))));
}

Up to 19 values can be passed when using the OPENARRAY macro. If a larger array
is needed, an explicit variable must be defined. Additionally, using the
OPENARRAY macro incurs an additional (but small) runtime cost, due both to the
cost of allocating the underlying array, and to an additional copy of each value.

EXISTINGARRAY macro
The EXISTINGARRAY macro defined in sysopen.h can be used to pass an existing
array where an open array is expected. The use of the macro looks like

long double Mean(const double *Data, const int Data_Size);
double d[] = { 3.1, 3.14159, 2.17128 };
Mean(EXISTINGARRAY (d));

Note The section “Calculating the number of elements” on page 13-17 also applies to the
EXISTINGARRAY macro.

C++ functions that take open array arguments
When writing a C++ function that will be passed an open array from Object Pascal, it
is important to explicitly maintain “pass by value” semantics. In particular, if the
declaration for the function corresponds to “pass by value”, be sure to explicitly copy
any elements before modifying them. In Object Pascal, an open array is a built-in
type and can be passed by value. In C++, the open array type is implemented using a
pointer, which will modify the original array unless you make a local copy of it.

Types defined differently

Types that are defined differently in Object Pascal and C++ are not normally cause
for concern. The rare cases in which they are problematic may be subtle. For this
reason, these types are mentioned in this section.

Boolean data types
The True value for the Object Pascal ByteBool, WordBool, and LongBool data types is
represented in Object Pascal as –1. False is represented as 0.

Note The Boolean data type remains unchanged (True = 1, False = 0).

13-20 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

While the C++ bool type converts these Object Pascal types correctly, there is a
problem when sharing a WinAPI function or any other function that uses a
Window’s BOOL type, which is represented as 1. If a value is passed to a parameter
of type BOOL, it evaluates to –1 in Object Pascal and to 1 in C++. Therefore, if you are
sharing code between these two languages, any comparison of the two identifiers
may fail unless they are both 0 (False, false). As a workaround, you can use the
following method of comparison:

!A == !B;

Table 13.2 shows the results of using this method of equality comparison:

With this method of comparison, any set of values will evaluate correctly.

Char data types
The char type in C++ is a signed type, whereas it is an unsigned type in Object Pascal.
It is extremely rare that a situation would occur in which this difference would be a
problem when sharing code.

Delphi interfaces

The Object Pascal compiler handles many of the details in working with interfaces
automatically. It automatically augments the reference count on an interface when
application code acquires an interface pointer and decrements that reference count
when the interface goes out of scope.

In C++Builder, the DelphiInterface template class provides some of that convenience
for C++ interface classes. For properties and methods in the VCL and CLX that use
interface types in Object Pascal, the C++ wrappers use a DelphiInterface that is built
using the underlying interface class.

The DelphiInterface constructor, copy constructor, assignment operator, and
destructor all increment or decrement reference counts as needed. However,
DelphiInterface is not quite as convenient as the compiler support for interfaces in
Object Pascal. Other operators that provide access to the underlying interface pointer
do not handle reference counting because the class can’t always tell where that is
appropriate. You may need to explicitly call AddRef or Release to ensure proper
reference counting.

Table 13.2 Equality comparison !A == !B of BOOL variables

Object Pascal C++ !A == !B

0 (False) 0 (false) !0 == !0 (TRUE)

0 (False) 1 (true) !0 == !1 (FALSE)

–1 (True) 0 (false) !–1 == !0 (FALSE)

–1 (True) 1 (true) !–1 == !1 (TRUE)

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-21

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Resource strings

If you have code in a Pascal unit that uses resource strings, the Pascal compiler
(DCC32) generates a global variable and a corresponding preprocessor macro for
each resource string when it generates the header file. The macros are used to
automatically load the resource strings, and are intended to be used in your C++
code in all places where the resource string is referenced. For example, the
resourcestring section in the Object Pascal code could contain

unit borrowed;
interface
resourcestring

Warning = 'Be careful when accessing string resources.';
implementation
begin
end.

The corresponding code generated by the Pascal compiler for C++Builder would be

extern PACKAGE System::Resource ResourceString _Warning;
#define Borrowed_Warning System::LoadResourceString(&Borrowed::_Warning)

This enables you to use the exported Object Pascal resource string without having to
explicitly call LoadResourceString.

Default parameters

The Pascal compiler now accepts default parameters for compatibility with C++
regarding constructors. Unlike C++, Object Pascal constructors can have the same
number and types of parameters, since they are uniquely named. In such cases,
dummy parameters are used in the Object Pascal constructors to distinguish them
when the C++ header files are generated. For example, for a class named
TInCompatible, the Object Pascal constructors could be

constructor Create(AOwner: TComponent);
constructor CreateNew(AOwner: TComponent);

which would translate, without default parameters, to the following ambiguous code
in C++ for both constructors:

__fastcall TInCompatible(Classes::TComponent* Owner);// C++ version of the Pascal Create
constructor

__fastcall TInCompatible(Classes::TComponent* Owner);// C++ version of the Pascal CreateNew
constructor

However, using default parameters, for a class named TCompatible, the Object Pascal
constructors are

constructor Create(AOwner: TComponent);
constructor CreateNew(AOwner: TComponent; Dummy: Integer = 0);

13-22 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

They translate to the following unambiguous code in C++Builder:

__fastcall TCompatible(Classes::TComponent* Owner);// C++ version of the Pascal Create
constructor

__fastcall TCompatible(Classes::TComponent* Owner, int Dummy);// C++ version of the Pascal
CreateNew constructor

Note The main issue regarding default parameters is that DCC32 strips out the default
value of the default parameter. Failure to remove the default value would lead to the
ambiguity that would occur if there were not defaults at all. You should be aware of
this when using VCL or CLX classes or when using third-party components.

Runtime type information

Object Pascal has language constructs dealing with RTTI. Some have C++
counterparts. These are listed in Table 13.3:

In Table 13.3, ClassName is a TObject method that returns a string containing the name
of the actual type of the object, regardless of the type of the declared variable. Other
RTTI methods introduced in TObject do not have C++ counterparts. These are all
public and are listed here:

• ClassInfo returns a pointer to the runtime type information (RTTI) table of the
object type.

• ClassNameIs determines whether an object is of a specific type.

• ClassParent returns the type of the immediate ancestor of the class. In the case of
TObject, ClassParent returns nil because TObject has no parent. It is used by the is
and as operators, and by the InheritsFrom method.

• ClassType dynamically determines the actual type of an object. It is used internally
by the Object Pascal is and as operators.

• FieldAddress uses RTTI to obtain the address of a published field. It is used
internally by the steaming system.

• InheritsFrom determines the relationship of two objects. It is used internally by the
Object Pascal is and as operators.

• MethodAddress uses RTTI to find the address of a method. It is used internally by
the steaming system.

Table 13.3 Examples of RTTI mappings from Object Pascal to C++

Object Pascal RTTI C++ RTTI

if Sender is TButton... if (dynamic_cast <TButton*> (Sender)
// dynamic_cast returns NULL on failure.

b := Sender as TButton;
(* raises an exception on failure *)

TButton& ref_b = dynamic_cast <TButton&> (*Sender)
// throws an exception on failure.

ShowMessage(Sender.ClassName); ShowMessage(typeid(*Sender).name());

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-23

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

Some of these methods of TObject are primarily for internal use by the compiler or
the streaming system. For more information about these methods, see the online
Help.

Unmapped types

6-byte Real types
The old Object Pascal 6-byte floating-point format is now called Real48. The old Real
type is now a double. C++ does not have a counterpart for the Real48 type.
Consequently, you should not use Object Pascal code that includes this type with
C++ code. If you do, the header file generator will generate a warning.

Arrays as return types of functions
In Object Pascal a function can take as an argument, or return as a type, an array. For
example, the syntax for a function GetLine returning an array of 80 characters is

type
Line_Data = array[0..79] of char;

function GetLine: Line_Data;

C++ has no counterpart to this concept. In C++, arrays are not allowed as return
types of functions. Nor does C++ accept arrays as the type of a function argument.

Be aware that, although the VCL and CLX do not have any properties that are arrays,
the Object Pascal language does allow this. Because properties can use Get and Set
read and write methods that take and return values of the property’s type, you
cannot have a property of type array in C++Builder.

Note Array properties, which are also valid in Object Pascal, are not a problem in C++
because the Get method takes an index value as a parameter, and the Set method
returns an object of the type contained by the array. For more information about
array properties, see “Creating array properties” on page 47-8.

Keyword extensions

This section describes ANSI-conforming keyword extensions implemented in
C++Builder to support the VCL and CLX. For a complete list of keywords and
keyword extensions in C++Builder, see the online Help.

__classid
The __classid operator is used by the compiler to generate a pointer to the vtable for
the specified classname. This operator is used to obtain the meta class from a class.

Syntax __classid(classname)

13-24 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

For example, __classid is used when registering property editors, components, and
classes, and with the InheritsFrom method of TObject. The following code illustrates
the use of __classid for creating a new component derived from TWinControl:

namespace Ywndctrl
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(MyWndCtrl)};
RegisterComponents("Additional", classes, 0);

}
}

__closure
The __closure keyword is used to declare a special type of pointer to a member
function. In standard C++, the only way to get a pointer to a member function is to
use the fully qualified member name, as shown in the following example:

class base
{

public:
void func(int x) { };

};

typedef void (base::* pBaseMember)(int);

int main(int argc, char* argv[])
{
 base baseObject;

pBaseMember m = &base::func; // Get pointer to member ‘func’

// Call ‘func’ through the pointer to member
(baseObject.*m)(17);
return 0;

}

However, you cannot assign a pointer to a member of a derived class to a pointer to a
member of a base class. This rule (called contravariance) is illustrated in the following
example:

class derived: public base
{

public:
void new_func(int i) { };

};

int main(int argc, char* argv[])
{
 derived derivedObject;

pBaseMember m = &derived::new_func; // ILLEGAL

return 0;
}

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-25

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

The __closure keyword extension allows you to skirt this limitation, and more. Using
a closure, you can get a pointer to member function for an object (i.e. a particular
instance of a class). The object can be any object, regardless of its inheritance
hierarchy. The object’s this pointer is automatically used when calling the member
function through the closure. The following example shows how to declare and use a
closure. The base and derived classes provided earlier are assumed to be defined.

int main(int argc, char* argv[])
{
 derived derivedObject;

void (__closure *derivedClosure)(int);

derivedClosure = derivedObject.new_func; // Get a pointer to the ‘new_func’ member.
// Note the closure is associated with the
// particular object, ‘derivedObject’.

derivedClosure(3); // Call ‘new_func’ through the closure.
return 0;

}

Closures also work with pointers to objects, as illustrated in this example:

void func1(base *pObj)
{

// A closure taking an int argument and returning void.
void (__closure *myClosure)(int);

// Initialize the closure.
myClosure = pObj->func;

// Use the closure to call the member function.
myClosure(1);

 return;
}

int main(int argc, char* argv[])
{
 derived derivedObject;

void (__closure *derivedClosure)(int);

derivedClosure = derivedObject.new_func; // Same as before...
derivedClosure(3);

// We can use pointers to initialize a closure, too.
// We can also get a pointer to the ‘func’ member function
// in the base class.
func1(&derivedObject);
return 0;

}

Notice that we are passing a pointer to an instance of the derived class, and we are
using it to get a pointer to a member function in the base class - something standard
C++ does not allow us to do.

Closures are a key part of the C++ Builder RAD environment. They give us the
ability to assign an event handler in the Object Inspector. For example, a TButton
object has an event called OnClick. In the TButton class, the OnClick event is a

13-26 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

property that uses the __closure keyword extension in its declaration. The __closure
keyword allows us to assign a member function of another class (typically a member
function in a TForm object) to the property. When you place a TButton object on a
form, and then create a handler for the button’s OnClick event, C++ Builder creates a
member function in the button’s TForm parent, and assigns that member function to
the OnClick event of TButton. This way, the event handler is associated with that
particular instance of TButton, and no other.

For more information about events and closures, see Chapter 48, “Creating events.”

__property
The __property keyword declares an attribute of a class. Properties appear to the
programmer just like any other attribute (field) of a class. However, like its Object
Pascal counterpart, C++ Builder’s __property keyword adds significantly more
functionality beyond just examining and changing the value of the attribute. Since
property attributes completely control access to the property, there are no restrictions
on how you implement the property within the class itself.

Syntax

__property type propertyName[index1Type index1][indexNType indexN] = { attributes };

where

• type is an intrinsic or previously declared data type.
• propertyName is any valid identifier.
• indexNType is an intrinsic or previously declared data type.
• indexN is the name of an index parameter that will be passed to the property’s read

and write functions.
• attributes is a comma separated sequence of read, write, stored, default (or

nodefault), or index.

The indexN parameters in square brackets are optional. If present, they declare an
array property. The index parameters are passed to the read and write methods of
the array property.

The following example shows some simple property declarations:

class PropertyExample {
private:

int Fx,Fy;
float Fcells[100][100];

protected:
int readX() { return(Fx); }
void writeX(int newFx) { Fx = newFx; }

double computeZ() {
// Do some computation and return a floating point value...
return(0.0);

}

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-27

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

float cellValue(int row, int col) { return(Fcells[row][col]); }

public:
__property int X = { read=readX, write=writeX };
__property int Y = { read=Fy };
__property double Z = { read=computeZ };
__property float Cells[int row][int col] = { read=cellValue };

};

This example shows several property declarations. Property X has read-write access,
through the member functions readX and writeX, respectively. Property Y
corresponds directly to the member variable Fy, and is read-only. Property Z is a
read-only value that is computed; it is not stored as a data member in the class.
Finally, the Cells property demonstrates an array property with two indices. The next
example shows how you would access these properties in your code:

PropertyExample myPropertyExample;
myPropertyExample.X = 42; // Evaluates to: myPropertyExample.WriteX(42);
int myVal1 = myPropertyExample.Y; // Evaluates to: myVal1 = myPropertyExample.Fy;
double myVal2 = myPropertyExample.Z; // Evaluates to: myVal2 = myPropertyExample.ComputeZ();
float cellVal = myPropertyExample[3][7]; // Evaluates to:

// cellVal = myPropertyExample.cellValue(3,7);

Properties have many other variations and features not shown in this example.
Properties can also:

• Associate the same read or write method with more than one property, by using
the index attribute

• Have default values
• Be stored in a form file
• Extend a property defined in a base class

For more information about properties, see Chapter 47, “Creating properties.”

__published
The __published keyword specifies that properties in that section are displayed in
the Object Inspector, if the class is on the Component palette. Only classes derived
from TObject can have __published sections.

The visibility rules for published members are identical to those of public members.
The only difference between published and public members is that Object Pascal-
style runtime type information (RTTI) is generated for data members and properties
declared in a __published section. RTTI enables an application to dynamically query
the data members, member functions, and properties of an otherwise unknown class
type.

Note No constructors or destructors are allowed in a __published section. Properties,
Pascal intrinsic or VCL or CLX derived data-members, member functions, and
closures are allowed in a __published section. Fields defined in a __published
section must be of a class type. Properties defined in a __published section cannot be
array properties. The type of a property defined in a __published section must be an
ordinal type, a real type, a string type, a small set type, a class type, or a method
pointer type.

13-28 D e v e l o p e r ’ s G u i d e

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

The __declspec keyword extension

Some arguments to the __declspec keyword extension provide language support for
the VCL and CLX. These arguments are listed below. Macros for the declspec
arguments and combinations of them are defined in sysmac.h. In most cases you do
not need to specify these. When you do need to add them, you should use the
macros.

__declspec(delphiclass)
The delphiclass argument is used for declarations for classes derived from TObject.
These classes will be created with the following compatibility:

• Object Pascal-compatible RTTI
• VCL (CLX)-compatible constructor/destructor behavior
• VCL (CLX)-compatible exception handling

A VCL or CLX-compatible class has the following restrictions:

• No virtual base classes are allowed.

• No multiple inheritance is allowed except for the case described in “Inheritance
and interfaces” on page 13-2.

• Must be dynamically allocated by using the global new operator.

• Must have a destructor.

• Copy constructors and assignment operators are not compiler-generated for VCL-
or CLX- derived classes.

A class declaration that is translated from Object Pascal will need this modifier if the
compiler needs to know that the class is derived from TObject.

__declspec(delphireturn)
The delphireturn argument is for internal use only by the VCL and CLX in
C++Builder. It is used for declarations of classes that were created in C++Builder to
support Object Pascal’s built-in data types and language constructs because they do
not have a native C++ type. These include Currency, AnsiString, Variant, TDateTime,
and Set. The delphireturn argument marks C++ classes for VCL- or CLX-compatible
handling in function calls as parameters and return values. This modifier is needed
when passing a structure by value to a function between Object Pascal and C++.

__declspec(delphirtti)
The delphirtti argument causes the compiler to include runtime type information in
a class when it is compiled. When this modifier is used, the compiler generates
runtime type information for all fields, methods, and properties that are declared in a
published section. For interfaces, the compiler generates runtime type information
for all methods of the interface. If a class is compiled with runtime type information,
all of its descendants also include runtime type information. Because the class
TPersistent is compiled with runtime type information, this means that there is no
need to use this modifier with any classes you create that have TPersistent as an

C + + l a n g u a g e s u p p o r t f o r t h e V C L a n d C L X 13-29

S u p p o r t f o r O b j e c t P a s c a l d a t a t y p e s a n d l a n g u a g e c o n c e p t s

ancestor. This modifier is primarily used for interfaces in applications that
implement or use Web Services.

__declspec(dynamic)
The dynamic argument is used for declarations for dynamic functions. Dynamic
functions are similar to virtual functions except that they are stored only in the
vtables for the objects that define them, not in descendant vtables. If you call a
dynamic function, and that function is not defined in your object, the vtables of its
ancestors are searched until the function is found. Dynamic functions are only valid
for classes derived from TObject.

__declspec(hidesbase)
The hidesbase argument preserves Object Pascal program semantics when porting
Object Pascal virtual and override functions to C++Builder. In Object Pascal, virtual
functions in base classes can appear in the derived class as a function of the same
name, but which is intended to be a completely new function with no explicit relation
to the earlier one.

The compilers use the HIDESBASE macro, defined in sysmac.h, to specify that these
types of function declarations are completely separate. For example, if a base class T1
declares a virtual function, func, taking no arguments, and its derived class T2
declared a function with the same name and signature, DCC32 -jphn would produce
an HPP file with the following prototype:

 virtual void T1::func(void);
 HIDESBASE void T2::func(void);

Without the HIDESBASE declaration, the C++ program semantics indicate that
virtual function T1::func() is being overridden by T2::func().

__declspec(package)
The package argument indicates that the code defining the class can be compiled in a
package. This modifier is auto-generated by the compiler when creating packages in
the IDE. See Chapter 15, “Working with packages and components” for more
information about packages.

__declspec(pascalimplementation)
The pascalimplementation argument indicates that the code defining the class was
implemented in Object Pascal. This modifier appears in an Object Pascal portability
header file with an .hpp extension.

__declspec(uuid)
The uuid argument associates a class with a globally unique identifier (GUID). This
can be used with any class, but is typically used with classes that represent Object
Pascal interfaces (or COM interfaces). You can retrieve the GUID of a class that was
declared using this modifier by calling the __uuidof directive.

13-30 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-1

C h a p t e r

14
Chapter14Developing cross-platform

applications
You can use C++Builder to develop cross-platform 32-bit applications that run on
both the Windows and Linux operating systems. Cross-platform applications use
CLX components and don’t make any operating system-specific API calls. To
develop a cross-platform application, either create a new CLX application or modify
an existing Windows application. Then compile and deploy it on the platform you
are running it on. For Windows, use C++Builder. For Linux, a Borland C++ solution
is not yet available, but you can prepare ahead of time by developing the application
with C++Builder today.

This chapter describes how to change C++Builder applications so they can compile
on Linux and how to write code that is platform-independent and portable between
the two environments. It also includes information on the differences between
developing applications on Windows and Linux.

Creating cross-platform applications
You create cross-platform applications in the same way as you create any C++Builder
application. You need to use CLX visual and nonvisual components, and you should
not use operating system specific APIs if you want the application to be completely
cross-platform. (See “Writing portable code” on page 14-15 for tips on writing cross-
platform applications.)

To create a cross-platform application:

1 In the IDE, choose File|New|CLX application.
The Component palette shows the pages and components that can be used in CLX
applications.

2 Develop your application within the IDE.

14-2 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

3 Compile and test the application. Review any error messages to see where
additional changes need to be made.

Note When a C++Builder solution is available for Linux, you can compile and test your
application on Linux.

Once you port your application to Linux, you will need to reset your project options.
That’s because the .dof file which stores the project options is recreated on Linux with
a different extension (with the default options set).

The form file in cross-platform applications has an extension of .xfm instead of .dfm.
This is to distinguish cross-platform forms that use CLX components from forms that
use VCL components. An .xfm form file works on both Windows or Linux but a .dfm
form only works on Windows.

For information on writing platform-independent database or Internet applications,
see “Cross-platform database applications” on page 14-19 and “Cross-platform
Internet applications” on page 14-25.

Porting Windows applications to Linux
If you have C++Builder applications that were written for the Windows
environment, you can prepare them for the Linux environment. How easy it will be
depends on the nature and complexity of the application and how many explicit
Windows dependencies there are.

The following sections describe some of the major differences between the Windows
and Linux environments and provide guidelines on how to get started porting an
application.

Porting techniques

The following are different approaches you can take to port an application from one
platform to another:

Platform-specific ports
Platform-specific ports tend to be time-consuming, expensive, and only produce a
single targeted result. They create different code bases, which makes them
particularly difficult to maintain. However, each port is designed for a specific
operating system and can take advantage of platform-specific functionality. Thus, the
application typically runs faster.

Table 14.1 Porting techniques

Technique Description

Platform-specific port Targets an operating system and underlying APIs

Cross-platform port Targets a cross-platform API

Windows emulation Leaves the code alone and ports the API it uses

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-3

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Cross-platform ports
Cross-platform ports tend to be time-saving because the ported applications target
multiple platforms. However, the amount of work involved in developing cross-
platform applications is highly dependent on the existing code. If code has been
developed without regard for platform independence, you may run into scenarios
where platform-independent logic and platform-dependent implementation are
mixed together.

The cross-platform approach is the preferable approach because business logic is
expressed in platform-independent terms. Some services are abstracted behind an
internal interface that looks the same on all platforms, but has a specific
implementation on each. C++Builder’s runtime library is an example of this. The
interface is very similar on both platforms, although the implementation may be
vastly different. You should separate cross-platform parts, then implement specific
services on top. In the end, this approach is the least expensive solution, because of
reduced maintenance costs due to a largely shared source base and an improved
application architecture.

Windows emulation ports
Windows emulation is the most complex method and it can be very costly, but the
resulting Linux application will look most similar to an existing Windows
application. This approach involves implementing Windows functionality on Linux.
From an engineering point of view, this solution is very hard to maintain.

Where you want to emulate Windows APIs, you can include two distinct sections
using #ifdefs to indicate sections of the code that apply specifically to Windows or
Linux.

Porting your application

If you are porting an application that you want to run on both Windows and Linux,
you need to modify your code or use #ifdefs to indicate sections of the code that
apply specifically to Windows or Linux.

Follow these general steps to port your VCL application to CLX:

1 Open the project containing the application you want to change in C++Builder.

2 Copy .dfm files to .xfm files of the same name (for example, rename unit1.dfm to
unit1.xfm). Rename (or #ifdef) the reference to the .dfm file in the header file(s)
from #pragma resource "*.dfm" to #pragma resource "*.xfm". (The .xfm file will work in
both C++Builder and a Linux application.)

3 Change (or #ifdef) all header files in your source file so they refer to the correct
units in CLX. (See “CLX and VCL unit comparison” on page 14-8 for information.)

For example, change the following #include statements in the header file in a
Windows application:

#include <vcl.h>
#include <Controls.hpp>
#include <StdCtrls.hpp>
#include <Forms.hpp>

14-4 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

to the following for a CLX application:

#include <clx.h>
#include <QControls.hpp>
#include <QStdCtrls.hpp>
#include <QForms.hpp>

4 Save the project and reopen it. Now the Component palette shows components
that can be used in CLX applications.

Note Some Windows-only nonvisual components can be used in CLX applications but
they contain functionality that will only work in Windows CLX applications. If
you plan to compile your application on Linux as well, do not use the nonvisual
VCL components in your applications or use #ifdefs to mark these sections of the
code as Windows only. You cannot use the visual part of VCL with VisualCLX in
the same application.

5 Rewrite any code that requires Windows dependencies by making the code more
platform-independent. Do this using the runtime library routines and constants.
(See “Writing portable code” on page 14-15 for information.)

6 Find equivalent functionality for features that are different on Linux. Use #ifdefs
(sparingly) to delimit Windows-specific information. (See “Using conditional
directives” on page 14-16 for information.)

For example, you can #ifdef platform-specific code in your source files:

#ifdef WINDOWS //If using the C++Builder compiler, use __WIN32__
IniFile->LoadfromFile(“c:\\x.txt”);
#endif

#ifdef __linux__
IniFile->LoadfromFile(“/home/name/x.txt”);
#endif

7 Search for references to pathnames in all the project files.

• Pathnames in Linux use a forward slash / as a delimiter (for example, /usr/lib)
and files may be located in different directories on the Linux system. Use the
PathDelim constant (in SysUtils) to specify the path delimiter that is
appropriate for the system. Determine the correct location for any files on
Linux.

• Change references to drive letters (for example, C:\) and code that looks for
drive letters by looking for a colon at position 2 in the string. Use the
DriveDelim constant (in SysUtils) to specify the location in terms that are
appropriate for the system.

• In places where you specify multiple paths, change the path separator from
semicolon (;) to colon (:). Use the PathSep constant (in SysUtils) to specify the
path separator that is appropriate for the system.

• Because file names are case-sensitive in Linux, make sure that your application
doesn’t change the case of file names or assume a certain case.

8 Compile, test, and debug your application.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-5

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

CLX versus VCL

CLX applications use the Borland Component Library for Cross Platform (CLX) in
place of the Visual Component Library (VCL). Within the VCL, many controls
provide an easy way to access Windows controls by making calls into the Windows
API libraries. Similarly, CLX provides access to Qt widgets (from window + gadget)
by making calls into the Qt shared libraries. C++Builder includes both CLX and the
VCL.

CLX looks much like the VCL. Most of the components and properties have the same
names. In addition, CLX, as well as the VCL, is available on Windows (depending on
your edition of C++Builder).

CLX components can be grouped into the following parts:

Widgets in VisualCLX replace Windows controls. For example, TWidgetControl in
CLX replaces TWinControl in the VCL. Other VCL components (such as
TScrollingWinControl) have corresponding names in CLX (such as TScrollingWidget).
However, you do not need to change occurrences of TWinControl to TWidgetControl.
Type declarations, such as the following:

TWinControl = TWidgetControl;

appear in the QControls unit file to simplify sharing of source code. TWidgetControl
and all its descendants have a Handle property that references the Qt object and a
Hooks property that references the hook object that handles the event mechanism.

Unit names and locations of some classes are different for CLX. You will need to
modify the header file you include in your source files to eliminate references to units
that don’t exist in CLX and to change the names to CLX units.

What CLX does differently

Although much of CLX is implemented so that it is consistent with the VCL, some
features are implemented differently. This section provides an overview of some of
the differences between CLX and VCL implementations to be aware of when writing
cross-platform applications.

Table 14.2 CLX parts

Part Description

VisualCLX Native cross-platform GUI components and graphics.

DataCLX Client data-access components. The components in this area are a subset
of the local, client/server, and n-tier based on client datasets. The code is
the same on Linux and Windows.

NetCLX Internet components including Apache DSO and CGI Web Broker.
These are the same on Linux and Windows.

BaseCLX Runtime Library up to and including the Classes unit. The code is the
same for Linux and Windows.

14-6 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Look and feel
The visual environment in Linux looks somewhat different than it does in Windows.
The look of dialogs may differ depending on which window manager you are using,
such as KDE or Gnome.

Styles
Application-wide styles can be used in addition to the OwnerDraw properties. You
can use the TApplication::Style property to specify the look and feel of an application's
graphical elements. Using styles, a widget or an application can take on a whole new
look. You can still use owner draw on Linux but using styles is recommended.

Variants
All of the variant/safe array code that was in the System unit is in two new units:

• Variants

• VarUtils

The operating system dependent code is now isolated in the VarUtils unit, and it also
contains generic versions of everything needed by the Variants unit. If you are
converting a VCL application that included Windows calls to a CLX application, you
need to replace these calls to calls into the VarUtils unit.

If you want to use variants, you must include the Variants unit to your the header file
in your source file.

VarIsEmpty does a simple test against varEmpty to see if a variant is clear, and on
Linux you can use the VarIsClear function see whether the value of the variant is
undefined.

Registry
Linux does not use a registry to store configuration information. Instead, you use text
configuration files and environment variables instead of using the registry. System
configuration files on Linux are often located in /etc, for example, /etc/hosts. Other
user profiles are located in hidden files (preceded with a dot), such as .bashrc, which
holds bash shell settings or .XDefaults, which is used to set defaults for X programs.

Registry-dependent code may be changed to using a local configuration text file
instead. Settings that users can change must be saved in their home directory so that
they have permission to write to it. Configuration options that need to be set by the
root should go in /etc. Writing a unit containing all the registry functions but
diverting all output to a local configuration file is one way you could handle a former
dependency on the registry.

To place information in a global location on Linux, you can store a global
configuration file in the /etc directory or the user’s home directory as a hidden file.
Therefore, all of your applications can access the same configuration file. However,
you must be sure that the file permissions and access rights are set up correctly.

You can also use .ini files in cross-platform applications. However, in CLX, you need
to use TMemIniFile instead of TRegIniFile.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-7

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Other differences
CLX implementation also has some other differences from the VCL that affect the
way your components work. This section describes some of those differences.

• You can select a CLX component from the Component palette and click either the
left or right mouse button to add it to a form. For a VCL component, you can click
the left mouse button only.

• The CLX TButton control has a ToggleButton property that the equivalent VCL
control doesn’t have.

• In CLX, TColorDialog does not have a TColorDialog::Options property to set.
Therefore, you cannot customize the appearance and functionality of the color
selection dialog. Also, depending on which window manager you are using in
Linux, TColorDialog is not always modal or nonresizable. On Windows,
TColorDialog is always modal and nonresizable.

• At runtime, combo boxes work differently in CLX than they do in the VCL. In CLX
(but not in the VCL), you can add an item to a drop-down list by entering text and
pressing Enter in the edit field of a combo box. You can turn this feature off by
setting InsertMode to ciNone. It is also possible to add empty (no string) items to the
list in the combo box. Also, if you keep pressing the down arrow key when the edit
box is closed, it does not stop at the last item of the combo box list. It cycles around
to the top again.

• TCustomEdit does not implement Undo, ClearUndo, or CanUndo. So there is no way
to programmatically undo edits. But application users can undo their edits in an
edit box (TEdit) at runtime by right-clicking the edit box and choosing the Undo
command.

• The key values used in events can be different between the VCL and CLX. For
example, the Enter key has a value of 13 on the VCL and a value of 4100 on CLX. If
you hard code key values in your CLX applications, you need to change these
values when porting from Windows to Linux or vice versa.

Additional differences exist. Refer to the CLX online documentation for details on all
of the CLX objects or in editions of C++Builder that include the source code, located
in {install directory}\C++Builder6\Source\CLX.

Missing in CLX

When using CLX instead of the VCL, many of the objects are the same. However, the
objects may be missing some features (such as properties, methods, or events). The
following general features are missing in CLX:

• Bi-directional properties (BidiMode) for right-to-left text output or input.

• Generic bevel properties on common controls (note that some objects still have
bevel properties).

• Docking properties and methods.

• Backward compatibility features such as components on the Win3.1 tab and Ctl3D.

• DragCursor and DragKind (but drag and drop is included).

14-8 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Features that will not port directly

Some Windows-specific features supported on C++Builder will not transport directly
to Linux environments. For example, COM, ActiveX, OLE, BDE, and ADO are
dependent on Windows technology and not available for Linux. The following table
lists features that are different on the two platforms and lists the equivalent Linux or
CLX feature, if one is available.

The Linux equivalent of Windows dlls are shared object libraries (.so files), which
contain position-independent code (PIC). Thus, global memory references and calls
to external functions are made relative to the EBX register, which must be preserved
across calls.

You only need to worry about global memory references and calls to external
functions if using assembler—C++Builder generates the correct code. (For
information, see “Including inline assembler code” on page 14-18.)

CLX and VCL unit comparison

All of the objects in the VCL or CLX are defined in header files. For example, you can
find the implementation of TObject in the System unit, and the Classes unit defines
the base TComponent class. When you drop an object onto a form or use an object

Table 14.3 Changed or different features

Windows/VCL feature Linux/CLX feature

ADO components Regular database components

Automation Servers Not available

BDE dbExpress and regular database components

COM+ components (including
ActiveX)

Not available

DataSnap Not available

FastNet Not available

Legacy components (such as items on
the Win 3.1 Component palette tab)

Not available

Messaging Application Programming
Interface (MAPI) includes a standard
library of Windows messaging
functions.

SMTP and POP3 let you send, receive, and save e-mail
messages

Quick Reports Not available

Web Services (SOAP) Not available

WebSnap Not available

Windows API calls CLX methods, Qt calls, libc calls, or calls to other system
libraries

Windows messaging Qt events

Winsock BSD sockets

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-9

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

within your application, the name of the unit is added to the header file included in
your source file which tells the compiler which units to link into the project.

This section provides three tables that list the VCL and equivalent CLX units; CLX-
only units; and VCL-only units.

The following table lists the VCL and equivalent CLX unit. Units that are either the
same in both the VCL and CLX or are third-party units are not listed.

The following units are in CLX but not VCL:

Table 14.4 VCL and equivalent CLX units

VCL units CLX units

ActnList QActnList

Buttons QButtons

CheckLst QCheckLst

Clipbrd QClipbrd

ComCtrls QComCtrls

Consts Consts, QConsts, and RTLConsts

Controls QControls

DBActns QDBActns

DBCtrls QDBCtrls

DBGrids QDBGrids

Dialogs QDialogs

ExtCtrls QExtCtrls

Forms QForms

Graphics QGraphics

Grids QGrids

ImgList QImgList

Mask QMask

Menus QMenus

Printers QPrinters

Search QSearch

StdActns QStdActns

StdCtrls QStdCtrls

Types Types and QTypes

VclEditors ClxEditors

Table 14.5 CLX-only units

Unit Description

DirSel Directory selection

QStyle GUI look and feel

Qt Interface to Qt library

14-10 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

The following Windows VCL units are not included in CLX mostly because they
concern Windows-specific features that are not available on Linux such as ADO,
BDE, and COM.

Table 14.6 VCL-only units

Unit Reason for exclusion

ADOConst No ADO feature

ADODB No ADO feature

AppEvnts No TApplicationEvent object

AxCtrls No COM feature

BdeConst No BDE feature

Calendar Not currently supported

Chart Not currently supported

CmAdmCtl No COM feature

ColorGrd Not currently supported

ComStrs No COM feature

ConvUtils Not available

CorbaCon No Corba feature

CorbaStd No Corba feature

CorbaVCL No Corba feature

CtlPanel No Windows Control Panel

CustomizeDlg Not currently supported

DataBkr Not currently supported

DBCGrids No BDE feature

DBExcept No BDE feature

DBInpReq No BDE feature

DBLookup Obsolete

DbOleCtl No COM feature

DBPWDlg No BDE feature

DBTables No BDE feature

DdeMan No DDE feature

DRTable No BDE feature

ExtActns Not currently supported

ExtDlgs No picture dialogs feature

FileCtrl Obsolete

ListActns Not currently supported

MConnect No COM feature

Messages No Windows messaging

MidasCon Obsolete

MPlayer No Windows media player

Mtsobj No COM feature

MtsRdm No COM feature

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-11

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Differences in CLX object constructors

When a CLX object is created, either implicitly by placing that object on the form or
explicitly in code by using the object’s constructor, an instance of the underlying
associated widget is created also. The CLX object owns this instance of the widget.
When the CLX object is deleted, the underlying widget is also deleted. This is the
same type of functionality that you see in the VCL in Windows applications.

When you explicitly create a CLX object in your code, by calling into the Qt interface
library such as QWidget_Create(), you are creating an instance of a Qt widget that is
not owned by a CLX object. This passes the instance of an existing Qt widget to the
CLX object to use during its construction. This CLX object does not own the Qt
widget that is passed to it. Therefore, after creating the object in this manner, only the
CLX object is destroyed and not the underlying Qt widget instance. This is different
from the VCL.

Mtx No COM feature

mxConsts No COM feature

ObjBrkr Not currently supported

OleConstMay No COM feature

OleCtnrs No COM feature

OleCtrls No COM feature

OLEDB No COM feature

OleServer No COM feature

Outline Obsolete

Registry No Windows registry feature

ScktCnst Replaced by Sockets

ScktComp Replaced by Sockets

SConnect No supported connection protocols

SHDocVw_ocx No ActiveX feature

StdConvs Not currently supported

SvcMgr No Windows NT Services feature

TabNotbk Obsolete

Tabs Obsolete

ToolWin No docking feature

ValEdit Not currently supported

VarCmplx Not currently supported

VarConv Not currently supported

VCLCom No COM feature

WebConst No Windows constants

Windows No Windows API calls

Table 14.6 VCL-only units (continued)

Unit Reason for exclusion

14-12 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

A few CLX graphics objects, such as TBrush and TPen, let you assume ownership of
the underlying widget using the OwnHandle method. After calling OwnHandle, if you
delete the CLX object, the underlying widget is destroyed as well.

Some property assignments in CLX have moved from the constructor to InitWidget.
This allows delayed construction of the Qt object until it's really needed. For
example, say you have a property named Color. In SetColor, you can check with
HandleAllocated to see if you have a Qt handle. If the handle is allocated, you can
make the proper call to Qt to set the color. If not, you can store the value in a private
field variable, and, in InitWidget, you set the property.

For more information about object construction, see “Object construction for
C++Builder VCL/CLX classes” on page 13-7.

Handling system and widget events

System and widget events, which are mainly of concern when writing components,
are handled differently by the VCL and CLX. The most important difference is that
CLX controls do not respond directly to Windows messages, even when running on
Windows (see Chapter 51, “Handling messages and system notifications”). Instead,
they respond to notifications from the underlying widget layer. Because the
notifications use a different system, the order and timing of events can sometimes
differ between corresponding CLX and VCL objects. This difference occurs even if
your CLX application is running on Windows rather than Linux. If you are porting a
VCL application to CLX, you may need to change the way your event handlers
respond to accommodate these differences.

For information on writing components that respond to system and widget events
(other than those that are reflected in the published events of CLX components), see
“Responding to system notifications using CLX” on page 51-10.

Sharing source files between Windows and Linux

If you want your application to run on both Windows and Linux, you can share the
source files making them accessible to both operating systems. You can do this in
several ways, such as placing the source files on a server that is accessible to both
computers or by using Samba on the Linux machine to provide access to files
through Microsoft network file sharing for both Linux and Windows. You can choose
to keep the source on Linux and create a shared drive on Linux. Or you can keep the
source on Windows and create a share on Windows for the Linux machine to access.

You can continue to develop and compile the file on C++Builder using objects that
are supported by both VCL and CLX. When you are finished, you can compile on
Windows. When a Linux C++ solution is available, you can compile on Linux.

If you create a new CLX application, C++Builder creates an .xfm form file instead of a
.dfm file.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-13

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Environmental differences between Windows and Linux

Currently, cross-platform means an application that can compile virtually
unchanged on both the Windows and Linux operating systems. The following table
lists some of the differences between Linux and the Windows operating
environments.

Table 14.7 Differences in the Linux and Windows operating environments

Difference Description

File name case sensitivity In Linux, file names are case sensitive. The file Test.txt is not the same
file as test.txt. You need to pay close attention to capitalization of file
names on Linux.

Line ending characters On Windows, lines of text are terminated by CR/LF (that is, ASCII 13
+ ASCII 10), but on Linux it is LF. While the Code editor can handle
the difference, you should be aware of this when importing code from
Windows.

End of file character In MS-DOS and Windows, the character value #26 (Ctrl-Z) is treated
as the end of the text file, even if there is data in the file after that
character. Linux uses Ctrl+D as the end-of-file character.

Batch files/shell scripts The Linux equivalent of .bat files are shell scripts. A script is a text file
containing instructions, saved and made executable with the
command, chmod +x <scriptfile>. The scripting language depends on
the shell you are using on Linux. Bash is commonly used.

Command confirmation In MS-DOS or Windows, if you try to delete a file or folder, it asks for
confirmation (“Are you sure you want to do that?”). Generally, Linux
won't ask; it will just do it. This makes it easy to accidentally destroy a
file or the entire file system. There is no way to undo a deletion on
Linux unless a file is backed up on another media.

Command feedback If a command succeeds on Linux, it redisplays the command prompt
without a status message.

Command switches Linux uses a dash (-) to indicate command switches or a double dash
(--) for multiple character options where DOS uses a slash (/) or dash
(-).

Configuration files On Windows, configuration is done in the registry or in files such as
autoexec.bat.
On Linux, configuration files are created as hidden files in the user’s
home directory. Configuration files in the /etc directory are usually
not hidden files.
Linux also uses environment variables such as LD_LIBRARY_PATH
(search path for libraries). Other important environment variables:
HOME Your home directory (/home/sam)
TERM Terminal type (xterm, vt100, console)
SHELL Path to your shell (/bin/bash)
USER Your login name (sfuller)
PATH List to search for programs
They are specified in the shell or in files such as .bashrc.

DLLs On Linux, you use shared object files (.so). In Windows, these are
dynamic link libraries (DLLs).

14-14 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Drive letters Linux doesn't have drive letters. An example Linux pathname is
/lib/security. See DriveDelim in the runtime library.

Exceptions Operating system exceptions are called signals on Linux.

Executable files On Linux, executable files require no extension. On Windows,
executable files have an exe extension.

File name extensions Linux does not use file name extensions to identify file types or to
associate files with applications.

File permissions On Linux, files (and directories) are assigned read, write, and execute
permissions for the file owner, group, and others. For example,
-rwxr-xr-x means, from left to right:
- is the file type (- = ordinary file, d = directory, l = link); rwx are the
permissions for the file owner (read, write, execute); r-x are the
permissions for the group of the file owner (read, execute); and r-x are
the permissions for all other users (read, execute). The root user
(superuser) can override these permissions.
You need to make sure that your application runs under the correct
user and has proper access to required files.

Make utility Borland's make utility is not available on the Linux platform. Instead,
you can use Linux's GNU make utility.

Multitasking Linux fully supports multitasking. You can run several programs (in
Linux, called processes) at the same time. You can launch processes in
the background (using & after the command) and continue working
straight away. Linux also lets you have several sessions.

Pathnames Linux uses a forward slash (/) wherever DOS uses a backslash (\). A
PathDelim constant can be used to specify the appropriate character
for the platform. See PathDelim in the runtime library.

Search path When executing programs, Windows always checks the current
directory first, then looks at the PATH environment variable. Linux
never looks in the current directory but searches only the directories
listed in PATH. To run a program in the current directory, you
usually have to type ./ before it.
You can also modify your PATH to include ./ as the first path to
search.

Search path separator Windows uses the semicolon as a search path separator. Linux uses a
colon. See PathDelim in the runtime library.

Symbolic links On Linux, a symbolic link is a special file that points to another file on
disk. Place symbolic links in the global bin directory that points to
your application's main files and you don't have to modify the system
search path. A symbolic link is created with the ln (link) command.
Windows has shortcuts for the GUI desktop. To make a program
available at the command line, Windows install programs typically
modify the system search path.

Table 14.7 Differences in the Linux and Windows operating environments (continued)

Difference Description

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-15

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

Directory structure on Linux

Directories are different in Linux. Any file or device can be mounted anywhere on
the file system.

Note Linux pathnames use forward slashes whereas Windows pathnames use
backslashes. The initial slash stands for the root directory.

Following are some of the commonly used directories in Linux.

Note Different distributions of Linux sometimes place files in different locations. A utility
program may be placed in /bin in a Red Hat distribution but in /usr/local/bin in a
Debian distribution.

Refer to www.pathname.com for additional details on the organization of the UNIX/
Linux hierarchical file system and to read the Filesystem Hierarchy Standard.

Writing portable code

If you are writing cross-platform applications that are meant to run on Windows and
Linux, you can write code that compiles under different conditions. Using
conditional compilation, you can maintain your Windows coding, yet also make
allowances for Linux operating system differences.

To create applications that are easily portable between Windows and Linux,
remember to:

• Reduce or isolate calls to platform-specific (Win32 or Linux) APIs; use CLX
methods or calls to the Qt library.

Table 14.8 Common Linux directories

Directory Contents

/ The root or top directory of the entire Linux file system

/root The root file system; the Superuser's home directory

/bin Commands, utilities

/sbin System utilities

/dev Devices shown as files

/lib Libraries

/home/username Files owned by the user where username is the user's login name.

/opt Optional

/boot Kernel that gets called when the system starts up

/etc Configuration files

/usr Applications, programs. Usually includes directories like /usr/spool, /
usr/man, /usr/include, /usr/local

/mnt Other media mounted on the system such as a CD or a floppy disk drive

/var Logs, messages, spool files

/proc Virtual file system and reporting system statistics

/tmp Temporary files

14-16 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

• Eliminate Windows messaging (PostMessage, SendMessage) constructs within an
application. In CLX, call the QApplication_postEvent and QApplication_sendEvent
methods instead. For information on writing components that respond to system
and widget events, see “Responding to system notifications using CLX” on
page 51-10.

• Use TMemIniFile instead of TRegIniFile.

• Observe and preserve case-sensitivity in file and directory names.

• Port any external assembler TASM code. The GNU assembler, “as,” does not
support the TASM syntax. (See “Including inline assembler code” on page 14-18.)

Try to write the code to use platform-independent runtime library routines and use
constants found in System, SysUtils, and other runtime library units. For example,
use the PathDelim constant to insulate your code from ‘/’ versus ‘\’ platform
differences.

Another example involves the use of multibyte characters on both platforms.
Windows code traditionally expects only two bytes per multibyte character. In Linux,
multibyte character encoding can have many more bytes per char (up to six bytes for
UTF-8). Both platforms can be accommodated using the StrNextChar function in
SysUtils. Existing Windows code such as the following

while(*p != 0)
{
 if(LeadBytes.Contains(*p))
 p++;
 p++;
}

can be replaced with platform-independent code like this:

while(*p != 0)
{
 if(LeadBytes.Contains(*p))
 p = StrNextchar(p);
 else
 p++;
}

This example is platform-portable but still avoids the performance cost of a
procedure call for non-multibyte locales.

If using runtime library functions is not a workable solution, try to isolate the
platform-specific code in your routine into one chunk or into a subroutine. Try to
limit the number of #ifdef blocks to maintain source code readability and portability.
The conditional symbol WIN32 is not defined on Linux. The conditional symbol
LINUX is defined, indicating the source code is being compiled for the Linux
platform.

Using conditional directives
Using #ifdef compiler directives is a reasonable way to conditionalize your code for
the Windows and Linux platforms. However, because #ifdefs make source code
harder to understand and maintain, you need to understand when it is reasonable to

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-17

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

use #ifdefs. When considering the use of #ifdefs, the top questions should be “Why
does this code require an #ifdef?” and “Can this be written without an #ifdef?”

Follow these guidelines for using #ifdefs within cross-platform applications:

• Try not to use #ifdefs unless absolutely necessary. #ifdefs in a source file are only
evaluated when source code is compiled. C/C++ requires unit sources (header
files) to compile a project. Full rebuilds of all source code is an uncommon event
for most C++Builder projects.

• Do not use #ifdefs in package (.bpk) files. Limit their use to source files.
Component writers need to create two design-time packages when doing cross-
platform development, not one package using #ifdefs.

• In general, use #ifdef WINDOWS to test for any Windows platform including
WIN32. Reserve the use of #ifdef WIN32 for distinguishing between specific
Windows platforms, such as 32-bit versus 64-bit Windows. Don’t limit your code
to WIN32 unless you know for sure that it will not work in WIN64.

• Avoid negative tests like #ifndef unless absolutely required. #ifndef __linux__ is
not equivalent to #ifdef WINDOWS.

• Avoid #ifndef/#else combinations. Use a positive test instead (#ifdef) for better
readability.

• Avoid #else clauses on platform-sensitive #ifdefs. Use separate #ifdef blocks for
Linux- and Windows-specific code instead of #ifdef __linux__/#else or #ifdef
WINDOWS/#else.

For example, old code may contain

#ifdef WIN32
 (32-bit Windows code)
#else
 (16-bit Windows code) //!! By mistake, Linux could fall into this code.
#endif

For any non-portable code in #ifdefs, it is better for the source code to fail to
compile than to have the platform fall into an #else clause and fail mysteriously at
runtime. Compile failures are easier to find than runtime failures.

• Use the #if syntax for complicated tests. Replace nested #ifdefs with a boolean
expression in an #if directive. You should terminate the #if directive using #endif.
This allows you to place #if expressions within #ifdefs to hide the new #if syntax
from previous compilers.

All of the conditional directives are documented in the online Help. Also, see the
topic “Conditional Compilation” in Help for more information.

Emitting messages
The #pragma message compiler directive allows source code to emit warnings and
errors just as the compiler does. Use #pragma message to specify a user-defined
message within your program code, using one of the following formats.

14-18 D e v e l o p e r ’ s G u i d e

P o r t i n g W i n d o w s a p p l i c a t i o n s t o L i n u x

If you have a variable number of string constants, use:

#pragma message(“hi there”)
#pragma message(“hi” “ there”)

To write text following a message, use:

#pragma message text

To expand a previously defined value, use:

#pragma message (text)

#define text “a test string”
#pragma message (text)

For example, to display these messages on a button:

void __fastcall TForm1::Button1Click(TObject *Sender)
{

#pragma message(“hi there 1”)
#pragma message(“hi “ “there 2”)

#pragma message hi there 3

#define text “a test string”
#pragma message (text)

}

To display the messages in the IDE, choose Projects|Options|Compiler, click the
Compiler tab, and check the Show general messages check box.

Including inline assembler code
If you include inline assembler code in your Windows applications, you may not be
able to use the same code on Linux because of position-independent code (PIC)
requirements on Linux. Linux shared object libraries (DLL equivalents) require that
all code be relocatable in memory without modification. This primarily affects inline
assembler routines that use global variables or other absolute addresses, or that call
external functions.

For units that contain only C++ code, the compiler automatically generates PIC when
required. It's a good idea to compile every source file into both PIC and non-PIC
formats; use the -VP compiler switch to generate PIC.

You may want to code assembler routines differently depending on whether you'll
be compiling to an executable or a shared library; use #ifdef__PIC__ to branch the
two versions of your assembler code. Or you can consider rewriting the routine in
C++ to avoid the issue.

Following are the PIC rules for inline assembler code:

• PIC requires all memory references be made relative to the EBX register, which
contains the current module's base address pointer (in Linux called the Global
Offset Table or GOT). So, instead of

MOV EAX,GlobalVar

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-19

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

use

MOV EAX,[EBX].GlobalVar

• PIC requires that you preserve the EBX register across calls into your assembly
code (same as on Win32), and also that you restore the EBX register before making
calls to external functions (different from Win32).

• While PIC code will work in base executables, it may slow the performance and
generate more code. You don't have any choice in shared objects, but in
executables you probably still want to get the highest level of performance that
you can.

Programming differences on Linux

The Linux wchar_t widechar is 32 bits per character. The 16-bit Unicode standard
that the VCL and CLX support is a subset of the 32-bit UCS standard supported by
Linux and the GNU libraries. WideString types must be widened to 32 bits per
character before it can be passed to an OS function as wchar_t.

In Linux, WideStrings are reference counted like long strings (in Windows, they're
not).

In Windows, multibyte characters (MBCS) are represented as one- and two-byte char
codes. In Linux, they are represented in one to six bytes.

AnsiStrings can carry multibyte character sequences, depending upon the user's
locale settings. The Linux encoding for multibyte characters such as Japanese,
Chinese, Hebrew, and Arabic may not be compatible with the Windows encoding for
the same locale. Unicode is portable, whereas multibyte is not. See “Enabling
application code” on page 16-2 for details on handling strings for various locales in
international applications.

Cross-platform database applications
On Windows, C++Builder provides several choices for how to access database
information. These include using ADO, the Borland Database Engine (BDE), and
InterBase Express. On Windows and Linux, you can use dbExpress, a cross-platform
data access technology, depending on which edition of C++Builder you have.

Before you port a database application to dbExpress so that it will run on Linux, you
should understand the differences between using dbExpress and the data access
mechanism you were using. These differences occur at different levels.

• At the lowest level, there is a layer that communicates between your application
and the database server. This could be ADO, the BDE, or the InterBase client
software. This layer is replaced by dbExpress, which is a set of lightweight drivers
for dynamic SQL processing.

• The low-level data access is wrapped in a set of components that you add to data
modules or forms. These components include database connection components,
which represent the connection to a database server, and datasets, which represent

14-20 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

the data fetched from the server. Although there are some very important
differences, due to the unidirectional nature of dbExpress cursors, the differences
are less pronounced at this level, because datasets all share a common ancestor, as
do database connection components.

• At the user-interface level, there are the fewest differences. CLX data-aware
controls are designed to be as similar as possible to the corresponding Windows
controls. The major differences at the user interface level arise from changes
needed to accommodate the use of cached updates.

For information on porting existing database applications to dbExpress, see “Porting
database applications to Linux” on page 14-22. For information on designing new
dbExpress applications, see Chapter 18, “Designing database applications.”

dbExpress differences

On Linux, dbExpress manages the communication with database servers. dbExpress
consists of a set of lightweight drivers that implement a set of common interfaces.
Each driver is a shared object (.so file) that must be linked to your application.
Because dbExpress is designed to be cross-platform, it is also available on Windows as
a set of dynamic-link libraries (.dlls).

As with any data-access layer, dbExpress requires the client-side software provided
by the database vendor. In addition, it uses a database-specific driver, plus two
configuration files, dbxconnections and dbxdrivers. This is markedly less than you
need for, say, the BDE, which requires the main Borland Database Engine library
(Idapi32.dll) plus a database-specific driver and a number of other supporting
libraries.

Furthermore, dbExpress:

• Allows for a simpler and faster path to remote databases. As a result, you can
expect a noticeable performance increase for simple, straight-through data access.

• Processes queries and stored procedures, but does not support the concept of
opening tables.

• Returns only unidirectional cursors.

• Has no built-in update support other than the ability to execute an INSERT,
DELETE, or UPDATE query.

• Does no metadata caching; the design time metadata access interface is
implemented using the core data-access interface.

• Executes only queries requested by the user, thereby optimizing database access
by not introducing any extra queries.

• Manages a record buffer or a block of record buffers internally. This differs from
the BDE, where clients are required to allocate the memory used to buffer records.

• Supports only local tables that are SQL-based, such as InterBase and Oracle.

• Uses drivers for DB2, Informix, InterBase, MySQL, and Oracle. If you are using a
different database server, you must either convert your data to one of these

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-21

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

databases, write a dbExpress driver for the database server you are using, or obtain
a third-party dbExpress driver for your database server.

Component-level differences

When you write a dbExpress application, it requires a different set of data access
components than those used in your existing database applications. The dbExpress
components share the same base classes as other data access components (TDataSet
and TCustomConnection), which means that many of the properties, methods, and
events are the same as the components used in your existing applications.

Table 14.9 lists some of the important database components used in InterBase
Express, BDE, and ADO in the Windows environment and shows the comparable
dbExpress components for use on Linux and in cross-platform applications.

The dbExpress datasets (TSQLTable, TSQLQuery, TSQLStoredProc, and TSQLDataSet)
are more limited than their counterparts, however, because they do not support
editing and only allow forward navigation. For details on the differences between the
dbExpress datasets and the other datasets that are available on Windows, see
Chapter 26, “Using unidirectional datasets.”

Because of the lack of support for editing and navigation, most dbExpress applications
do not work directly with the dbExpress datasets. Rather, they connect the dbExpress
dataset to a client dataset, which buffers records in memory and provides support for
editing and navigation. For more information about this architecture, see “Database
architecture” on page 18-5.

Note For very simple applications, you can use TSQLClientDataSet instead of a dbExpress
dataset connected to a client dataset. This has the benefit of simplicity, because there
is a 1:1 correspondence between the dataset in the application you are porting and
the dataset in the ported application, but it is less flexible than explicitly connecting a
dbExpress dataset to a client dataset. For most applications, it is recommended that
you use a dbExpress dataset connected to a TClientDataSet component.

User interface-level differences

CLX data-aware controls are designed to be as similar as possible to the
corresponding Windows controls. As a result, porting the user interface portion of
your database applications introduces few additional considerations beyond those
involved in porting any Windows application to CLX.

Table 14.9 Comparable data-access components

InterBase Express
components BDE components ADO components

dbExpress
components

TIBDatabase TDatabase TADOConnection TSQLConnection

TIBTable TTable TADOTable TSQLTable

TIBQuery TQuery TADOQuery TSQLQuery

TIBStoredProc TStoredProc TADOStoredProc TSQLStoredProc

TIBDataSet TADODataSet TSQLDataSet

14-22 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

The major differences at the user interface level arise from differences in the way
dbExpress datasets or client datasets supply data.

If you are using only dbExpress datasets, then you must adjust your user interface to
accommodate the fact that the datasets do not support editing and only support
forward navigation. Thus, for example, you may need to remove controls that allow
users to move to a previous record. Because dbExpress datasets do not buffer data,
you can’t display data in a data-aware grid: only one record can be displayed at a
time.

If you have connected the dbExpress dataset to a client dataset, then the user interface
elements associated with editing and navigation should still work. You need only
reconnect them to the client dataset. The main consideration in this case is handling
how updates are written to the database. By default, most datasets on Windows write
updates to the database server automatically when they are posted (for example,
when the user moves to a new record). Client datasets, on the other hand, always
cache updates in memory. For information on how to accommodate this difference,
see “Updating data in dbExpress applications” on page 14-24.

Porting database applications to Linux

Porting your database application to dbExpress allows you to create a cross-platform
application that runs on both Windows and Linux. The porting process involves
making changes to your application because the technology is different. How
difficult it is to port depends on the type of application it is, how complex it is, and
what it needs to accomplish. An application that heavily uses Windows-specific
technologies such as ADO will be more difficult to port than one that uses
C++Builder database technology.

Follow these general steps to port your Windows/VCL database application to
Linux/CLX:

1 Make sure your data is stored in a database that is supported by dbExpress, such as
DB2, Informix, InterBase, MySQL, and Oracle. The data needs to reside on one of
these SQL servers. If your data is not already stored in one of these databases, find
a utility to transfer it.

For example, you can use C++Builder’s Data Pump utility (not available in all
editions) to convert certain databases (such as dBase, FoxPro, and Paradox) to a
dbExpress-supported database. (See the datapump.hlp file in Program Files\
Common Files\Borland\Shared\BDE for information on using the utility.)

2 Create data modules containing the datasets and connection components so they
are separate from your user interface forms and components. That way, you
isolate the portions of your application that require a completely new set of
components into data modules. Forms that represent the user interface can then be
ported like any other application. For details, see “Porting your application” on
page 14-3.

The remaining steps assume that your datasets and connection components are
isolated in their own data modules.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-23

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

3 Create a new data module to hold the CLX versions of your datasets and
connection components.

4 For each dataset in the original application, add a dbExpress dataset,
TDataSetProvider component, and TClientDataSet component. Use the
correspondences in Table 14.9 to decide which dbExpress dataset to use. Give these
components meaningful names.

• Set the ProviderName property of the TClientDataSet component to the name of
the TDataSetProvider component.

• Set the DataSet property of the TDataSetProvider component to the dbExpress
dataset.

• Change the DataSet property of any data source components that referred to the
original dataset so that it now refers to the client dataset.

5 Set properties on the new dataset to match the original dataset:

• If the original dataset was a TTable, TADOTable, or TIBTable component, set the
new TSQLTable’s TableName property to the original dataset’s TableName. Also
copy any properties used to set up master/detail relationships or specify
indexes. Properties specifying ranges and filters should be set on the client
dataset rather than the new TSQLTable component.

• If the original dataset was a TQuery, TADOQuery, or TIBQuery component, set
the new TSQLQuery component’s SQL property to the original dataset’s SQL
property. Set the Params property of the new TSQLQuery to match the value of
the original dataset’s Params or Parameters property. If you have set the
DataSource property to establish a master/detail relationship, copy this as well.

• If the original dataset was a TStoredProc, TADOStoredProc, or TIBStoredProc
component, set the new TSQLStoredProc component’s StoredProcName to the
StoredProcName or ProcedureName property of the original dataset. Set the
Params property of the new TSQLStoredProc to match the value of the original
dataset’s Params or Parameters property.

6 For any database connection components in the original application (TDatabase,
TIBDatabase, or TADOConnection), add a TSQLConnection component to the new
data module. You must also add a TSQLConnection component for every database
server to which you connected without a connection component (for example, by
using the ConnectionString property on an ADO dataset or by setting the
DatabaseName property of a BDE dataset to a BDE alias).

7 For each dbExpress dataset placed in step 4, set its SQLConnection property to the
TSQLConnection component that corresponds to the appropriate database
connection.

8 On each TSQLConnection component, specify the information needed to establish a
database connection. To do so, double-click the TSQLConnection component to
display the Connection Editor and set parameter values to indicate the
appropriate settings. If you had to transfer data to a new database server in step 1,
then specify settings appropriate to the new server. If you are using the same

14-24 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m d a t a b a s e a p p l i c a t i o n s

server as before, you can look up some of this information on the original
connection component:

• If the original application used TDatabase, you must transfer the information
that appears in the Params and TransIsolation properties.

• If the original application used TADOConnection, you must transfer the
information that appears in the ConnectionString and IsolationLevel properties.

• If the original application used TIBDatabase, you must transfer the information
that appears in the DatabaseName and Params properties.

• If there was no original connection component, you must transfer the
information associated with the BDE alias or that appeared in the dataset’s
ConnectionString property.

You may want to save this set of parameters under a new connection name. For
more details on this process, see “Controlling connections” on page 21-2.

Updating data in dbExpress applications

dbExpress applications use client datasets to support editing. When you post edits to a
client dataset, the changes are written to the client dataset’s in-memory snapshot of
the data, but are not automatically written to the database server. If your original
application used a client dataset for caching updates, then you do not need to change
anything to support editing on Linux. However, if you relied on the default behavior
of most datasets on Windows, which is to write edits to the database server when
you post records, you must make changes to accommodate the use of a client dataset.

There are two ways to convert an application that did not previously cache updates:

• You can mimic the behavior of the dataset on Windows by writing code to apply
each updated record to the database server as soon as it is posted. To do this,
supply the client dataset with an AfterPost event handler that applies update to the
database server:

void __fastcall TForm1::ClientDataSet1AfterPost(TDataSet *DataSet)
{

TClientDataSet *pCDS = dynamic_cast<TClientDataSet *>(DataSet);
if (pCDS)

pCDS->ApplyUpdates(1);
}

• You can adjust your user interface to deal with cached updates. This approach has
certain advantages, such as reducing the amount of network traffic and
minimizing transaction times. However, if you switch to using cached updates,
you must decide when to apply those updates back to the database server, and
probably make user interface changes to let users initiate the application of
updates or inform them about whether their edits have been written to the
database. Further, because update errors are not detected when the user posts a
record, you will need to change the way you report such errors to the user, so that
they can see which update caused a problem as well as what type of problem
occurred.

D e v e l o p i n g c r o s s - p l a t f o r m a p p l i c a t i o n s 14-25

C r o s s - p l a t f o r m I n t e r n e t a p p l i c a t i o n s

If your original application used the support provided by the BDE or ADO for
caching updates, you will need to make some adjustments in your code to switch to
using a client dataset. The following table lists the properties, events, and methods
that support cached updates on BDE and ADO datasets, and the corresponding
properties, methods and events on TClientDataSet:

Cross-platform Internet applications
An Internet application is a client/server application that uses standard Internet
protocols for connecting the client to the server. Because your applications use
standard Internet protocols for client/server communications, you can make your
applications cross-platform. For example, a server-side program for an Internet
application communicates with the client through the Web server software for the

Table 14.10 Properties, methods, and events for cached updates

On BDE datasets
(or TDatabase) On ADO datasets On TClientDataSet Purpose

CachedUpdates LockType Not needed, client
datasets always
cache updates.

Determines whether cached
updates are in effect.

Not supported CursorType Not supported Specifies how isolated the dataset
is from changes on the server.

UpdatesPending Not supported ChangeCount Indicates whether the local cache
contains updated records that
need to be applied to the
database.

UpdateRecordTypes FilterGroup StatusFilter Indicates the kind of updated
records to make visible when
applying cached updates.

UpdateStatus RecordStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

OnUpdateError Not supported OnReconcileError An event for handling update
errors on a record-by-record basis.

ApplyUpdates
(on dataset or
database)

UpdateBatch ApplyUpdates Applies records in the local cache
to the database.

CancelUpdates CancelUpdates or
CancelBatch

CancelUpdates Removes pending updates from
the local cache without applying
them.

CommitUpdates Handled
automatically

Reconcile Clears the update cache following
successful application of updates.

FetchAll Not supported GetNextPacket
(and PacketRecords)

Copies database records to the
local cache for editing and
updating.

RevertRecord CancelBatch RevertRecord Undoes updates to the current
record if updates are not yet
applied.

14-26 D e v e l o p e r ’ s G u i d e

C r o s s - p l a t f o r m I n t e r n e t a p p l i c a t i o n s

machine. The server application is typically written for Linux or Windows, but can
also be cross-platform. The clients can be on either platform.

You can use C++Builder to create Web server applications as CGI or Apache
applications for future deployment on Linux. On Windows, you can create other
types of Web servers such as Microsoft Server DLLs (ISAPI), Netscape Server DLLs
(NSAPI), and Windows CGI applications. Only straight CGI applications and some
applications that use Web Broker will run on both Windows and Linux.

Porting Internet applications to Linux

If you have existing Internet applications that you want to make cross-platform, you
can either port your Web server application to Linux or create a new application on
Linux when a Borland C++ solution is available. See Chapter 32, “Creating Internet
server applications” for information on writing Web servers. If your application uses
Web Broker, writes to the Web Broker interface, and does not use native API calls, it
is not as difficult to port it to Linux.

If your application writes to ISAPI, NSAPI, Windows CGI, or other Web APIs, it will
be more difficult to port. You will need to search through your source files and
translate these API calls into Apache (see ..\Include\Vcl\httpd.hpp for function
prototypes for Apache APIs) or CGI calls. You also need to make all other suggested
changes described in “Porting Windows applications to Linux” on page 14-2.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-1

C h a p t e r

15
Chapter15Working with packages and

components
A package is a special dynamic-link library used by C++Builder applications, the IDE,
or both. Runtime packages provide functionality when a user runs an application.
Design-time packages are used to install components in the IDE and to create special
property editors for custom components. A single package can function at both
design time and runtime, and design-time packages frequently work by calling
runtime packages. To distinguish them from other DLLs, package libraries are stored
in files that end with the .bpl (Borland package library) extension.

Like other runtime libraries, packages contain code that can be shared among
applications. For example, the most frequently used C++Builder components reside
in a package called vcl. Each time you create a new default application, it
automatically uses vcl. When you build an application created this way, the
application’s executable image contains only the code and data unique to it; the
common code is in the runtime package called vcl60.bpl. A computer with several
package-enabled applications installed on it needs only a single copy of vcl60.bpl,
which is shared by all the applications and the C++Builder IDE itself.

C++Builder ships with several runtime packages that encapsulate VCL and CLX
components. C++Builder also uses design-time packages to manipulate components
in the IDE.

You can build applications with or without packages. However, if you want to add
custom components to the IDE, you must install them as design-time packages.

You can create your own runtime packages to share among applications. If you write
C++Builder components, you can build your components into design-time packages
before installing them.

15-2 D e v e l o p e r ’ s G u i d e

W h y u s e p a c k a g e s ?

Why use packages?
Design-time packages simplify the tasks of distributing and installing custom
components. Runtime packages, which are optional, offer several advantages over
conventional programming. By building reused code into a runtime library, you can
share it among applications. For example, all of your applications—including
C++Builder itself—can access standard components through packages. Since the
applications don’t have separate copies of the component library bound into their
executables, the executables are much smaller, saving both system resources and
hard disk storage. Moreover, packages allow faster compilation because only code
unique to the application is compiled with each build.

Packages and standard DLLs

Create a package when you want to make a custom component that’s available
through the IDE. Create a standard DLL when you want to build a library that can be
called from any application, regardless of the development tool used to build the
application.

The following table lists the file types associated with packages:

You can include VCL or CLX or both types of components in a package. Packages
meant to be cross-platform should include CLX components only.

Note Packages share their global data with other modules in an application.

Table 15.1 Package files

File extension Contents

bpk The project options source file. This file is the XML portion of the package
project. The ProjectName.bpk and ProjectName.cpp combined are used to manage
settings, options, and files used by the package project.

bpl The runtime package. This file is a Windows .dll with special C++Builder-
specific features. The base name for the .bpl is the base name of the bpk source
file.

cpp ProjectName.cpp contains the entry point for the package. Additionally, each
component contained within the package generally resides within a .cpp file.

h The header file or interface for the component. ComponentName.h is the
companion to ComponentName.cpp.

lib A static library, or collection of .objs, used in place of a .bpi when the application
does not use runtime packages. Generated only if -Gl (Generate .LIB File) is
selected.

obj A binary image for a unit file contained in a package. One obj is created, when
necessary, for each .cpp file.

bpi A Borland package import library. A .bpi is created for each package. The bpis
for bpls is analogous to import libraries for dlls. This file is passed to the linker
by applications using the package to resolve references to functions in the
package. The base name for the bpi is the base name for the package source file.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-3

R u n t i m e p a c k a g e s

Runtime packages
Runtime packages are deployed with C++Builder applications. They provide
functionality when a user runs the application.

To run an application that uses packages, a computer must have both the
application’s executable file and all the packages (.bpl files) that the application uses.
The .bpl files must be on the system path for an application to use them. When you
deploy an application, you must make sure that users have correct versions of any
required .bpls.

Using packages in an application

To use packages in an application:

1 Load or create a project in the IDE.

2 Choose Project|Options.

3 Choose the Packages tab.

4 Select the Build with Runtime Packages check box, and enter one or more package
names in the edit box underneath. (Runtime packages associated with installed
design-time packages are already listed in the edit box.)

5 To add a package to an existing list, click the Add button and enter the name of the
new package in the Add Runtime Package dialog. To browse from a list of
available packages, click the Add button, then click the Browse button next to the
Package Name edit box in the Add Runtime Package dialog.

If you edit the Search Path edit box in the Add Runtime Package dialog, you will
be changing C++Builder’s global Library Path.

You do not need to include file extensions with package names (or the version
number representing the C++Builder release); that is, vcl60.bpl is written as vcl. If
you type directly into the Runtime Packages edit box, be sure to separate multiple
names with semicolons. For example:

rtl;vcl;vcldb;vclado;vclx;vclbde;

Packages listed in the Runtime Packages edit box are automatically linked to your
application. Duplicate package names are ignored, and if the Build with runtime
packages check box is unchecked, the application is linked without packages.

Runtime packages are selected for the current project only. To make the current
choices into automatic defaults for new projects, select the Defaults check box at the
bottom of the dialog.

An application built with packages still must include header files for the packaged
units that it uses. For example, an application that uses database controls needs the

#include "vcldb.h"

statement, even if it uses the vcldb package. In generated source files, C++Builder
creates these #include statements automatically.

15-4 D e v e l o p e r ’ s G u i d e

R u n t i m e p a c k a g e s

Dynamically loading packages

To load a package at runtime, call the LoadPackage function. LoadPackage loads the
package, checks for duplicate units, and calls the initialization blocks of all units
contained in the package. For example, the following code could be executed when a
file is chosen in a file-selection dialog.

if (OpenDialog1->Execute())
PackageList->Items->AddObject(OpenDialog1->FileName, (TObject *)LoadPackage(OpenDialog1-

>FileName));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any
instances of classes defined in the package and to unregister classes that were
registered by it.

Deciding which runtime packages to use

C++Builder ships with several runtime packages, including rtl and vcl, which supply
basic language and component support.

The vcl package contains the most commonly used components; the rtl package
includes all the non-component system functions and Windows interface elements. It
does not include database or other special components, which are available in
separate packages.

To create a client/server database application that uses packages, you need several
runtime packages, including vcl, vcldb, rtl, and dbrtl. If you want to use Outline
components in your application, you also need vclx. To use these packages, choose
Project|Options, select the Packages tab, and enter the following list in the Runtime
Packages edit box.

rtl;vcl;vcldb;vclx;

Actually, you don’t have to include vcl and rtl, because they are referenced in the
Requires list of vcldb. (See “Requires list” on page 15-9.) Your application compiles
can be built just the same whether or not vcl and rtl are included in the Runtime
Packages edit box.

Custom packages

A custom package is either a bpl you code and build yourself or an existing package
from a third-party vendor. To use a custom runtime package with an application,
choose Project|Options and add the name of the package to the Runtime Packages
edit box on the Packages page. For example, suppose you have a statistical package
called stats.bpl. To use it in an application, the line you enter in the Runtime
Packages edit box might look like this:

rtl;vcl;vcldb;stats

If you create your own packages, you can add them to the list as needed.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-5

D e s i g n - t i m e p a c k a g e s

Design-time packages
Design-time packages are used to install components on the IDE’s Component
palette and to create special property editors for custom components.

C++Builder ships with many design-time component packages preinstalled in the
IDE. Which ones are installed depends on which version of C++Builder you are
using and whether or not you have customized it. You can view a list of what
packages are installed on your system by choosing Component|Install Packages.

The design-time packages work by calling runtime packages, which they reference in
their Requires lists. (See “Requires list” on page 15-9.) For example, dclstd references
vcl. Dclstd itself contains additional functionality that makes most of the standard
components available on the Component palette.

Note By convention, IDE design packages start with a dcl and reside in the bin directory.
For design packages such as ..\bin\Dclstd, there are counterparts for the linker,
including ..\lib\vcl.lib, ..\lib\vcl.bpi, and the runtime package itself, Windows\
System\vcl60.bpl.

In addition to preinstalled packages, you can install your own component packages,
or component packages from third-party developers, in the IDE. The dclusr design-
time package is provided as a default container for new components.

Installing component packages

All components are installed in the IDE as packages. If you’ve written your own
components, create and build a package that contains them. (See “Creating and
editing packages” on page 15-6.) Your component source code must follow the
model described in Part V, “Creating custom components.” If you are adding
multiple units to a single package, each with components in them, you must make a
single Register function for all components in a namespace that has the name of the
package.

To install or uninstall your own components, or components from a third-party
vendor, follow these steps:

1 If you are installing a new package, copy or move the package files to a local
directory. If the package is shipped with .bpl, .bpi, .lib, and .obj files, be sure to
copy all of them. (For information about these files, see “Packages and standard
DLLs.”)

The directory where you store the .bpi and header files—and the .lib or .obj files, if
they are included with the distribution—must be in the C++Builder Library Path.

2 Choose Component|Install Packages from the IDE menu, or choose Project|
Options and click the Packages tab.

3 A list of available packages appears under “Design packages.”

• To install a package in the IDE, select the check box next to it.

• To uninstall a package, uncheck its check box.

15-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

• To see a list of components included in an installed package, select the package
and click Components.

• To add a package to the list, click Add and browse in the Add Design Package
dialog for the directory where the .bpl file resides (see step 1). Select a .bpl file
and click Open.

• To remove a package from the list, select the package and click Remove.

4 Click OK.

The components in the package are installed on the Component palette pages
specified in the components’ RegisterComponents procedure, with the names they
were assigned in the same procedure.

New projects are created with all available packages installed, unless you change the
default settings. To make the current installation choices into the automatic default
for new projects, check the Default check box at the bottom of the Packages tab of the
Project Options dialog box.

To remove components from the Component palette without uninstalling a package,
select Component|Configure Palette, or select Tools|Environment Options and click
the Palette tab. The Palette options tab lists each installed component along with the
name of the Component palette page where it appears. Selecting any component and
clicking Hide removes the component from the palette.

Creating and editing packages
Creating a package involves specifying:

• A name for the package.

• A list of other packages to be required by, or linked to, the new package.

• A list of unit files to be contained by, or bound into, the package when it is built.
The package is essentially a wrapper for these source-code units. The Contains list
is where you put the source-code units for custom components that you want to
build into a package.

A package is defined by a C++ source (.cpp) file and a project options file whose
name ends with the .bpk extension. These files are generated by the Package editor.

Creating a package

To create a package, follow the procedure below. Refer to “Understanding the
structure of a package” on page 15-9 for more information about the steps outlined
here.

Note Do not use ifdefs in a package file (.bpk) such as when doing cross-platform
development. You can use them in the source code, however.

1 Choose File|New|Other, select the Package icon, and click OK.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-7

C r e a t i n g a n d e d i t i n g p a c k a g e s

2 The generated package is displayed in the Package editor.

3 The Package editor shows a Requires node and a Contains node for the new
package.

4 To add a unit to the Contains list, click the Add to package speed button. In the
Add unit page, type a .cpp file name in the Unit file name edit box, or click Browse
to browse for the file, and then click OK. The unit you’ve selected appears under
the Contains node in the Package editor. You can add additional units by
repeating this step.

5 To add a package to the Requires list, click the Add to package speed button. In
the Requires page, type a .bpi file name in the Package name edit box, or click
Browse to browse for the file, and then click OK. The package you’ve selected
appears under the Requires node in the Package editor. You can add additional
packages by repeating this step.

6 Click the Options speed button, and decide what kind of package you want to
build.

• To create a design-time only package (a package that cannot be used at
runtime), select the Designtime only radio button. (Or add the -Gpd linker
switch to your bpk file: LFLAGS = ... -Gpd)

• To create a runtime-only package (a package that cannot be installed), select the
Runtime only radio button. (Or add the -Gpr linker switch to your bpk file:
LFLAGS = ... -Gpr)

• To create a package that is available at both design time and runtime, select the
Designtime and runtime radio button.

7 In the Package editor, click the Compile package speed button to compile your
package.

Note You can also click the Install button to force a make.

Editing an existing package

You can open an existing package for editing in several ways:

• Choose File|Open (or File|Reopen) and select a cpp or bpk file.

• Choose Component|Install Packages, select a package from the Design Packages
list, and click the Edit button.

• When the Package editor is open, select one of the packages in the Requires node,
right-click, and choose Open.

To edit a package’s description or set usage options, click the Options speed button in
the Package editor and select the Description tab.

The Project Options dialog has a Default check box in the lower left corner. If you
click OK when this box is checked, the options you’ve chosen are saved as default
settings for new package projects. To restore the original defaults, delete or rename
the default.bpk file.

15-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Package source files and project options files

Package source files have the .cpp extension. Package project options files are created
using XML format and have the .bpk (Borland package) extension. Display the
package project option file from the Package editor by right-clicking on the Contains
or Requires clause and choosing Edit Option Source.

Note C++Builder maintains the .bpk file. You do not normally need to edit it manually.
You should make changes using the Packages tab of the Project Options dialog box.

The project options file for a package called MyPack might look, in part, like this:

<MACROS>
 <VERSION value="BCB.05.02"/>
 <PROJECT value="MyPack.bpl"/>
 <OBJFILES value="MyPack.obj Unit2.obj Unit3.obj"/>
 <RESFILES value="MyPack.res"/>
 <IDLFILES value=""/>
 <IDLGENFILES value=""/>
 <DEFFILE value=""/>
 <RESDEPEN value="$(RESFILES)"/>
 <LIBFILES value=""/>
 <LIBRARIES value=""/>
 <SPARELIBS value="Vcl60.lib"/>
 <PACKAGES value="Vcl60.bpi vcldbx60.bpi"/>

.

.

.

In this case, MYPACK.cpp would include the following code:

USERES("MyPack.res");
USEPACKAGE("vcl60.bpi");
USEPACKAGE("vcldbx60.bpi");
USEUNIT("Unit2.cpp");
USEUNIT("Unit3.cpp");

MyPack’s Contains list includes three units: MyPack itself, Unit2, and Unit3.
MyPack’s Requires list includes VCL and VCLDBX.

Packaging components
If you use the New Component wizard to create components (by choosing
Component|New Component), C++Builder inserts the PACKAGE macro where it is
needed. But if you have custom components from an older version of C++Builder,
you’ll have to add PACKAGE manually in two places.

The header-file declaration for a C++Builder component must include the predefined
PACKAGE macro after the word class:

class PACKAGE MyComponent : ...

And in the cpp file where the component is defined, include the PACKAGE macro in
the declaration of the Register function:

void __fastcall PACKAGE Register()

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-9

C r e a t i n g a n d e d i t i n g p a c k a g e s

The PACKAGE macro expands to a statement that allows classes to be imported and
exported from the resulting bpl file.

Understanding the structure of a package

Packages include the following parts:

• Package name
• Requires list
• Contains list

Naming packages
Package names must be unique within a project. If you name a package Stats, the
Package editor generates a source file and project options file for it called Stats.cpp
and Stats.bpk, respectively; the compiler and linker generate an executable, a binary
image, and (optionally) a static library called Stats.bpl, Stats.bpi, and Stats.lib,
respectively. To use the package in an application, add Stats to the Runtime Packages
edit box (after choosing Project|Options and clicking the Packages tab).

You can also add a prefix, suffix, and version number to your package name. While
the Package editor is open, click the Options button. On the Description page of the
Project Options dialog box, enter text or a value for LIB Suffix, LIB Prefix, or LIB
Version. For example, to add a version number to your package project, enter 6 after
LIB Version so that Package1 generates Package1.bpl.6.

Requires list
The Requires list specifies other, external packages that are used by the current
package. An external package included in the Requires list is automatically linked at
compile time into any application that uses both the current package and one of the
units contained in the external package.

If the unit files contained in your package make references to other packaged units,
the other packages should appear in your package’s Requires list or you should add
them. If the other packages are omitted from the Requires list, the compiler will
import them into your package ‘implicitly contained units.’

Note Most packages that you create require rtl. If using VCL components, you’ll also need
to include the vcl package. If using CLX components for cross-platform
programming, you need to include VisualCLX.

Avoiding circular package references
Packages cannot contain circular references in their Requires list. This means that

• A package cannot reference itself in its own Requires list.

• A chain of references must terminate without rereferencing any package in the
chain. If package A requires package B, then package B cannot require package A;
if package A requires package B and package B requires package C, then package
C cannot require package A.

15-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

Handling duplicate package references
Duplicate references in a package’s Requires list—or in the Runtime Packages edit
box—are ignored by the linker. For programming clarity and readability, however,
you should catch and remove duplicate package references.

Contains list
The Contains list identifies the unit files to be bound into the package. If you are
writing your own package, put your source code in cpp files and include them in the
Contains list.

Avoiding redundant source code uses
A package cannot appear in the Contains list of another package.

All units included directly in a package’s Contains list, or included indirectly in any
of those units, are bound into the package at link time.

A unit cannot be contained (directly or indirectly) in more than one package used by
the same application, including the C++Builder IDE. This means that if you create a
package that contains one of the units in vcl you won’t be able to install your package
in the IDE. To use an already-packaged unit file in another package, put the first
package in the second package’s Requires list.

Building packages

You can build a package from the IDE or from the command line. To rebuild a
package by itself from the IDE:

1 Choose File|Open, select a package source file or project option file, and click
Open.

2 When the editor opens, choose Project|Make or Project|Build.

Note You can also choose File|New|Other and double-click the Package editor. Click
the Install button to make the package project. Right-click the package project
nodes for options to install, make, or build.

If you are adding a nongenerated .cpp file, add one of the compiler directives into
your package source code. For more information, see “Package-specific compiler
directives” below.

When linking at the command line, you can use several package-specific linker
switches. For more information, see “Using the command-line compiler and linker”
on page 15-12.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-11

C r e a t i n g a n d e d i t i n g p a c k a g e s

Package-specific compiler directives
The following table lists package-specific compiler directives that you can insert into
your source code.

Refer to “Creating packages and DLLs” on page 7-10 for additional directives that
can be used in all libraries.

Weak packaging
The #pragma package(smart_init, weak) directive affects the way an .obj file is
stored in a package’s .bpi and .bpl files. (For information about files generated by the
compiler and linker, see “Package files created by building” on page 15-12.) If
#pragma package(smart_init, weak) appears in a unit file, the linker omits the unit
from bpls when possible, and creates a non-packaged local copy of the unit when it is
required by another application or package. A unit compiled with this directive is
said to be weakly packaged.

For example, suppose you’ve created a package called PACK that contains only one
unit, UNIT1. Suppose UNIT1 does not use any additional units, but it makes calls to
RARE.dll. If you put #pragma package(smart_init, weak) in UNIT1.cpp when you
build your package, UNIT1 will not be included in PACK.bpl; you will not have to
distribute copies of RARE.dll with PACK. However, UNIT1 will still be included in
PACK.bpi. If UNIT1 is referenced by another package or application that uses PACK,
it will be copied from PACK.bpi and linked directly into the project.

Now suppose you add a second unit, UNIT2, to PACK. Suppose that UNIT2 uses
UNIT1. This time, even if you compile PACK with #pragma package(smart_init,
weak) in UNIT1.cpp, the linker will include UNIT1 in PACK.bpl. But other packages
or applications that reference UNIT1 will use the (non-packaged) copy taken from
PACK.bpi.

Note Unit files containing the #pragma package(smart_init, weak) directive must not
have global variables.

#pragma package(smart_init, weak) is an advanced feature intended for developers
who distribute their bpls to other C++Builder programmers. It can help you to avoid
distribution of infrequently used DLLs, and to eliminate conflicts among packages
that may depend on the same external library.

For example, C++Builder’s PenWin unit references PenWin.dll. Most projects don’t
use PenWin, and most computers don’t have PenWin.dll installed on them. For this
reason, the PenWin unit is weakly packaged in vcl. When you link a project that uses
PenWin and the vcl package, PenWin is copied from vcl60.bpi and bound directly
into your project; the resulting executable is statically linked to PenWin.dll.

Table 15.2 Package-specific compiler directives

Directive Purpose

#pragma package(smart_init) Assures that packaged units are initialized in the
order determined by their dependencies. (Included
by default in package source file.)

#pragma package(smart_init, weak) Packages unit “weakly.” See “Weak packaging”
below.(Put directive in unit source file.)

15-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d e d i t i n g p a c k a g e s

If PenWin were not weakly packaged, two problems would arise. First, vcl itself
would be statically linked to PenWin.dll, and so you could not load it on any
computer which didn’t have PenWin.dll installed. Second, if you tried to create a
package that contained PenWin, a build error would result because the PenWin unit
would be contained in both vcl and your package. Thus, without weak packaging,
PenWin could not be included in standard distributions of vcl.

Using the command-line compiler and linker
When you link from the command line, use the -Tpp linker switch to ensure that the
project is built as a package. Other package-specific switches are listed in the
following table.

The -Gpr and -Gpd switches correspond to the Runtime Package and Design
Package check boxes on the Description page of the Project Options dialog (available
for package projects only); if neither -Gpr nor -Gpd is used, the resulting package
works at both design time and runtime. The -D switch corresponds to the
Description edit box on the same page. The -Gl switch corresponds to the Generate
.lib File check box on the Linker page of the Project Options dialog.

Note You can generate a makefile to use on the command line by choosing Project|Export
Makefile.

Package files created by building
To create a package, you compile a source (.cpp) file using a project options file with
the .bpk extension. The base name of the source file should match the base name of
the files generated by the compiler; that is, if the source file is called TRAYPAK.cpp,
the project options file—TRAYPAK.bpk—should include

<PROJECT value="Traypak.bpl"/>

In this case, compiling and linking the project creates a package called
TRAYPAK.bpl.

When you compile and link a package, you create a bpi, bpl, obj, and lib file. The bpi,
bpl, and lib files are generated by default in the directories specified in Library page
of the Tools|Environment Options dialog. You can override the default settings by
clicking the Options speed button in the Package editor to display the Project Options
dialog; make any changes on the Directories/Conditionals page.

Table 15.3 Package-specific command-line linker switches

Switch Purpose

-Tpp Builds the project as a package. Included by default in package project files.

-Gi Saves the generated bpi file. Included by default in package project files.

-Gpr Generates a runtime-only package.

-God Generates a design-time-only package.

-Gl Generates a .lib file.

-D “description” Saves the specified description with the package.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-13

D e p l o y i n g p a c k a g e s

Deploying packages
You deploy packages much like you deploy other applications. The files you
distribute with a deployed package may vary. The bpl and any packages or dlls
required by the bpl must be distributed.

The following table lists the files that may be necessary, depending on the intended
use of the package.

For general deployment information, refer to Chapter 17, “Deploying applications.”

Deploying applications that use packages

When distributing an application that uses runtime packages, make sure that your
users have the application’s .exe file as well as all the library (.bpl or .dll) files that the
application calls. If the library files are in a different directory from the .exe file, they
must be accessible through the user’s Path. You may want to follow the convention of
putting library files in the Windows\System directory. If you use InstallShield
Express, your installation script can check the user’s system for any packages it
requires before blindly reinstalling them.

Distributing packages to other developers

If you distribute runtime or design-time packages to other C++Builder developers, be
sure to supply both .bpi and .bpl files as well as any required header files. To link
components statically into their applications—that is, to build applications that don’t
use runtime packages—developers will also need .lib (or .obj) files for any packages
you supply.

Package collection files

Package collections (.dpc files) offer a convenient way to distribute packages to other
developers. Each package collection contains one or more packages, including bpls
and any additional files you want to distribute with them. When a package collection
is selected for IDE installation, its constituent files are automatically extracted from
their .pce container; the Installation dialog box offers a choice of installing all
packages in the collection or installing packages selectively.

Table 15.4 Files deployed with a package

File Description

ComponentName.h Allows end users access to the class interfaces.

ComponentName.cpp Allows end users access to the component source.

bpi, obj, and lib Allows end users to link applications.

15-14 D e v e l o p e r ’ s G u i d e

D e p l o y i n g p a c k a g e s

To create a package collection:

1 Choose Tools|Package Collection Editor to open the Package Collection editor.

2 Click the Add a Package speed button, then select a bpl in the Select Package
dialog and click Open. To add more bpls to the collection, click the Add a Package
speed button again. A tree diagram on the left side of the Package editor displays
the bpls as you add them. To remove a package, select it and click the Remove
Package speed button.

3 Select the Collection node at the top of the tree diagram. On the right side of the
Package Collection editor, two fields will appear:

• In the Author/Vendor Name edit box, you can enter optional information
about your package collection that will appear in the Installation dialog when
users install packages.

• Under Directory List, list the default directories where you want the files in
your package collection to be installed. Use the Add, Edit, and Delete buttons to
edit this list. For example, suppose you want all source code files to be copied to
the same directory. In this case, you might enter Source as a Directory Name
with C:\MyPackage\Source as the Suggested Path. The Installation dialog box will
display C:\MyPackage\Source as the suggested path for the directory.

4 In addition to bpls, your package collection can contain .bpi, .obj, and .cpp (unit)
files, documentation, and any other files you want to include with the distribution.
Ancillary files are placed in file groups associated with specific packages (bpls);
the files in a group are installed only when their associated bpl is installed. To
place ancillary files in your package collection, select a bpl in the tree diagram and
click the Add File Group speed button; type a name for the file group. Add more
file groups, if desired, in the same way. When you select a file group, new fields
will appear on the right in the Package Collection editor.

• In the Install Directory list box, select the directory where you want files in this
group to be installed. The drop-down list includes the directories you entered
under Directory List in step 3, above.

• Check the Optional Group check box if you want installation of the files in this
group to be optional.

• Under Include Files, list the files you want to include in this group. Use the
Add, Delete, and Auto buttons to edit the list. The Auto button allows you to
select all files with specified extensions that are listed in the Contains list of the
package; the Package Collection editor uses C++Builder’s global Library Path to
search for these files.

5 You can select installation directories for the packages listed in the Requires list of
any package in your collection. When you select a bpl in the tree diagram, four
new fields appear on the right side of the Package Collection editor:

• In the Required Executables list box, select the directory where you want the
.bpl files for packages listed in the Requires list to be installed. (The drop-down
list includes the directories you entered under Directory List in step 3, above.)
The Package Collection Editor searches for these files using C++Builder’s global
Library Path and lists them under Required Executable Files.

W o r k i n g w i t h p a c k a g e s a n d c o m p o n e n t s 15-15

D e p l o y i n g p a c k a g e s

• In the Required Libraries list box, select the directory where you want the .obj
and .bpi files for packages listed in the Requires list to be installed. (The drop-
down list includes the directories you entered under Directory List in step 3,
above.) The Package Collection Editor searches for these files using
C++Builder’s global Library Path and lists them under Required Library Files.

6 To save your package collection source file, choose File|Save. Package collection
source files should be saved with the .pce extension.

7 To build your package collection, click the Compile speed button. The Package
Collection editor generates a .dpc file with the same name as your source (.pce)
file. If you have not yet saved the source file, the editor queries you for a file name
before building.

To edit or rebuild an existing .pce file, select File|Open in the Package Collection
editor and locate the file you want to work with.

15-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 16-1

C h a p t e r

16
Chapter16Creating international applications

This chapter discusses guidelines for writing applications that you plan to distribute
to an international market. By planning ahead, you can reduce the amount of time
and code necessary to make your application function in its foreign market as well as
in its domestic market.

Internationalization and localization
To create an application that you can distribute to foreign markets, there are two
major steps that need to be performed:

• Internationalization
• Localization

If your edition of C++Builder includes the Translation Tools, you can use the them to
manage localization. For more information, see the online Help for the Translation
Tools (ETM.hlp).

Internationalization

Internationalization is the process of enabling your program to work in multiple
locales. A locale is the user’s environment, which includes the cultural conventions of
the target country as well as the language. Windows supports a large set of locales,
each of which is described by a language and country pair.

Localization

Localization is the process of translating an application so that it functions in a
specific locale. In addition to translating the user interface, localization may include
functionality customization. For example, a financial application may be modified for
the tax laws in different countries.

16-2 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Internationalizing applications
You need to complete the following steps to create internationalized applications:

• Enable your code to handle strings from international character sets.

• Design your user interface to accommodate the changes that result from
localization.

• Isolate all resources that need to be localized.

Enabling application code

You must make sure that the code in your application can handle the strings it will
encounter in the various target locales.

 Character sets
The Western editions (including English, French, and German) of Windows use the
ANSI Latin-1 (1252) character set. However, other editions of Windows use different
character sets. For example, the Japanese version of Windows uses the Shift-JIS
character set (code page 932), which represents Japanese characters as multibyte
character codes.

There are generally three types of characters sets:

• Single-byte
• Multibyte
• Wide characters

Windows and Linux both support single-byte and multibyte character sets as well as
Unicode. With a single-byte character set, each byte in a string represents one
character. The ANSI character set used by many western operating systems is a
single-byte character set.

In a multibyte character set, some characters are represented by one byte and others
by more than one byte. The first byte of a multibyte character is called the lead byte.
In general, the lower 128 characters of a multibyte character set map to the 7-bit
ASCII characters, and any byte whose ordinal value is greater than 127 is the lead
byte of a multibyte character. Only single-byte characters can contain the null value
(#0). Multibyte character sets—especially double-byte character sets (DBCS)—are
widely used for Asian languages.

OEM and ANSI character sets
It is sometimes necessary to convert between the Windows character set (ANSI) and
the character set specified by the code page of the user’s machine (called the OEM
character set).

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 16-3

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Multibyte character sets
The ideographic character sets used in Asia cannot use the simple 1:1 mapping
between characters in the language and the one byte (8-bit) char type. These
languages have too many characters to be represented using the single-byte char.
Instead, a multibyte string can contain one or more bytes per character. AnsiStrings
can contain a mix of single-byte and multibyte characters.

The lead byte of every multibyte character code is taken from a reserved range that
depends on the specific character set. The second and subsequent bytes can
sometimes be the same as the character code for a separate one-byte character, or it
can fall in the range reserved for the first byte of multibyte characters. Thus, the only
way to tell whether a particular byte in a string represents a single character or is part
of a multibyte character is to read the string, starting at the beginning, parsing it into
two or more byte characters when a lead byte from the reserved range is
encountered.

When writing code for Asian locales, you must be sure to handle all string
manipulation using functions that are enabled to parse strings into multibyte
characters. See “International API” and “MBCS utilities” in the online Help for a list
of the RTL functions that are enabled to work with multibyte characters.

Remember that the length of the strings in bytes does not necessarily correspond to
the length of the string in characters. Be careful not to truncate strings by cutting a
multibyte character in half. Do not pass characters as a parameter to a function or
procedure, since the size of a character can’t be known up front. Instead, always pass
a pointer to a character or a string.

Wide characters
Another approach to working with ideographic character sets is to convert all
characters to a wide character encoding scheme such as Unicode. Unicode characters
and strings are also called wide characters and wide character strings. In the Unicode
character set, each character is represented by two bytes. Thus a Unicode string is a
sequence not of individual bytes but of two-byte words.

The first 256 Unicode characters map to the ANSI character set. The Windows
operating system supports Unicode (UCS-2). The Linux operating system supports
UCS-4, a superset of UCS-2. C++Builder supports UCS-2 on both platforms. Because
wide characters are two bytes instead of one, the character set can represent many
more different characters.

Using a wide character encoding scheme has the advantage that you can make many
of the usual assumptions about strings that do not work for MBCS systems. There is a
direct relationship between the number of bytes in the string and the number of
characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

The biggest disadvantage of working with wide characters is that Windows supports
a few wide character API function calls. Because of this, the VCL components
represent all string values as single byte or MBCS strings. Translating between the
wide character system and the MBCS system every time you set a string property or
read its value would require additional code and slow your application down.

16-4 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

However, you may want to translate into wide characters for some special string
processing algorithms that need to take advantage of the 1:1 mapping between
characters and WideChars.

See “International API” in the online help for a list of the RTL functions that are
enabled to work with Unicode characters.

Including bi-directional functionality in applications
Some languages do not follow the left to right reading order commonly found in
western languages, but rather read words right to left and numbers left to right.
These languages are termed bi-directional (BiDi) because of this separation. The most
common bi-directional languages are Arabic and Hebrew, although other Middle
East languages are also bi-directional.

TApplication has two properties, BiDiKeyboard and NonBiDiKeyboard, that allow you
to specify the keyboard layout. In addition, the VCL supports bi-directional
localization through the BiDiMode and ParentBiDiMode properties. The following
table lists VCL objects that have these properties:

Table 16.1 VCL objects that support BiDi

Component palette page VCL object

Standard TButton

 TCheckBox

 TComboBox

 TEdit

 TGroupBox

 TLabel

 TListBox

 TMainMenu

 TMemo

 TPanel

 TPopupMenu

 TRadioButton

 TRadioGroup

 TScrollBar

Additional TActionMainMenuBar

TActionToolBar

TBitBtn

 TCheckListBox

TColorBox

 TDrawGrid

TLabeledEdit

 TMaskEdit

 TScrollBox

 TSpeedButton

 TStaticLabel

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 16-5

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

TStaticText

TStringGrid

TValueListEditor

Win32 TComboBoxEx

TDateTimePicker

 THeaderControl

THotKey

 TListView

 TMonthCalendar

 TPageControl

 TRichEdit

 TStatusBar

TTabControl

 TTreeView

Data Controls TDBCheckBox

 TDBComboBox

 TDBEdit

 TDBGrid

 TDBListBox

 TDBLookupComboBox

 TDBLookupListBox

 TDBMemo

 TDBRadioGroup

 TDBRichEdit

 TDBText

QReport TQRDBText

 TQRExpr

 TQRLabel

 TQRMemo

TQRPreview

 TQRSysData

Other classes TApplication (has no ParentBiDiMode)

TBoundLabel

TControl (has no ParentBiDiMode)

TCustomHeaderControl (has no ParentBiDiMode)

 TForm

TFrame

THeaderSection

 THintWindow (has no ParentBiDiMode)

TMenu

TStatusPanel

Table 16.1 VCL objects that support BiDi (continued)

Component palette page VCL object

16-6 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Note THintWindow picks up the BiDiMode of the control that activated the hint.

Bi-directional properties
The objects listed in Table 16.1, “VCL objects that support BiDi,” on page 16-4 have
the properties BiDiMode and ParentBiDiMode. These properties, along with
TApplication‘s BiDiKeyboard and NonBiDiKeyboard, support bi-directional localization.

Note Bi-directional properties are not available in CLX for cross-platform programming.

BiDiMode property
The property BiDiMode is a new enumerated type, TBiDiMode, with four states:
bdLeftToRight, bdRightToLeft, bdRightToLeftNoAlign, and bdRightToLeftReadingOnly.

bdLeftToRight
bdLeftToRight draws text using left to right reading order. The alignment and scroll
bars are not changed. For instance, when entering right to left text, such as Arabic or
Hebrew, the cursor goes into push mode and the text is entered right to left. Latin
text, such as English or French, is entered left to right. bdLeftToRight is the default
value.

Figure 16.1 TListBox set to bdLeftToRight

bdRightToLeft
bdRightToLeft draws text using right to left reading order, the alignment is changed
and the scroll bar is moved. Text is entered as normal for right-to-left languages such
as Arabic or Hebrew. When the keyboard is changed to a Latin language, the cursor
goes into push mode and the text is entered left to right.

Figure 16.2 TListBox set to bdRightToLeft

bdRightToLeftNoAlign
bdRightToLeftNoAlign draws text using right to left reading order, the alignment is
not changed, and the scroll bar is moved.

Figure 16.3 TListBox set to bdRightToLeftNoAlign

bdRightToLeftReadingOnly
bdRightToLeftReadingOnly draws text using right to left reading order, and the
alignment and scroll bars are not changed.

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 16-7

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Figure 16.4 TListBox set to bdRightToLeftReadingOnly

ParentBiDiMode property
ParentBiDiMode is a Boolean property. When true (the default) the control looks to its
parent to determine what BiDiMode to use. If the control is a TForm object, the form
uses the BiDiMode setting from Application. If all the ParentBiDiMode properties are
true, when you change Application’s BiDiMode property, all forms and controls in the
project are updated with the new setting.

FlipChildren method
The FlipChildren method allows you to flip the position of a container control’s
children. Container controls are controls that can accept other controls, such as
TForm, TPanel, and TGroupBox. FlipChildren has a single boolean parameter, AllLevels.
When false, only the immediate children of the container control are flipped. When
true, all the levels of children in the container control are flipped.

C++Builder flips the controls by changing the Left property and the alignment of the
control. If a control’s left side is five pixels from the left edge of its parent control,
after it is flipped the edit control’s right side is five pixels from the right edge of the
parent control. If the edit control is left aligned, calling FlipChildren will make the
control right aligned.

To flip a control at design-time select Edit|Flip Children and select either All or
Selected, depending on whether you want to flip all the controls, or just the children
of the selected control. You can also flip a control by selecting the control on the form,
right-clicking, and selecting Flip Children from the context menu.

Note Selecting an edit control and issuing a Flip Children|Selected command does
nothing. This is because edit controls are not containers.

Additional methods
There are several other methods useful for developing applications for bi-directional
users.

Table 16.2 VCL methods that support BiDi

Method Description

OkToChangeFieldAlignment Used with database controls. Checks to see if the
alignment of a control can be changed.

DBUseRightToLeftAlignment A wrapper for database controls for checking
alignment.

ChangeBiDiModeAlignment Changes the alignment parameter passed to it. No check
is done for BiDiMode setting, it just converts left
alignment into right alignment and vice versa, leaving
center-aligned controls alone.

IsRightToLeft Returns true if any of the right to left options are
selected. If it returns false the control is in left to right
mode.

16-8 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Locale-specific features
You can add extra features to your application for specific locales. In particular, for
Asian language environments, you may want your application to control the input
method editor (IME) that is used to convert the keystrokes typed by the user into
character strings.

VCL and CLX components offer support in programming the IME. Most windowed
controls that work directly with text input have an ImeName property that allows you
to specify a particular IME that should be used when the control has input focus.
They also provide an ImeMode property that specifies how the IME should convert
keyboard input. TWinControl introduces several protected methods that you can use
to control the IME from classes you define. In addition, the global Screen variable
provides information about the IMEs available on the user’s system.

The global Screen variable (available in VCL and CLX) also provides information
about the keyboard mapping installed on the user’s system. You can use this to
obtain locale-specific information about the environment in which your application
is running.

Designing the user interface

When creating an application for several foreign markets, it is important to design
your user interface so that it can accommodate the changes that occur during
translation.

Text
All text that appears in the user interface must be translated. English text is almost
always shorter than its translations. Design the elements of your user interface that
display text so that there is room for the text strings to grow. Create dialogs, menus,
status bars, and other user interface elements that display text so that they can easily
display longer strings. Avoid abbreviations—they do not exist in languages that use
ideographic characters.

UseRightToLeftReading Returns true if the control is using right to left reading.

UseRightToLeftAlignment Returns true if the control is using right to left
alignment. It can be overridden for customization.

UseRightToLeftScrollBar Returns true if the control is using a left scroll bar.

DrawTextBiDiModeFlags Returns the correct draw text flags for the BiDiMode of
the control.

DrawTextBiDiModeFlagsReadingOnly Returns the correct draw text flags for the BiDiMode of
the control, limiting the flag to its reading order.

AddBiDiModeExStyle Adds the appropriate ExStyle flags to the control that is
being created.

Table 16.2 VCL methods that support BiDi (continued)

Method Description

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 16-9

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Short strings tend to grow in translation more than long phrases. Table 16.3 provides
a rough estimate of how much expansion you should plan for given the length of
your English strings:

Graphic images
Ideally, you will want to use images that do not require translation. Most obviously,
this means that graphic images should not include text, which will always require
translation. If you must include text in your images, it is a good idea to use a label
object with a transparent background over an image rather than including the text as
part of the image.

There are other considerations when creating graphic images. Try to avoid images
that are specific to a particular culture. For example, mailboxes in different countries
look very different from each other. Religious symbols are not appropriate if your
application is intended for countries that have different dominant religions. Even
color can have different symbolic connotations in different cultures.

Formats and sort order
The date, time, number, and currency formats used in your application should be
localized for the target locale. If you use only the Windows formats, there is no need
to translate formats, as these are taken from the user’s Windows Registry. However,
if you specify any of your own format strings, be sure to declare them as resourced
constants so that they can be localized.

The order in which strings are sorted also varies from country to country. Many
European languages include diacritical marks that are sorted differently, depending
on the locale. In addition, in some countries, two-character combinations are treated
as a single character in the sort order. For example, in Spanish, the combination ch is
sorted like a single unique letter between c and d. Sometimes a single character is
sorted as if it were two separate characters, such as the German eszett.

Keyboard mappings
Be careful with key-combinations shortcut assignments. Not all the characters
available on the US keyboard are easily reproduced on all international keyboards.
Where possible, use number keys and function keys for shortcuts, as these are
available on virtually all keyboards.

Table 16.3 Estimating string lengths

Length of English string (in characters) Expected increase

1-5 100%

6-12 80%

13-20 60%

21-30 40%

31-50 20%

over 50 10%

16-10 D e v e l o p e r ’ s G u i d e

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Isolating resources

The most obvious task in localizing an application is translating the strings that
appear in the user interface. To create an application that can be translated without
altering code everywhere, the strings in the user interface should be isolated into a
single module. C++Builder automatically creates a .dfm (.xfm in CLX applications)
file that contains the resources for your menus, dialogs, and bitmaps.

In addition to these obvious user interface elements, you will need to isolate any
strings, such as error messages, that you present to the user. String resources are not
included in the form file but you can isolate them into an .RC file.

Creating resource DLLs

Isolating resources simplifies the translation process. The next level of resource
separation is the creation of a resource DLL. A resource DLL contains all the
resources and only the resources for a program. Resource DLLs allow you to create a
program that supports many translations simply by swapping the resource DLL.

Use the Resource DLL wizard to create a resource DLL for your program. The
Resource DLL wizard requires an open, saved, compiled project. It will create an RC
file that contains the string tables from used RC files and resourcestring strings of the
project, and generate a project for a resource only DLL that contains the relevant
forms and the created RES file. The RES file is compiled from the new RC file.

You should create a resource DLL for each translation you want to support. Each
resource DLL should have a file name extension specific to the target locale. The first
two characters indicate the target language, and the third character indicates the
country of the locale. If you use the Resource DLL wizard, this is handled for you.
Otherwise, use the following code to obtain the locale code for the target translation:

/* This callback fills a listbox with the strings and their associated languages and
countries*/
BOOL __stdcall EnumLocalesProc(char* lpLocaleString)
{
 AnsiString LocaleName, LanguageName, CountryName;
 LCID lcid;
 lcid = StrToInt("$" + AnsiString(lpLocaleString));
 LocaleName = GetLocaleStr(lcid, LOCALE_SABBREVLANGNAME, "");
 LanguageName = GetLocaleStr(lcid, LOCALE_SNATIVELANGNAME, "");
 CountryName = GetLocaleStr(lcid, LOCALE_SNATIVECTRYNAME, "");
 if (lstrlen(LocaleName.c_str()) > 0)
 Form1->ListBox1->Items->Add(LocaleName + ":" + LanguageName + "-" + CountryName);
 return TRUE;
}
/* This call causes the callback to execute for every locale */
 EnumSystemLocales((LOCALE_ENUMPROC)EnumLocalesProc, LCID_SUPPORTED);

C r e a t i n g i n t e r n a t i o n a l a p p l i c a t i o n s 16-11

I n t e r n a t i o n a l i z i n g a p p l i c a t i o n s

Using resource DLLs

The executable, DLLs, and packages (bpls) that make up your application contain all
the necessary resources. However, to replace those resources by localized versions,
you need only ship your application with localized resource DLLs that have the same
name as your executable, DLL, or package files.

When your application starts up, it checks the locale of the local system. If it finds any
resource DLLs with the same name as the EXE, DLL, or BPL files it is using, it checks
the extension on those DLLs. If the extension of the resource module matches the
language and country of the system locale, your application will use the resources in
that resource module instead of the resources in the executable, DLL, or package. If
there is not a resource module that matches both the language and the country, your
application will try to locate a resource module that matches just the language. If
there is no resource module that matches the language, your application will use the
resources compiled with the executable, DLL, or package.

If you want your application to use a different resource module than the one that
matches the locale of the local system, you can set a locale override entry in the
Windows registry. Under the HKEY_CURRENT_USER\Software\Borland\Locales
key, add your application’s path and file name as a string value and set the data
value to the extension of your resource DLLs. At startup, the application will look for
resource DLLs with this extension before trying the system locale. Setting this
registry entry allows you to test localized versions of your application without
changing the locale on your system.

For example, the following procedure can be used in an install or setup program to
set the registry key value that indicates the locale to use when loading C++Builder
applications:

void SetLocalOverrides(char* FileName, char* LocaleOverride)
{
 HKEY Key;
 const char* LocaleOverrideKey = "Software\\Borland\\Locales";
 if (RegOpenKeyEx(HKEY_CURRENT_USER, LocaleOverrideKey, 0, KEY_ALL_ACCESS, &Key)
 == ERROR_SUCCESS) {
 if (lstrlen(LocaleOverride) == 3)
 RegSetValueEx(Key, FileName, 0, REG_SZ, (const BYTE*)LocaleOverride, 4);
 RegCloseKey(Key);
 }
}

Within your application, use the global FindResourceHInstance function to obtain the
handle of the current resource module. For example:

LoadString(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery, sizeof(szQuery));

You can ship a single application that adapts itself automatically to the locale of the
system it is running on, simply by providing the appropriate resource DLLs.

16-12 D e v e l o p e r ’ s G u i d e

L o c a l i z i n g a p p l i c a t i o n s

Dynamic switching of resource DLLs

In addition to locating a resource DLL at application startup, it is possible to switch
resource DLLs dynamically at runtime. To add this functionality to your own
applications, you need to include the ReInit unit in your project. (ReInit is located in
the Richedit sample in the Examples directory.) To switch languages, you should call
LoadResourceModule, passing the LCID for the new language, and then call
ReinitializeForms.

For example, the following code switches the interface language to French:

const FRENCH = (SUBLANG_FRENCH << 10) | LANG_FRENCH;
if (LoadNewResourceModule(FRENCH))

ReinitializeForms();

The advantage of this technique is that the current instance of the application and all
of its forms are used. It is not necessary to update the registry settings and restart the
application or re-acquire resources required by the application, such as logging in to
database servers.

When you switch resource DLLs the properties specified in the new DLL overwrite
the properties in the running instances of the forms.

Note Any changes made to the form properties at runtime will be lost. Once the new DLL
is loaded, default values are not reset. Avoid code that assumes that the form objects
are reinitialized to the their startup state, apart from differences due to localization.

Localizing applications
Once your application is internationalized, you can create localized versions for the
different foreign markets in which you want to distribute it.

Localizing resources

Ideally, your resources have been isolated into a resource DLL that contains form
files (.dfm in VCL or .xfm in CLX) and a resource file. You can open your forms in the
IDE and translate the relevant properties.

Note In a resource DLL project, you cannot add or delete components. It is possible,
however, to change properties in ways that could cause runtime errors, so be careful
to modify only those properties that require translation. To avoid mistakes, you can
configure the Object Inspector to display only Localizable properties; to do so, right-
click in the Object Inspector and use the View menu to filter out unwanted property
categories.

You can open the RC file and translate relevant strings. Use the StringTable editor by
opening the RC file from the Project Manager.

D e p l o y i n g a p p l i c a t i o n s 17-1

C h a p t e r

17
Chapter17Deploying applications

Once your C++Builder application is up and running, you can deploy it. That is, you
can make it available for others to run. A number of steps must be taken to deploy an
application to another computer so that the application is completely functional.
What is required by a given application varies, depending on the type of application.
The following sections describe considerations when deploying different types of
applications:

• Deploying general applications
• Deploying CLX applications
• Deploying database applications
• Deploying Web applications
• Programming for varying host environments
• Software license requirements

Note Information included in these sections is for deploying applications on Windows.

Deploying general applications
Beyond the executable file, an application may require a number of supporting files,
such as DLLs, package files, and helper applications. In addition, the Windows
registry may need to contain entries for an application, from specifying the location
of supporting files to simple program settings. The process of copying an
application’s files to a computer and making any needed registry settings can be
automated by an installation program, such as InstallShield Express. These are the
main deployment concerns common to nearly all types of applications:

• Using installation programs
• Identifying application files

17-2 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

C++Builder applications that access databases and those that run across the Web
require additional installation steps beyond those that apply to general applications.
For additional information on installing database applications, see “Deploying
database applications” on page 17-6. For more information on installing Web
applications, see “Deploying Web applications” on page 17-10. For more information
on installing ActiveX controls, see “Deploying an ActiveX control on the Web” on
page 43-16. For information on deploying CORBA applications, see the VisiBroker
Installation and Administration Guide.

Using installation programs

Simple C++Builder applications that consist of only an executable file are easy to
install on a target computer. Just copy the executable file onto the computer.
However, more complex applications that comprise multiple files require more
extensive installation procedures. These applications require dedicated installation
programs.

Setup toolkits automate the process of creating installation programs, often without
needing to write any code. Installation programs created with Setup toolkits perform
various tasks inherent to installing C++Builder applications, including: copying the
executable and supporting files to the host computer, making Windows registry
entries, and installing the Borland Database Engine for BDE database applications.

InstallShield Express is a setup toolkit that is bundled with C++Builder. InstallShield
Express is certified for use with C++Builder and the Borland Database Engine. It is
based on Windows Installer (MSI) technology.

InstallShield Express is not automatically installed when C++Builder is installed, so it
must be manually installed if you want to use it to create installation programs. Run
the installation program from the C++Builder CD to install InstallShield Express. For
more information on using InstallShield Express to create installation programs, see
the InstallShield Express online help.

Other setup toolkits are available. However, if deploying BDE database applications,
you should only use toolkits based on MSI technology and those which are certified
to deploy the Borland Database Engine.

Identifying application files
Besides the executable file, a number of other files may need to be distributed with an
application.

• Application files
• Package files
• Merge modules
• ActiveX controls

D e p l o y i n g a p p l i c a t i o n s 17-3

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Application files
The following types of files may need to be distributed with an application.

Package files
If the application uses runtime packages, those package files need to be distributed
with the application. InstallShield Express handles the installation of package files
the same as DLLs, copying the files and making necessary entries in the Windows
registry. You can also use merge modules for deploying runtime packages with MSI-
based setup tools including InstallShield Express. See the next section for details.

Borland recommends installing the runtime package files supplied by Borland in the
Windows\System directory. This serves as a common location so that multiple
applications would have access to a single instance of the files. For packages you
created, it is recommended that you install them in the same directory as the
application. Only the .bpl files need to be distributed.

Note If deploying packages with CLX applications, you need to include clx60.bpl rather
than vcl60.bpl.

If you are distributing packages to other developers, supply the .bpl, .bpi, and .lib (if
allowing static linking to your packages) files.

Merge modules
InstallShield Express 3.0 is based on Windows Installer (MSI) technology. That is
why C++Builder includes merge modules. Merge modules provide a standard
method that you can use to deliver shared code, files, resources, Registry entries, and
setup logic to applications as a single compound file. You can use merge modules for
deploying runtime packages with MSI-based setup tools including InstallShield
Express.

The runtime libraries have some interdependencies because of the way they are
grouped together. The result of this is that when one package is added to an install
project, the install tool automatically adds or reports a dependency on one or more
other packages. For example, if you add the VCLInternet merge module to an install
project, the install tool should also automatically add or report a dependency on the
VCLDatabase and StandardVCL modules.

The dependencies for each merge module are listed in the table below. The various
install tools may react to these dependencies differently. The InstallShield for
Windows Installer automatically adds the required modules if it can find them.

Table 17.1 Application files

Type File name extension

Program files .exe and .dll

Package files .bpl, .bpi, and .lib

Help files .hlp, .cnt, and .toc (if used) or any other Help files your application supports

ActiveX files .ocx (sometimes supported by a DLL)

Local table files .dbf, .mdx, .dbt, .ndx, .db, .px, .y*, .x*, .mb, .val, .qbe, .gd*

17-4 D e v e l o p e r ’ s G u i d e

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

Other tools may simply report a dependency or may generate a build failure if all
required modules are not included in the project.

Table 17.2 Merge modules and their dependencies

Merge module BPLs included Dependencies

ADO adortl60.bpl DatabaseRTL, BaseRTL

BaseClientDataSet cds60.bpl DatabaseRTL, BaseRTL, DataSnap,
dbExpress

BaseRTL rtl60.bpl No dependencies

BaseVCL vcl60.bpl, vclx60.bpl BaseRTL

BDEClientDataSet bdecds60.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,
DataSnap, dbExpress, BDERTL

BDEInternet inetdbbde60.bpl Internet, DatabaseRTL, BaseRTL, BDERTL

BDERTL bdertl60.bpl DatabaseRTL, BaseRTL

DatabaseRTL dbrtl60.bpl BaseRTL

DatabaseVCL vcldb60.bpl BaseVCL, DatabaseRTL, BaseRTL

DataSnap dsnap60.bpl DatabaseRTL, BaseRTL

DataSnapConnection dsnapcon60.bpl DataSnap, DatabaseRTL, BaseRTL

DataSnapCorba dsnapcrba60.bpl DataSnapConnection, DataSnap,
DatabaseRTL, BaseRTL, BaseVCL

DataSnapEntera dsnapent60.bpl DataSnap, DatabaseRTL, BaseRTL,
BaseVCL

DBCompatVCL vcldbx60.bpl DatabaseVCL, BaseVCL, BaseRTL,
DatabaseRTL

dbExpress dbexpress60.bpl DatabaseRTL, BaseRTL

dbExpressClientDataSet dbxcds60.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,
DataSnap, dbExpress

DBXInternet inetdbxpress60.bpl Internet, DatabaseRTL, BaseRTL,
dbExpress, DatabaseVCL, BaseVCL

DecisionCube dss60.bpl TeeChart, BaseVCL, BaseRTL,
DatabaseVCL, DatabaseRTL, BDERTL

FastNet nmfast60.bpl BaseVCL, BaseRTL

InterbaseVCL ibxpress60.bpl BaseClientDataSet, BaseRTL, BaseVCL,
DatabaseRTL, DatabaseVCL, DataSnap,
dbExpress

Internet inet60.bpl, inetdb60.bpl DatabaseRTL, BaseRTL

InternetDirect indy60.bpl BaseVCL, BaseRTL

Office2000Components dcloffice2k60.bpl DatabaseVCL, BaseVCL, DatabaseRTL,
BaseRTL

QuickReport qrpt60.bpl BaseVCL, BaseRTL, BDERTL, DatabaseRTL

SampleVCL vclsmp60.bpl BaseVCL, BaseRTL

TeeChart tee60.bpl, teedb60.bpl,
teeqr60.bpl, teeui60.bpl

BaseVCL, BaseRTL

VCLIE vclie60.bpl BaseVCL, BaseRTL

VisualCLX visualclx60.bpl BaseRTL

D e p l o y i n g a p p l i c a t i o n s 17-5

D e p l o y i n g g e n e r a l a p p l i c a t i o n s

ActiveX controls
Certain components bundled with C++Builder are ActiveX controls. The component
wrapper is linked into the application’s executable file (or a runtime package), but
the .ocx file for the component also needs to be deployed with the application. These
components include:

• Chart FX, copyright SoftwareFX Inc.
• VisualSpeller Control, copyright Visual Components, Inc.
• Formula One (spreadsheet), copyright Visual Components, Inc.
• First Impression (VtChart), copyright Visual Components, Inc.
• Graph Custom Control, copyright Bits Per Second Ltd.

ActiveX controls that you create need to be registered on the deployment computer
before use. Installation programs such as InstallShield Express automate this
registration process. To manually register an ActiveX control, choose Run|ActiveX
Server in the IDE, use the TRegSvr demo application or use the Microsoft utility
REGSRV32.EXE (not included with Windows 9x versions).

DLLs that support an ActiveX control also need to be distributed with an application.

Helper applications
Helper applications are separate programs without which your C++Builder
application would be partially or completely unable to function. Helper applications
may be those supplied with the operating system, by Borland, or they might be third-
party products. An example of a helper application is the InterBase utility program
Server Manager, which administers InterBase databases, users, and security.

If an application depends on a helper program, be sure to deploy it with your
application, where possible. Distribution of helper programs may be governed by
redistribution license agreements. Consult the documentation for the helper for
specific information.

DLL locations
You can install DLL files used only by a single application in the same directory as
the application. DLLs that will be used by a number of applications should be
installed in a location accessible to all of those applications. A common convention
for locating such community DLLs is to place them either in the Windows or the
Windows\System directory. A better way is to create a dedicated directory for the
common .DLL files, similar to the way the Borland Database Engine is installed.

VisualDBCLX visualdbclx60.bpl BaseRTL, DatabaseRTL, VisualCLX

WebDataSnap webdsnap60.bpl XMLRTL, Internet, DataSnapConnection,
DataSnap, DatabaseRTL, BaseRTL

WebSnap websnap60.bpl,
vcljpg60.bpl

WebDataSnap, XMLRTL, Internet,
DataSnapConnection, DataSnap,
DatabaseRTL, BaseRTL, BaseVCL

XMLRTL xmlrtl60.bpl Internet, DatabaseRTL, BaseRTL

Table 17.2 Merge modules and their dependencies (continued)

Merge module BPLs included Dependencies

17-6 D e v e l o p e r ’ s G u i d e

D e p l o y i n g C L X a p p l i c a t i o n s

Deploying CLX applications
To deploy a CLX application on Windows, follow the same steps as those for general
applications. For information on deploying general applications, see “Deploying
general applications” on page 17-1. For information on installing database CLX
applications, see “Deploying database applications” on page 17-6.

you need to include qtintf.dll with the application to include the CLX runtime. If
deploying packages with CLX applications, you need to include clx60.bpl rather than
vcl60.bpl.

See Chapter 14, “Developing cross-platform applications” for information on writing
CLX applications.

Deploying database applications
Applications that access databases involve special installation considerations beyond
copying the application’s executable file onto the host computer. Database access is
most often handled by a separate database engine, the files of which cannot be linked
into the application’s executable file. The data files, when not created beforehand,
must be made available to the application. Multi-tier database applications require
even more specialized handling on installation, because the files that make up the
application are typically located on multiple computers.

Since several different database technologies (ADO, BDE, dbExpress, and InterBase
Express) are supported, deployment requirements differ for each. Regardless of
which you are using, you need to make sure that the client-side software is installed
on the system where you plan to run the database application. ADO, BDE,
dbExpress, and InterBase Express also require drivers to interact with the client-side
software of the database.

Specific information on how to deploy dbExpress, BDE, and multi-tiered database
applications is described in the following sections:

• Deploying dbExpress database applications.
• Deploying BDE applications.
• Deploying multi-tiered database applications (DataSnap).

Database applications that use client datasets such as TClientDataSet or dataset
providers require you to include midaslib.dcu and crtl.dcu (for static linking when
providing a stand-alone executable); if you are packaging your application (with the
executable and any needed DLLs), you need to include Midas.dll.

If deploying database applications that use ADO, you need to be sure that MDAC
version 2.1 or later is installed on the system where you plan to run the application.
MDAC is automatically installed with software such as Windows 2000 and Internet
Explorer version 5 or later. You also need to be sure the drivers for the database
server you want to connect to are installed on the client. No other deployment steps
are required.

D e p l o y i n g a p p l i c a t i o n s 17-7

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

If deploying database applications that use InterBase Express, you need to be sure
that the InterBase client is installed on the system where you plan to run the
application. InterBase requires gd32.dll and interbase.msg to be located in an
accessible directory. No other deployment steps are required. InterBase Express
components communicate directly with the InterBase Client API and do not require
additional drivers. For more information, refer to the Embedded Installation Guide
posted on the Borland Web site.

In addition to the technologies described here, you can also use third-party database
engines to provide database access for C++Builder applications. Consult the
documentation or vendor for the database engine regarding redistribution rights,
installation, and configuration.

Deploying dbExpress database applications

dbExpress is a set of thin, native drivers that provide fast access to database
information. dbExpress support cross-platform development because they are also
available on Linux. Refer to Chapter 26, “Using unidirectional datasets” for more
information about using the dbExpress components.

You can deploy dbExpress applications either as a stand-alone executable file or as
an executable file that includes associated dbExpress driver DLLs.

To deploy dbExpress applications as stand-alone executable files, the dbExpress
object files must be statically linked into your executable. You do this by including
the following DCUs, located in the lib directory:

Note For database applications using Informix, you cannot deploy a stand-alone
executable. Instead, deploy an executable file with the driver DLL dbexpinf.dll (listed
in the table following).

Table 17.3 dbExpress deployment as stand-alone executable

Database unit When to include

dbExpINT Applications connecting to InterBase databases

dbExpORA Applications connecting to Oracle databases

dbExpDB2 Applications connecting to DB2 databases

dbExpMYS Applications connecting to MySQL 3.22.x databases

dbExpMYSQL Applications connecting to MySQL 3.23.x databases

crtl Required by all executables that use dbExpress

MidasLib Required by dbExpress executables that use client datasets such as
TClientDataSet

17-8 D e v e l o p e r ’ s G u i d e

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

If you are not deploying a stand-alone executable, you can deploy associated
dbExpress drivers and DataSnap DLLs with your executable. The following table
lists the appropriate DLLs and when to include them:

Deploying BDE applications

The Borland Database Engine (BDE) defines a large API for interacting with
databases. Of all the data access mechanisms, the BDE supports the broadest range of
functions and comes with the most supporting utilities. It is the best way to work
with data in Paradox or dBASE tables.

Database access for an application is provided by various database engines. An
application can use the BDE or a third-party database engine. SQL Links is provided
(not available in all editions) to enable native access to SQL database systems. The
following sections describe installation of the database access elements of an
application:

• Borland Database Engine
• SQL Links

Borland Database Engine
For standard C++Builder data components to have database access, the Borland
Database Engine (BDE) must be present and accessible. See the BDEDEPLOY
document for specific rights and limitations on redistributing the BDE.

Borland recommends use of InstallShield Express (or other certified installation
program) for installing the BDE. InstallShield Express will create the necessary
registry entries and define any aliases the application may require. Using a certified
installation program to deploy the BDE files and subsets is important because:

• Improper installation of the BDE or BDE subsets can cause other applications
using the BDE to fail. Such applications include not only Borland products, but
many third-party programs that use the BDE.

• Under 32-bit Windows 95/NT and later, BDE configuration information is stored
in the Windows registry instead of .ini files, as was the case under 16-bit
Windows. Making the correct entries and deletions for install and uninstall is a
complex task.

Table 17.4 dbExpress deployment with driver DLLs

Database DLL When to deploy

dbexpinf.dll Applications connecting to Informix databases

dbexpint.dll Applications connecting to InterBase databases

dbexpora.dll Applications connecting to Oracle databases

dbexpdb2.dll. Applications connecting to DB2 databases

dbexpmys.dll Applications connecting to MySQL 3.22.xdatabases

dbexpmysql.dll Applications connecting to MySQL 3.23.x databases

Midas.dll Required by database applications that use client datasets

D e p l o y i n g a p p l i c a t i o n s 17-9

D e p l o y i n g d a t a b a s e a p p l i c a t i o n s

It is possible to install only as much of the BDE as an application actually needs. For
instance, if an application only uses Paradox tables, it is only necessary to install that
portion of the BDE required to access Paradox tables. This reduces the disk space
needed for an application. Certified installation programs, like InstallShield Express,
are capable of performing partial BDE installations. Be sure to leave BDE system files
that are not used by the deployed application, but that are needed by other
programs.

SQL Links
SQL Links provides the drivers that connect an application (through the Borland
Database Engine) with the client software for an SQL database. See the DEPLOY
document for specific rights and limitations on redistributing SQL Links. As is the
case with the Borland Database Engine (BDE), SQL Links must be deployed using
InstallShield Express (or other certified installation program).

Note SQL Links only connects the BDE to the client software, not to the SQL database
itself. It is still necessary to install the client software for the SQL database system
used. See the documentation for the SQL database system or consult the vendor that
supplies it for more information on installing and configuring client software.

Table 17.5 shows the names of the driver and configuration files SQL Links uses to
connect to the different SQL database systems. These files come with SQL Links and
are redistributable in accordance with the C++Builder license agreement.

Install SQL Links using InstallShield Express or other certified installation program.
For specific information concerning the installation and configuration of SQL Links,
see the help file SQLLNK32.HLP, by default installed into the main BDE directory.

Table 17.5 SQL database client software files

Vendor Redistributable files

Oracle 7 SQLORA32.DLL and SQL_ORA.CNF

Oracle 8 SQLORA8.DLL and SQL_ORA8.CNF

Sybase Db-Lib SQLSYB32.DLL and SQL_SYB.CNF

Sybase Ct-Lib SQLSSC32.DLL and SQL_SSC.CNF

Microsoft SQL Server SQLMSS32.DLL and SQL_MSS.CNF

Informix 7 SQLINF32.DLL and SQL_INF.CNF

Informix 9 SQLINF9.DLL and SQL_INF9.CNF

DB/2 2 SQLDB232.DLL and SQL_DB2.CNF

DB/2 5 SQLDB2V5.DLL and SQL_DB2V5.CNF

InterBase SQLINT32.DLL and SQL_INT.CNF

17-10 D e v e l o p e r ’ s G u i d e

D e p l o y i n g W e b a p p l i c a t i o n s

Deploying multi-tiered database applications (DataSnap)

DataSnap provides multi-tier database capability to C++Builder applications by
allowing client applications to connect to providers in an application server.

Install DataSnap along with a multi-tier application using InstallShield Express (or
other Borland-certified installation scripting utility). See the DEPLOY document
(found in the main C++Builder directory) for details on the files that need to be
redistributed with an application. Also see the REMOTE document for related
information on what DataSnap files can be redistributed and how.

Deploying Web applications
Some C++Builder applications are designed to be run over the World Wide Web,
such as those in the form of Server-side Extension DLLs (ISAPI and Apache), CGI
applications, and ActiveForms.

The steps for deploying Web applications are the same as those for general
applications, except the application’s files are deployed on the Web server. For
information on installing general applications, see “Deploying general applications”
on page 17-1. For information on deploying database Web applications, see
“Deploying database applications” on page 17-6.

Here are some special considerations for deploying Web applications:

• For BDE database applications, the Borland Database Engine (or alternate
database engine) is installed with the application files on the Web server.

• For dbExpress applications, the dbExpress DLLs must be included in the path. If
included, the dbExpress driver is installed with the application files on the Web
server.

• Security for the directories should be set so that the application can access all
needed database files.

• The directory containing an application must have read and execute attributes.

• The application should not use hard-coded paths for accessing database or other
files.

• The location of an ActiveX control is indicated by the CODEBASE parameter of
the <OBJECT> HTML tag.

Deployment on Apache is described in the next section.

Deploying to Apache servers

WebBroker supports Apache version 1.3.9 and later for DLLs and CGI applications.
Apache is configured by files in the conf directory.

D e p l o y i n g a p p l i c a t i o n s 17-11

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

If creating Apache DLLs, you need to be sure to set appropriate directives in the
Apache server configuration file, called httpd.conf. The recommended place to put
the .dll is in the Modules subdirectory of the Apache software.

If creating CGI applications, the physical directory (specified in the Directory
directive of the httpd.conf file) must have the ExecCGI option set to allow execution
of programs so the CGI script can be executed. To ensure that permissions are set up
properly, you need to either use the ScriptAlias directive or set Options ExecCGI to
on.

The ScriptAlias directive creates a virtual directory on your server and marks the
target directory as containing CGI scripts. For example, you could add the following
line to your httpd.conf file:

ScriptAlias /cgi-bin ”c:\inetpub\cgi-bin”

This would cause requests such as /cgi-bin/mycgi to be satisfied by running the
script c:\inetpub\cgi-bin\mycgi.

You can also set Options to All or to ExecCGI using the Directory directive in
httpd.conf. The Options directive controls which server features are available in a
particular directory. Directory directives are used to enclose a set of directives that
apply to the named directory and its subdirectories. An example of the Directory
directive is shown below:

<Directory <apache-root-dir>\cgi-bin>
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
</Directory>

In this example, Options is set to ExecCGI permitting execution of CGI scripts in the
directory cgi-bin.

Note Apache executes locally on the server within the account specified in the User
directive in the httpd.conf file. Make sure that the user has the appropriate rights to
access the resources needed by the application.

Information concerning the deployment of Apache software can be found in the
Apache LICENSE file, which is included in the Apache distribution. You can also
find configuration information on the Apache Web site at www.apache.org.

Programming for varying host environments
Due to the nature of various operating system environments, there are a number of
factors that vary with user preference or configuration. The following factors can
affect an application deployed to another computer:

• Screen resolutions and color depths
• Fonts
• Operating systems versions
• Helper applications
• DLL locations

17-12 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Screen resolutions and color depths

The size of the desktop and number of available colors on a computer is configurable
and dependent on the hardware installed. These attributes are also likely to differ on
the deployment computer compared to those on the development computer.

An application’s appearance (window, object, and font sizes) on computers
configured for different screen resolutions can be handled in various ways:

• Design the application for the lowest resolution users will have (typically,
640x480). Take no special actions to dynamically resize objects to make them
proportional to the host computer’s screen display. Visually, objects will appear
smaller the higher the resolution is set.

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize all forms and objects proportional to the difference between
the screen resolutions for the development and deployment computers (a screen
resolution difference ratio).

• Design using any screen resolution on the development computer and, at runtime,
dynamically resize only the application’s forms. Depending on the location of
visual controls on the forms, this may require the forms be scrollable for the user
to be able to access all controls on the forms.

Considerations when not dynamically resizing
If the forms and visual controls that make up an application are not dynamically
resized at runtime, design the application’s elements for the lowest resolution.
Otherwise, the forms of an application run on a computer configured for a lower
screen resolution than the development computer may overlap the boundaries of the
screen.

For example, if the development computer is set up for a screen resolution of
1024x768 and a form is designed with a width of 700 pixels, not all of that form will
be visible within the desktop on a computer configured for a 640x480 screen
resolution.

Considerations when dynamically resizing forms and controls
If the forms and visual controls for an application are dynamically resized,
accommodate all aspects of the resizing process to ensure optimal appearance of the
application under all possible screen resolutions. Here are some factors to consider
when dynamically resizing the visual elements of an application:

• The resizing of forms and visual controls is done at a ratio calculated by
comparing the screen resolution of the development computer to that of the
computer onto which the application installed. Use a constant to represent one
dimension of the screen resolution on the development computer: either the
height or the width, in pixels. Retrieve the same dimension for the user’s computer
at runtime using the TScreen::Height or the TScreen::Width property. Divide the
value for the development computer by the value for the user’s computer to derive
the difference ratio between the two computers’ screen resolutions.

D e p l o y i n g a p p l i c a t i o n s 17-13

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

• Resize the visual elements of the application (forms and controls) by reducing or
increasing the size of the elements and their positions on forms. This resizing is
proportional to the difference between the screen resolutions on the development
and user computers. Resize and reposition visual controls on forms automatically
by setting the TCustomForm::Scaled property to true and calling the
TWinControl::ScaleBy method (TWidgetControl.ScaleBy for cross-platform
applications). The ScaleBy method does not change the form’s height and width,
though. Do this manually by multiplying the current values for the Height and
Width properties by the screen resolution difference ratio.

• The controls on a form can be resized manually, instead of automatically with the
TWinControl::ScaleBy method (TWidgetControl.ScaleBy for cross-platform
applications), by referencing each visual control in a loop and setting its
dimensions and position. The Height and Width property values for visual controls
are multiplied by the screen resolution difference ratio. Reposition visual controls
proportional to screen resolution differences by multiplying the Top and Left
property values by the same ratio.

• If an application is designed on a computer configured for a higher screen
resolution than that on the user’s computer, font sizes will be reduced in the
process of proportionally resizing visual controls. If the size of the font at design
time is too small, the font as resized at runtime may be unreadable. For example,
the default font size for a form is 8. If the development computer has a screen
resolution of 1024x768 and the user’s computer 640x480, visual control dimensions
will be reduced by a factor of 0.625 (640 / 1024 = 0.625). The original font size of 8
is reduced to 5 (8 * 0.625 = 5). Text in the application appears jagged and
unreadable as it is displayed in the reduced font size.

• Some visual controls, such as TLabel and TEdit, dynamically resize when the size
of the font for the control changes. This can affect deployed applications when
forms and controls are dynamically resized. The resizing of the control due to font
size changes are in addition to size changes due to proportional resizing for screen
resolutions. This effect is offset by setting the AutoSize property of these controls to
false.

• Avoid making use of explicit pixel coordinates, such as when drawing directly to a
canvas. Instead, modify the coordinates by a ratio proportionate to the screen
resolution difference ratio between the development and user computers. For
example, if the application draws a rectangle to a canvas ten pixels high by twenty
wide, instead multiply the ten and twenty by the screen resolution difference ratio.
This ensures that the rectangle visually appears the same size under different
screen resolutions.

Accommodating varying color depths
To account for all deployment computers not being configured with the same color
availability, the safest way is to use graphics with the least possible number of colors.
This is especially true for control glyphs, which should typically use 16-color
graphics. For displaying pictures, either provide multiple copies of the images in
different resolutions and color depths or explain in the application the minimum
resolution and color requirements for the application.

17-14 D e v e l o p e r ’ s G u i d e

P r o g r a m m i n g f o r v a r y i n g h o s t e n v i r o n m e n t s

Fonts

Windows comes with a standard set of TrueType and raster fonts. Linux comes with
a standard set of fonts, depending on the distribution. When designing an
application to be deployed on other computers, realize that not all computers have
fonts outside the standard sets.

Text components used in the application should all use fonts that are likely to be
available on all deployment computers.

When use of a nonstandard font is absolutely necessary in an application, you need
to distribute that font with the application. Either the installation program or the
application itself must install the font on the deployment computer. Distribution of
third-party fonts may be subject to limitations imposed by the font creator.

Windows has a safety measure to account for attempts to use a font that does not
exist on the computer. It substitutes another, existing font that it considers the closest
match. While this may circumvent errors concerning missing fonts, the end result
may be a degradation of the visual appearance of the application. It is better to
prepare for this eventuality at design time.

To make a nonstandard font available to a Windows application, use the Windows
API functions AddFontResource and DeleteFontResource. Deploy the .fot file for the
nonstandard font with the application.

Operating systems versions

When using operating system APIs or accessing areas of the operating system from
an application, there is the possibility that the function, operation, or area may not be
available on computers with different operating system versions.

To account for this possibility, you have a few options:

• Specify in the application’s system requirements the versions of the operating
system on which the application can run. It is the user’s responsibility to install
and use the application only under compatible operating system versions.

• Check the version of the operating system as the application is installed. If an
incompatible version of the operating system is present, either halt the installation
process or at least warn the installer of the problem.

• Check the operating system version at runtime, just prior to executing an
operation not applicable to all versions. If an incompatible version of the operating
system is present, abort the process and alert the user. Alternately, provide
different code to run dependent on different operating system versions.

Note Some operations are performed differently on Windows 95/98 than on Windows
NT/2000/XP. Use the Windows API function GetVersionEx to determine the
Windows version.

D e p l o y i n g a p p l i c a t i o n s 17-15

S o f t w a r e l i c e n s e r e q u i r e m e n t s

Software license requirements
The distribution of some files associated with C++Builder applications is subject to
limitations or cannot be redistributed at all. The following documents describe the
legal stipulations regarding the distribution of these files:

DEPLOY

The DEPLOY document covers the some of the legal aspects of distributing of
various components and utilities, and other product areas that can be part of or
associated with a C++Builder application. The DEPLOY document is installed in the
main C++Builder directory. The topics covered include:

• .exe, .dll, and .bpl files.
• Components and design-time packages.
• Borland Database Engine (BDE).
• ActiveX controls.
• Sample Images.
• SQL Links.

README

The README document contains last minute information about C++Builder,
possibly including information that could affect the redistribution rights for
components, or utilities, or other product areas. The README document is installed
into the main C++Builder directory.

No-nonsense license agreement

The C++Builder no-nonsense license agreement, a printed document, covers other
legal rights and obligations concerning C++Builder.

Third-party product documentation

Redistribution rights for third-party components, utilities, helper applications,
database engines, and other products are governed by the vendor supplying the
product. Consult the documentation for the product or the vendor for information
regarding the redistribution of the product with C++Builder applications prior to
distribution.

17-16 D e v e l o p e r ’ s G u i d e

D e v e l o p i n g d a t a b a s e a p p l i c a t i o n s

P a r t

II
Part IIDeveloping database applications

The chapters in “Developing Database Applications” present concepts and skills
necessary for creating C++Builder database applications.

Note The level of support for building database applications varies depending on your
edition of C++Builder. In particular, you must have at least the Professional edition
to use client datasets and the Enterprise edition to develop multi-tier database
applications.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-1

C h a p t e r

18
Chapter18Designing database applications

Database applications let users interact with information that is stored in databases.
Databases provide structure for the information, and allow it to be shared among
different applications.

C++Builder provides support for relational database applications. Relational
databases organize information into tables, which contain rows (records) and
columns (fields). These tables can be manipulated by simple operations known as the
relational calculus.

When designing a database application, you must understand how the data is
structured. Based on that structure, you can then design a user interface to display
data to the user and allow the user to enter new information or modify existing data.

This chapter introduces some common considerations for designing a database
application and the decisions involved in designing a user interface.

Using databases
C++Builder includes many components for accessing databases and representing the
information they contain. They are grouped according to the data access mechanism:

• The BDE page of the component palette contains components that use the Borland
Database Engine (BDE). The BDE defines a large API for interacting with
databases. Of all the data access mechanisms, the BDE supports the broadest range
of functions and comes with the most supporting utilities. It is the best way to
work with data in Paradox or dBASE tables. However, it is also the most
complicated mechanism to deploy. For more information about using the BDE
components, see Chapter 24, “Using the Borland Database Engine.”

• The ADO page of the component palette contains components that use ActiveX
Data Objects (ADO) to access database information through OLEDB. ADO is a
Microsoft Standard. There is a broad range of ADO drivers available for
connecting to different database servers. Using ADO-based components lets you

18-2 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

integrate your application into an ADO-based environment (for example, making
use of ADO-based application servers). For more information about using the
ADO components, see Chapter 25, “Working with ADO components.”

• The dbExpress page of the component palette contains components that use
dbExpress to access database information. dbExpress is a lightweight set of drivers
that provide the fastest access to database information. In addition, dbExpress
components support cross-platform development because they are also available
on Linux. However, dbExpress database components also support the narrowest
range of data manipulation functions. For more information about using the
dbExpress components, see Chapter 26, “Using unidirectional datasets.”

• The InterBase page of the Component palette contains components that access
InterBase databases directly, without going through a separate engine layer.

• The Data Access page of the component palette contains components that can be
used with any data access mechanism. This page includes TClientDataset, which
can work with data stored on disk or, using the TDataSetProvider component also
on this page, with components from one of the other groups. For more information
about using client datasets, see Chapter 27, “Using client datasets.” For more
information about TDataSetProvider, see Chapter 28, “Using provider
components.”

Note Different versions of C++Builder include different drivers for accessing database
servers using the BDE, ADO, or dbExpress.

When designing a database application, you must decide which set of components to
use. Each data access mechanism differs in its range of functional support, the ease of
deployment, and the availability of drivers to support different database servers.

In addition to choosing a data access mechanism, you must choose a database server.
There are different types of databases and you will want to consider the advantages
and disadvantages of each type before settling on a particular database server.

All types of databases contain tables which store information. In addition, most (but
not all) servers support additional features such as

• Database security
• Transactions
• Referential integrity, stored procedures, and triggers

Types of databases

Relational database servers vary in the way they store information and in the way
they allow multiple users to access that information simultaneously. C++Builder
provides support for two types of relational database server:

• Remote database servers reside on a separate machine. Sometimes, the data from
a remote database server does not even reside on a single machine, but is
distributed over several servers. Although remote database servers vary in the
way they store information, they provide a common logical interface to clients.
This common interface is Structured Query Language (SQL). Because you access
them using SQL, they are sometimes called SQL servers. (Another name is Remote

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-3

U s i n g d a t a b a s e s

Database Management system, or RDBMS.) In addition to the common commands
that make up SQL, most remote database servers support a unique “dialect” of
SQL. Examples of SQL servers include InterBase, Oracle, Sybase, Informix,
Microsoft SQL server, and DB2.

• Local databases reside on your local drive or on a local area network. They often
have proprietary APIs for accessing the data. When they are shared by several
users, they use file-based locking mechanisms. Because of this, they are sometimes
called file-based databases. Examples of local databases include Paradox, dBASE,
FoxPro, and Access.

Applications that use local databases are called single-tiered applications because
the application and the database share a single file system. Applications that use
remote database servers are called two-tiered applications or multi-tiered
applications because the application and the database operate on independent
systems (or tiers).

Choosing the type of database to use depends on several factors. For example, your
data may already be stored in an existing database. If you are creating the database
tables your application uses, you may want to consider the following questions:

• How many users will be sharing these tables? Remote database servers are
designed for access by several users at the same time. They provide support for
multiple users through a mechanism called transactions. Some local databases
(such as Local InterBase) also provide transaction support, but many only provide
file-based locking mechanisms, and some (such as client dataset files) provide no
multi-user support at all.

• How much data will the tables hold? Remote database servers can hold more data
than local databases. Some remote database servers are designed for warehousing
large quantities of data while others are optimized for other criteria (such as fast
updates).

• What type of performance (speed) do you require from the database? Local
databases are usually faster than remote database servers because they reside on
the same system as the database application. Different remote database servers are
optimized to support different types of operations, so you may want to consider
performance when choosing a remote database server.

• What type of support will be available for database administration? Local
databases require less support than remote database servers. Typically, they are
less expensive to operate because they do not require separately installed servers
or expensive site licenses.

Database security

Databases often contain sensitive information. Different databases provide security
schemes for protecting that information. Some databases, such as Paradox and
dBASE, only provide security at the table or field level. When users try to access
protected tables, they are required to provide a password. Once users have been
authenticated, they can see only those fields (columns) for which they have
permission.

18-4 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e s

Most SQL servers require a password and user name to use the database server at all.
Once the user has logged in to the database, that username and password determine
which tables can be used. For information on providing passwords to SQL servers,
see “Controlling server login” on page 21-4.

When designing database applications, you must consider what type of
authentication is required by your database server. Often, applications are designed
to hide the explicit database login from users, who need only log in to the application
itself. If you do not want to require your users to provide a database password, you
must either use a database that does not require one or you must provide the
password and username to the server programmatically. When providing the
password programmatically, care must be taken that security can’t be breached by
reading the password from the application.

If you require your user to supply a password, you must consider when the
password is required. If you are using a local database but intend to scale up to a
larger SQL server later, you may want to prompt for the password at the point when
you will eventually log in to the SQL database, rather than when opening individual
tables.

If your application requires multiple passwords because you must log in to several
protected systems or databases, you can have your users provide a single master
password that is used to access a table of passwords required by the protected
systems. The application then supplies passwords programmatically, without
requiring the user to provide multiple passwords.

In multi-tiered applications, you may want to use a different security model
altogether. You can use HTTPs or COM+ to control access to middle tiers, and let the
middle tiers handle all details of logging into database servers.

Transactions

A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If any of the
actions in the group fails, then all actions are rolled back (undone).

Transactions ensure that

• All updates in a single transaction are either committed or aborted and rolled back
to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

• Concurrent transactions do not see each other's partial or uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation.

• Committed updates to records survive failures, including communication failures,
process failures, and server system failures. This is referred to as durability.

Thus, transactions protect against hardware failures that occur in the middle of a
database command or set of commands. Transactional logging allows you to recover

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-5

D a t a b a s e a r c h i t e c t u r e

the durable state after disk media failures. Transactions also form the basis of multi-
user concurrency control on SQL servers. When each user interacts with the database
only through transactions, one user’s commands can’t disrupt the unity of another
user’s transaction. Instead, the SQL server schedules incoming transactions, which
either succeed as a whole or fail as a whole.

Transaction support is not part of most local databases, although it is provided by
local InterBase. In addition, the BDE drivers provide limited transaction support for
some local databases. Database transaction support is provided by the component
that represents the database connection. For details on managing transactions using a
database connection component, see “Managing transactions” on page 21-6.

In multi-tiered applications, you can create transactions that include actions other
than database operations or that span multiple databases. For details on using
transactions in multi-tiered applications, see “Managing transactions in multi-tiered
applications” on page 29-17.

Referential integrity, stored procedures, and triggers

All relational databases have certain features in common that allow applications to
store and manipulate data. In addition, databases often provide other, database-
specific, features that can prove useful for ensuring consistent relationships between
the tables in a database. These include

• Referential integrity. Referential integrity provides a mechanism to prevent
master/detail relationships between tables from being broken. When the user
attempts to delete a field in a master table which would result in orphaned detail
records, referential integrity rules prevent the deletion or automatically delete the
orphaned detail records.

• Stored procedures. Stored procedures are sets of SQL statements that are named
and stored on an SQL server. Stored procedures usually perform common
database-related tasks on the server, and sometimes return sets of records
(datasets).

• Triggers. Triggers are sets of SQL statements that are automatically executed in
response to a particular command.

Database architecture
Database applications are built from user interface elements, components that
represent database information (datasets), and components that connect these to each
other and to the source of the database information. How you organize these pieces is
the architecture of your database application.

18-6 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

General structure

While there are many distinct ways to organize the components in a database
application, most follow the general scheme illustrated in Figure 18.1:

Figure 18.1 Generic Database Architecture

The user interface form
It is a good idea to isolate the user interface on a form that is completely separate
from the rest of the application. This has several advantages. By isolating the user
interface from the components that represent the database information itself, you
introduce a greater flexibility into your design: Changes to the way you manage the
database information do not require you to rewrite your user interface, and changes
to the user interface do not require you to change the portion of your application that
works with the database. In addition, this type of isolation lets you develop common
forms that you can share between multiple applications, thereby providing a
consistent user interface. By storing links to well-designed forms in the Object
Repository, you and other developers can build on existing foundations rather than
starting over from scratch for each new project. Sharing forms also makes it possible
for you to develop corporate standards for application interfaces. For more
information about creating the user interface for a database application, see
“Designing the user interface” on page 18-15.

The data module
If you have isolated your user interface into its own form, you can use a data module
to house the components that represent database information (datasets), and the
components that connect these datasets to the other parts of your application. Like
the user interface forms, you can share data modules in the Object Repository so that
they can be reused or shared between applications.

The data source
The first item in the data module is a data source. The data source acts as a conduit
between the user interface and a dataset that represents information from a database.
Several data-aware controls on a form can share a single data source, in which case
the display in each control is synchronized so that as the user scrolls through records,
the corresponding value in the fields for the current record is displayed in each
control.

Data module

Dataset
UI

Data source Connection
to data

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-7

D a t a b a s e a r c h i t e c t u r e

The dataset
The heart of your database application is the dataset. This component represents a set
of records from the underlying database. These records can be the data from a single
database table, a subset of the fields or records in a table, or information from more
than one table joined into a single view. By using datasets, your application logic is
buffered from restructuring of the physical tables in your databases. When the
underlying database changes, you might need to alter the way the dataset
component specifies the data it contains, but the rest of your application can continue
to work without alteration. For more information on the common properties and
methods of datasets, see Chapter 22, “Understanding datasets.”

The data connection
Different types of datasets use different mechanisms for connecting to the underlying
database information. These different mechanisms, in turn, make up the major
differences in the architecture of the database applications you can build. There are
four basic mechanisms for connecting to the data:

• Connecting directly to a database server. Most datasets use a descendant of
TCustomConnection to represent the connection to a database server.

• Using a dedicated file on disk. Client datasets support the ability to work with a
dedicated file on disk. No separate connection component is needed when
working with a dedicated file because the client dataset itself knows how to read
from and write to the file.

• Connecting to another dataset. Client datasets can work with data provided by
another dataset. A TDataSetProvider component serves as an intermediary between
the client dataset and its source dataset. This dataset provider can reside in the
same data module as the client dataset, or it can be part of an application server
running on another machine. If the provider is part of an application server, you
also need a special descendant of TCustomConnection to represent the connection
to the application server.

• Obtaining data from an RDS DataSpace object. ADO datasets can use a
TRDSConnection component to marshal data in multi-tier database applications
that are built using ADO-based application servers.

Sometimes, these mechanisms can be combined in a single application.

Connecting directly to a database server

The most common database architecture is the one where the dataset uses a
connection component to establish a connection to a database server. The dataset
then fetches data directly from the server and posts edits directly to the server. This is
illustrated in Figure 18.2.

18-8 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

Figure 18.2 Connecting directly to the database server

Each type of dataset uses its own type of connection component, which represents a
single data access mechanism:

• If the dataset is a BDE dataset such as TTable, TQuery, or TStoredProc, the
connection component is a TDataBase object. You connect the dataset to the
database component by setting its Database property. You do not need to explicitly
add a database component when using BDE dataset. If you set the dataset’s
DatabaseName property, a database component is created for you automatically at
runtime.

• If the dataset is an ADO dataset such as TADODataSet, TADOTable, TADOQuery,
or TADOStoredProc, the connection component is a TADOConnection object. You
connect the dataset to the ADO connection component by setting its
ADOConnection property. As with BDE datasets, you do not need to explicitly add
the connection component: instead you can set the dataset’s ConnectionString
property.

• If the dataset is a dbExpress dataset such as TSQLDataSet, TSQLTable, TSQLQuery,
or TSQLStoredProc, the connection component is a TSQLConnection object. You
connect the dataset to the SQL connection component by setting its SQLConnection
property. When using dbExpress datasets, you must explicitly add the connection
component. Another difference between dbExpress datasets and the other datasets
is that dbExpress datasets are always read-only and unidirectional: This means
you can only navigate by iterating through the records in order, and you can’t use
the dataset methods that support editing.

• If the dataset is an InterBase Express dataset such as TIBDataSet, TIBTable,
TIBQuery, or TIBStoredProc, the connection component is a TIBDatabase object. You
connect the dataset to the IB database component by setting its Database property.
As with dbExpress datasets, you must explicitly add the connection component.

Client application

Data module

Dataset
UI

Data source

Database server

Connection
component

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-9

D a t a b a s e a r c h i t e c t u r e

In addition to the components listed above, you can use a specialized client dataset
such as TBDEClientDataSet, TSQLClientDataSet, or TIBClientDataSet with a database
connection component. When using one of these client datasets, specify the
appropriate type of connection component as the value of the DBConnection
property.

Although each type of dataset uses a different connection component, they all
perform many of the same tasks and surface many of the same properties, methods,
and events. For more information on the commonalities among the various database
connection components, see Chapter 21, “Connecting to databases.”

This architecture represents either a single-tiered or two-tiered application,
depending on whether the database server is a local database such or a remote
database server. The logic that manipulates database information is in the same
application that implements the user interface, although isolated into a data module.

Note The connection components or drivers needed to create two-tiered applications are
not available in all version of C++Builder.

Using a dedicated file on disk

The simplest form of database application you can write does not use a database
server at all. Instead, it uses MyBase, the ability of client datasets to save themselves
to a file and to load the data from a file. This architecture is illustrated in Figure 18.3:

Figure 18.3 A file-based database application

When using this file-based approach, your application writes changes to disk using
the client dataset’s SaveToFile method. SaveToFile takes one parameter, the name of
the file which is created (or overwritten) containing the table. When you want to read
a table previously written using the SaveToFile method, use the LoadFromFile method.
LoadFromFile also takes one parameter, the name of the file containing the table.

If you always load to and save from the same file, you can use the FileName property
instead of the SaveToFile and LoadFromFile methods. When FileName is set to a valid
file name, the data is automatically loaded from the file when the client dataset is
opened and saved to the file when the client dataset is closed.

This simple file-based architecture is a single-tiered application. The logic that
manipulates database information is in the same application that implements the
user interface, although isolated into a data module.

Data module

Client dataset
UI

Data source
File

18-10 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

The file-based approach has the benefit of simplicity. There is no database server to
install, configure, or deploy (although the client dataset does require midas.dll).
There is no need for site licenses or database administration.

In addition, some versions of C++Builder let you convert between arbitrary XML
documents and the data packets that are used by a client dataset. Thus, the file-based
approach can be used to work with XML documents as well as dedicated datasets.
For information about converting between XML documents and client dataset data
packets, see Chapter 30, “Using XML in database applications.”

The file-based approach offers no support for multiple users. The dataset should be
dedicated entirely to the application. Data is saved to files on disk, and loaded at a
later time, but there is no built-in protection to prevent multiple users from
overwriting each other’s data files.

For more information about using a client dataset with data stored on disk, see
“Using a client dataset with file-based data” on page 27-32.

Connecting to another dataset

There are specialized client datasets that use the BDE or dbExpress to connect to a
database server. These specialized client datasets are, in fact, composite components
that include another dataset internally to access the data and an internal provider
component to package the data from the source dataset and to apply updates back to
the database server. These composite components require some additional overhead,
but provide certain benefits:

• Client datasets provide the most robust way to work with cached updates. By
default, other types of datasets post edits directly to the database server. You can
reduce network traffic by using a dataset that caches updates locally and applies
them all later in a single transaction. For information on the advantages of using
client datasets to cache updates, see “Using a client dataset to cache updates” on
page 27-15.

• Client datasets can apply edits directly to a database server when the dataset is
read-only. When using dbExpress, this is the only way to edit the data in the dataset
(it is also the only way to navigate freely in the data when using dbExpress). Even
when not using dbExpress, the results of some queries and all stored procedures
are read-only. Using a client dataset provides a standard way to make such data
editable.

• Because client datasets can work directly with dedicated files on disk, using a
client dataset can be combined with a file-based model to allow for a flexible
“briefcase” application. For information on the briefcase model, see “Combining
approaches” on page 18-14.

In addition to these specialized client datasets, there is a generic client dataset
(TClientDataSet), which does not include an internal dataset and dataset provider.
Although TClientDataSet has no built-in database access mechanism, you can connect
it to another, external, dataset from which it fetches data and to which it sends

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-11

D a t a b a s e a r c h i t e c t u r e

updates. Although this approach is a bit more complicated, there are times when it is
preferable:

• Because the source dataset and dataset provider are external, you have more
control over how they fetch data and apply updates. For example, the provider
component surfaces a number of events that are not available when using a
specialized client dataset to access data.

• When the source dataset is external, you can link it in a master/detail relationship
with another dataset. An external provider automatically converts this
arrangement into a single dataset with nested details. When the source dataset is
internal, you can’t create nested detail sets this way.

• Connecting a client dataset to an external dataset is an architecture that easily
scales up to multiple tiers. Because the development process can get more
involved and expensive as the number of tiers increases, you may want to start
developing your application as a single-tiered or two-tiered application. As the
amount of data, the number of users, and the number of different applications
accessing the data grows, you may later need to scale up to a multi-tiered
architecture. If you think you may eventually use a multi-tiered architecture, it can
be worthwhile to start by using a client dataset with an external source dataset.
This way, when you move the data access and manipulation logic to a middle tier,
you protect your development investment because the code can be reused as your
application grows.

• TClientDataSet can link to any source dataset. This means you can use custom
datasets (third-party components) for which there is no corresponding specialized
client dataset. Some versions of C++Builder even include special provider
components that connect a client dataset to an XML document rather than another
dataset. (This works the same way as connecting a client dataset to another
(source) dataset, except that the XML provider uses an XML document rather than
a dataset. For information about these XML providers, see “Using an XML
document as the source for a provider” on page 30-8.)

There are two versions of the architecture that connects a client dataset to an external
dataset:

• Connecting a client dataset to another dataset in the same application.

• Using a multi-tiered architecture.

Connecting a client dataset to another dataset in the same application
By using a provider component, you can connect TClientDataSet to another (source)
dataset. The provider packages database information into transportable data packets
(which can be used by client datasets) and applies updates received in delta packets
(which client datasets create) back to a database server. The architecture for this is
illustrated in Figure 18.4.

18-12 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

Figure 18.4 Architecture combining a client dataset and another dataset

This architecture represents either a single-tiered or two-tiered application,
depending on whether the database server is a local database or a remote database
server. The logic that manipulates database information is in the same application
that implements the user interface, although isolated into a data module.

To link the client dataset to the provider, set its ProviderName property to the name of
the provider component. The provider must be in the same data module as the client
dataset. To link the provider to the source dataset, set its DataSet property.

Once the client dataset is linked to the provider and the provider is linked to the
source dataset, these components automatically handle all the details necessary for
fetching, displaying, and navigating through the database records (assuming the
source dataset is connected to a database). To apply user edits back to the database,
you need only call the client dataset’s ApplyUpdates method.

For more information on using a client dataset with a provider, see “Using a client
dataset with a provider” on page 27-24.

Using a multi-tiered architecture
When the database information includes complicated relationships between several
tables, or when the number of clients grows, you may want to use a multi-tiered
application. Multi-tiered applications have middle tiers between the client
application and database server. The architecture for this is illustrated in Figure 18.5.

Client application

Data module

Client dataset

UI
Data source

DatasetConnection
component Provider

Database server

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-13

D a t a b a s e a r c h i t e c t u r e

Figure 18.5 Multi-tiered database architecture

The preceding figure represents three-tiered application. The logic that manipulates
database information is on a separate system, or tier. This middle tier centralizes the
logic that governs your database interactions so there is centralized control over data
relationships. This allows different client applications to use the same data, while
ensuring consistent data logic. It also allows for smaller client applications because
much of the processing is off-loaded onto the middle tier. These smaller client
applications are easier to install, configure, and maintain. Multi-tiered applications
can also improve performance by spreading data-processing over several systems.

The multi-tiered architecture is very similar to the previous model. It differs mainly
in that source dataset that connects to the database server and the provider that acts
as an intermediary between that source dataset and the client dataset have both
moved to a separate application. That separate application is called the application
server (or sometimes the “remote data broker”).

Because the provider has moved to a separate application, the client dataset can no
longer connect to the source dataset by simply setting its ProviderName property. In
addition, it must use some type of connection component to locate and connect to the
application server.

Client dataset

UI

Data source

Database server

Connection
component

Unidirectional
dataset

SQL
connectionProvider

Application server

18-14 D e v e l o p e r ’ s G u i d e

D a t a b a s e a r c h i t e c t u r e

There are several types of connection components that can connect a client dataset to
an application server. They are all descendants of TCustomRemoteServer, and differ
primarily in the communication protocol they use (TCP/IP, HTTP, DCOM, or
SOAP). Link the client dataset to its connection component by setting the
RemoteServer property.

The connection component establishes a connection to the application server and
returns an interface that the client dataset uses to call the provider specified by its
ProviderName property. Each time the client dataset calls the application server, it
passes the value of ProviderName, and the application server forwards the call to the
provider.

For more information about connecting a client dataset to an application server, see
Chapter 29, “Creating multi-tiered applications.”

Combining approaches

The previous sections describe several architectures you can use when writing
database applications. There is no reason, however, why you can’t combine two or
more of the available architectures in a single application. In fact, some combinations
can be extremely powerful.

For example, you can combine the disk-based architecture described in “Using a
dedicated file on disk” on page 18-9 with another approach such as those described
in “Connecting a client dataset to another dataset in the same application” on
page 18-11 or “Using a multi-tiered architecture” on page 18-12. These combinations
are easy because all models use a client dataset to represent the data that appears in
the user interface. The result is called the briefcase model (or sometimes the
disconnected model, or mobile computing).

The briefcase model is useful in a situation such as the following: An onsite company
database contains customer contact data that sales representatives can use and
update in the field. While onsite, sales representatives download information from
the database. Later, they work with it on their laptops as they fly across the country,
and even update records at existing or new customer sites. When the sales
representatives return onsite, they upload their data changes to the company
database for everyone to use.

When operating on site, the client dataset in a briefcase model application fetches its
data from a provider. The client dataset is therefore connected to the database server
and can, through the provider, fetch server data and send updates back to the server.
Before disconnecting from the provider, the client dataset saves its snapshot of the
information to a file on disk. While offsite, the client dataset loads its data from the
file, and saves any changes back to that file. Finally, back onsite, the client dataset
reconnects to the provider so that it can apply its updates to the database server or
refresh its snapshot of the data.

D e s i g n i n g d a t a b a s e a p p l i c a t i o n s 18-15

D e s i g n i n g t h e u s e r i n t e r f a c e

Designing the user interface
The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and can permit users to
edit that data and post changes back to the database. Using data-aware controls, you
can build your database application’s user interface (UI) so that information is visible
and accessible to users. For more information on data-aware controls see Chapter 19,
“Using data controls.”

In addition to the basic data controls, you may also want to introduce other elements
into your user interface:

• You may want your application to analyze the data contained in a database.
Applications that analyze data do more than just display the data in a database,
they also summarize the information in useful formats to help users grasp the
impact of that data.

• You may want to print reports that provide a hard copy of the information
displayed in your user interface.

• You may want to create a user interface that can be viewed from Web browsers.
The simplest Web-based database applications are described in “Using database
information in responses” on page 33-17. In addition, you can combine the Web-
based approach with the multi-tiered architecture, as described in “Writing Web-
based client applications.”

Analyzing data

Some database applications do not present database information directly to the user.
Instead, they analyze and summarize information from databases so that users can
draw conclusions from the data.

The TDBChart component on the Data Controls page of the Component palette lets
you present database information in a graphical format that enables users to quickly
grasp the import of database information.

In addition, some versions of C++Builder include a Decision Cube page on the
Component palette. It contains six components that let you perform data analysis
and cross-tabulations on data when building decision support applications. For more
information about using the Decision Cube components, see Chapter 20, “Using
decision support components.”

If you want to build your own components that display data summaries based on
various grouping criteria, you can use maintained aggregates with a client dataset.
For more information about using maintained aggregates, see “Using maintained
aggregates” on page 27-11.

18-16 D e v e l o p e r ’ s G u i d e

D e s i g n i n g t h e u s e r i n t e r f a c e

Writing reports

If you want to let your users print database information from the datasets in your
application, you can use the report components on the QReport page of the
Component palette. Using these components you can visually build banded reports
to present and summarize the information in your database tables. You can add
summaries to group headers or footers to analyze the data based on grouping
criteria.

Start a report for your application by selecting the QuickReport icon from the New
Items dialog. Select File|New|Other from the main menu, and go to the page labeled
Business. Double-click the QuickReport Wizard icon to launch the wizard.

Note See the QuickReport demo that ships with C++Builder for an example of how to use
the components on the QReport page.

U s i n g d a t a c o n t r o l s 19-1

C h a p t e r

19
Chapter19Using data controls

The Data Controls page of the Component palette provides a set of data-aware
controls that represent data from fields in a database record, and, if the dataset allows
it, enable users to edit that data and post changes back to the database. By placing
data controls onto the forms in your database application, you can build your
database application’s user interface (UI) so that information is visible and accessible
to users.

The data-aware controls you add to your user interface depend on several factors,
including the following:

• The type of data you are displaying. You can choose between controls that are
designed to display and edit plain text, controls that work with formatted text,
controls for graphics, multimedia elements, and so on. Controls that display
different types of information are described in “Displaying a single record” on
page 19-7.

• How you want to organize the information. You may choose to display
information from a single record on the screen, or list the information from
multiple records using a grid. “Choosing how to organize the data” on page 19-7
describes some of the possibilities.

• The type of dataset that supplies data to the controls. You want to use controls that
reflect the limitations of the underlying dataset. For example, you would not use a
grid with a unidirectional dataset because unidirectional datasets can only supply
a single record at a time.

• How (or if) you want to let users navigate through the records of datasets and add
or edit data. You may want to add your own controls or mechanisms to navigate
and edit, or you may want to use a built-in control such as a data navigator. For
more information about using a data navigator, see “Navigating and
manipulating records” on page 19-28.

Note More complex data-aware controls for decision support are discussed in Chapter 20,
“Using decision support components.”

19-2 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Regardless of the data-aware controls you choose to add to your interface, certain
common features apply. These are described below.

Using common data control features
The following tasks are common to most data controls:

• Associating a data control with a dataset
• Editing and updating data
• Disabling and enabling data display
• Refreshing data display
• Enabling mouse, keyboard, and timer events

Data controls let you display and edit fields of data associated with the current
record in a dataset. Table 19.1 summarizes the data controls that appear on the Data
Controls page of the Component palette.

Data controls are data-aware at design time. When you associate the data control
with an active dataset while building an application, you can immediately see live

Table 19.1 Data controls

Data control Description

TDBGrid Displays information from a data source in a tabular format. Columns in
the grid correspond to columns in the underlying table or query’s
dataset. Rows in the grid correspond to records.

TDBNavigator Navigates through data records in a dataset. updating records, posting
records, deleting records, canceling edits to records, and refreshing data
display.

TDBText Displays data from a field as a label.

TDBEdit Displays data from a field in an edit box.

TDBMemo Displays data from a memo or BLOB field in a scrollable, multi-line edit
box.

TDBImage Displays graphics from a data field in a graphics box.

TDBListBox Displays a list of items from which to update a field in the current data
record.

TDBComboBox Displays a list of items from which to update a field, and also permits
direct text entry like a standard data-aware edit box.

TDBCheckBox Displays a check box that indicates the value of a Boolean field.

TDBRadioGroup Displays a set of mutually exclusive options for a field.

TDBLookupListBox Displays a list of items looked up from another dataset based on the
value of a field.

TDBLookupComboBox Displays a list of items looked up from another dataset based on the
value of a field, and also permits direct text entry like a standard data-
aware edit box.

TDBCtrlGrid Displays a configurable, repeating set of data-aware controls within a
grid.

TDBRichEdit Displays formatted data from a field in an edit box.

U s i n g d a t a c o n t r o l s 19-3

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

data in the control. You can use the Fields editor to scroll through a dataset at design
time to verify that your application displays data correctly without having to compile
and run the application. For more information about the Fields editor, see “Creating
persistent fields” on page 23-4.

At runtime, data controls display data and, if your application, the control, and the
dataset all permit it, a user can edit data through the control.

Associating a data control with a dataset

Data controls connect to datasets by using a data source. A data source component
(TDataSource) acts as a conduit between the control and a dataset containing data.
Each data-aware control must be associated with a data source component to have
data to display and manipulate. Similarly, all datasets must be associated with a data
source component in order for their data to be displayed and manipulated in data-
aware controls on a form.

Note Data source components are also required for linking unnested datasets in master-
detail relationships.

To associate a data control with a dataset,

1 Place a dataset in a data module (or on a form), and set its properties as
appropriate.

2 Place a data source in the same data module (or form). Using the Object Inspector,
set its DataSet property to the dataset you placed in step 1.

3 Place a data control from the Data Access page of the Component palette onto a
form.

4 Using the Object Inspector, set the DataSource property of the control to the data
source component you placed in step 2.

5 Set the DataField property of the control to the name of a field to display, or select a
field name from the drop-down list for the property. This step does not apply to
TDBGrid, TDBCtrlGrid, and TDBNavigator because they access all available fields
in the dataset.

6 Set the Active property of the dataset to true to display data in the control.

Changing the associated dataset at runtime
In the preceding example, the datasource was associated with its dataset by setting
the DataSet property at design time. At runtime, you can switch the dataset for a data
source component as needed. For example, the following code swaps the dataset for
the CustSource data source component between the dataset components named
Customers and Orders:

if (CustSource->DataSet == Customers)
CustSource->DataSet = Orders;

else
CustSource->DataSet = Customers;

19-4 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

You can also set the DataSet property to a dataset on another form to synchronize the
data controls on two forms. For example:

void __fastcall TForm2::FormCreate(TObject *Sender)
{

DataSource1->DataSet = Form1->Table1;
}

Enabling and disabling the data source
The data source has an Enabled property that determines if it is connected to its
dataset. When Enabled is true, the data source is connected to a dataset.

You can temporarily disconnect a single data source from its dataset by setting
Enabled to false. When Enabled is false, all data controls attached to the data source
component go blank and become inactive until Enabled is set to true. It is
recommended, however, to control access to a dataset through a dataset component’s
DisableControls and EnableControls methods because they affect all attached data
sources.

Responding to changes mediated by the data source
Because the data source provides the link between the data control and its dataset, it
mediates all of the communication that occurs between the two. Typically, the data-
aware control automatically responds to changes in the dataset. However, if your
user interface is using controls that are not data-aware, you can use the events of a
data source component to manually provide the same sort of response.

The OnDataChange event occurs whenever the data in a record may have changed,
including field edits or when the cursor moves to a new record. This event is useful
for making sure the control reflects the current field values in the dataset, because it
is triggered by all changes. Typically, an OnDataChange event handler refreshes the
value of a non-data-aware control that displays field data.

The OnUpdateData event occurs when the data in the current record is about to be
posted. For instance, an OnUpdateData event occurs after Post is called, but before the
data is actually posted to the underlying database server or local cache.

The OnStateChange event occurs when the state of the dataset changes. When this
event occurs, you can examine the dataset’s State property to determine its current
state.

For example, the following OnStateChange event handler enables or disables buttons
or menu items based on the current state:

void __fastcall TForm1::DataSource1StateChange(TObject *Sender)
{

CustTableActivateBtn->Enabled = (CustTable->State == dsInactive);
CustTableEditBtn->Enabled = (CustTable->State == dsBrowse);
CustTableCancelBtn->Enabled = (CustTable->State == dsInsert ||

CustTable->State == dsEdit ||
CustTable->State == dsSetKey);

ƒ
}

U s i n g d a t a c o n t r o l s 19-5

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

Note For more information about dataset states, see “Determining dataset states” on
page 22-3.

Editing and updating data

All data controls except the navigator display data from a database field. In addition,
you can use them to edit and update data as long as the underlying dataset allows it.

Note Unidirectional datasets never permit users to edit and update data.

Enabling editing in controls on user entry
A dataset must be in dsEdit state to permit editing to its data. If the data source’s
AutoEdit property is true (the default), the data control handles the task of putting the
dataset into dsEdit mode as soon as the user tries to edit its data.

If AutoEdit is false, you must provide an alternate mechanism for putting the dataset
into edit mode. One such mechanism is to use a TDBNavigator control with an Edit
button, which lets users explicitly put the dataset into edit mode. For more
information about TDBNavigator, see “Navigating and manipulating records” on
page 19-28. Alternately, you can write code that calls the dataset’s Edit method when
you want to put the dataset into edit mode.

Editing data in a control
A data control can only post edits to its associated dataset if the dataset’s CanModify
property is true. CanModify is always false for unidirectional datasets. Some datasets
have a ReadOnly property that lets you specify whether CanModify is true.

Note Whether a dataset can update data depends on whether the underlying database
table permits updates.

Even if the dataset’s CanModify property is true, the Enabled property of the data
source that connects the dataset to the control must be true as well before the control
can post updates back to the database table. The Enabled property of the data source
determines whether the control can display field values from the dataset, and
therefore also whether a user can edit and post values. If Enabled is true (the default),
controls can display field values.

Finally, you can control whether the user can even enter edits to the data that is
displayed in the control. The ReadOnly property of the data control determines if a
user can edit the data displayed by the control. If false (the default), users can edit
data. Clearly, you will want to ensure that the control’s ReadOnly property is true
when the dataset’s CanModify property is false. Otherwise, you give users the false
impression that they can affect the data in the underlying database table.

In all data controls except TDBGrid, when you modify a field, the modification is
copied to the underlying dataset when you Tab from the control. If you press Esc
before you Tab from a field, the data control abandons the modifications, and the
value of the field reverts to the value it held before any modifications were made.

19-6 D e v e l o p e r ’ s G u i d e

U s i n g c o m m o n d a t a c o n t r o l f e a t u r e s

In TDBGrid, modifications are posted when you move to a different record; you can
press Esc in any record of a field before moving to another record to cancel all
changes to the record.

When a record is posted, C++Builder checks all data-aware controls associated with
the dataset for a change in status. If there is a problem updating any fields that
contain modified data, C++Builder raises an exception, and no modifications are
made to the record.

Note If your application caches updates (for example, using a client dataset), all
modifications are posted to an internal cache. These modifications are not applied to
the underlying database table until you call the dataset’s ApplyUpdates method.

Disabling and enabling data display

When your application iterates through a dataset or performs a search, you should
temporarily prevent refreshing of the values displayed in data-aware controls each
time the current record changes. Preventing refreshing of values speeds the iteration
or search and prevents annoying screen-flicker.

DisableControls is a dataset method that disables display for all data-aware controls
linked to a dataset. As soon as the iteration or search is over, your application should
immediately call the dataset’s EnableControls method to re-enable display for the
controls.

Usually you disable controls before entering an iterative process. The iterative
process itself should take place inside a try...__finally statement so that you can re-
enable controls even if an exception occurs during processing. The __finally clause
should call EnableControls. The following code illustrates how you might use
DisableControls and EnableControls in this manner:

CustTable->DisableControls();
try
{

// cycle through all records of the dataset
for (CustTable->First(); !CustTable->EOF; CustTable->Next())
{
// Process each record here
ƒ
}

}
__finally
{

CustTable->EnableControls();
}

Refreshing data display

The Refresh method for a dataset flushes local buffers and re-fetches data for an open
dataset. You can use this method to update the display in data-aware controls if you
think that the underlying data has changed because other applications have

U s i n g d a t a c o n t r o l s 19-7

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

simultaneous access to the data used in your application. If you are using cached
updates, before you refresh the dataset you must apply any updates the dataset has
currently cached.

Refreshing can sometimes lead to unexpected results. For example, if a user is
viewing a record deleted by another application, then the record disappears the
moment your application calls Refresh. Data can also appear to change if another user
changes a record after you originally fetched the data and before you call Refresh.

Enabling mouse, keyboard, and timer events

The Enabled property of a data control determines whether it responds to mouse,
keyboard, or timer events, and passes information to its data source. The default
setting for this property is true.

To prevent mouse, keyboard, or timer events from reaching a data control, set its
Enabled property to false. When Enabled is false, the data source that connects the
control to its dataset does not receive information from the data control. The data
control continues to display data, but the text displayed in the control is dimmed.

Choosing how to organize the data
When you build the user interface for your database application, you have choices to
make about how you want to organize the display of information and the controls
that manipulate that information.

One of the first decisions to make is whether you want to display a single record at a
time, or multiple records.

In addition, you will want to add controls to navigate and manipulate records. The
TDBNavigator control provides built-in support for many of the functions you may
want to perform.

Displaying a single record

In many applications, you may only want to provide information about a single
record of data at a time. For example, an order-entry application may display the
information about a single order without indicating what other orders are currently
logged. This information probably comes from a single record in an orders dataset.

Applications that display a single record are usually easy to read and understand,
because all database information is about the same thing (in the previous case, the
same order). The data-aware controls in these user interfaces represent a single field
from a database record. The Data Controls page of the Component palette provides a
wide selection of controls to represent different kinds of fields. These controls are
typically data-aware versions of other controls that are available on the component
palette. For example, the TDBEdit control is a data-aware version of the standard
TEdit control which enables users to see and edit a text string.

19-8 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Which control you use depends on the type of data (text, formatted text, graphics,
boolean information, and so on) contained in the field.

Displaying data as labels
TDBText is a read-only control similar to the TLabel component on the Standard page
of the Component palette. A TDBText control is useful when you want to provide
display-only data on a form that allows user input in other controls. For example,
suppose a form is created around the fields in a customer list table, and that once the
user enters a street address, city, and state or province information in the form, you
use a dynamic lookup to automatically determine the zip code field from a separate
table. A TDBText component tied to the zip code table could be used to display the
zip code field that matches the address entered by the user.

TDBText gets the text it displays from a specified field in the current record of a
dataset. Because TDBText gets its text from a dataset, the text it displays is dynamic—
the text changes as the user navigates the database table. Therefore you cannot
specify the display text of TDBText at design time as you can with TLabel.

Note When you place a TDBText component on a form, make sure its AutoSize property is
true (the default) to ensure that the control resizes itself as necessary to display data
of varying widths. If AutoSize is false, and the control is too small, data display is
clipped.

Displaying and editing fields in an edit box
TDBEdit is a data-aware version of an edit box component. TDBEdit displays the
current value of a data field to which it is linked and permits it to be edited using
standard edit box techniques.

For example, suppose CustomersSource is a TDataSource component that is active and
linked to an open TClientDataSet called CustomersTable. You can then place a TDBEdit
component on a form and set its properties as follows:

• DataSource: CustomersSource

• DataField: CustNo

The data-aware edit box component immediately displays the value of the current
row of the CustNo column of the CustomersTable dataset, both at design time and at
runtime.

Displaying and editing text in a memo control
TDBMemo is a data-aware component—similar to the standard TMemo component—
that can display lengthy text data. TDBMemo displays multi-line text, and permits a
user to enter multi-line text as well. You can use TDBMemo controls to display large
text fields or text data contained in binary large object (BLOB) fields.

By default, TDBMemo permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the memo control to true. To display tabs and permit users to
enter them in a memo, set the WantTabs property to true. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The

U s i n g d a t a c o n t r o l s 19-9

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Several properties affect how the database memo appears and how text is entered.
You can supply scroll bars in the memo with the ScrollBars property. To prevent
word wrap, set the WordWrap property to false. The Alignment property determines
how the text is aligned within the control. Possible choices are taLeftJustify (the
default), taCenter, and taRightJustify. To change the font of the text, use the Font
property.

At runtime, users can cut, copy, and paste text to and from a database memo control.
You can accomplish the same task programmatically by using the CutToClipboard,
CopyToClipboard, and PasteFromClipboard methods.

Because the TDBMemo can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes to scroll through data records,
TDBMemo has an AutoDisplay property that controls whether the accessed data
should be displayed automatically. If you set AutoDisplay to false, TDBMemo
displays the field name rather than actual data. Double-click inside the control to
view the actual data.

Displaying and editing text in a rich edit memo control
TDBRichEdit is a data-aware component—similar to the standard TRichEdit
component—that can display formatted text stored in a binary large object (BLOB)
field. TDBRichEdit displays formatted, multi-line text, and permits a user to enter
formatted multi-line text as well.

Note While TDBRichEdit provides properties and methods to enter and work with rich
text, it does not provide any user interface components to make these formatting
options available to the user. Your application must implement the user interface to
surface rich text capabilities.

By default, TDBRichEdit permits a user to edit memo text. To prevent editing, set the
ReadOnly property of the rich edit control to true. To display tabs and permit users to
enter them in a memo, set the WantTabs property to true. To limit the number of
characters users can enter into the database memo, use the MaxLength property. The
default value for MaxLength is 0, meaning that there is no character limit other than
that imposed by the operating system.

Because the TDBRichEdit can display large amounts of data, it can take time to
populate the display at runtime. To reduce the time it takes to scroll through data
records, TDBRichEdit has an AutoDisplay property that controls whether the accessed
data should be displayed automatically. If you set AutoDisplay to false, TDBRichEdit
displays the field name rather than actual data. Double-click inside the control to
view the actual data.

Displaying and editing graphics fields in an image control
TDBImage is a data-aware control that displays graphics contained in BLOB fields.

By default, TDBImage permits a user to edit a graphics image by cutting and pasting
to and from the Clipboard using the CutToClipboard, CopyToClipboard, and

19-10 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

PasteFromClipboard methods. You can, instead, supply your own editing methods
attached to the event handlers for the control.

By default, an image control displays as much of a graphic as fits in the control,
cropping the image if it is too big. You can set the Stretch property to true to resize the
graphic to fit within an image control as it is resized.

Because the TDBImage can display large amounts of data, it can take time to populate
the display at runtime. To reduce the time it takes scroll through data records,
TDBImage has an AutoDisplay property that controls whether the accessed data
should automatically displayed. If you set AutoDisplay to false, TDBImage displays
the field name rather than actual data. Double-click inside the control to view the
actual data.

Displaying and editing data in list and combo boxes
There are four data controls that provide the user with a set of default data values to
choose from at runtime. These are data-aware versions of standard list and combo
box controls:

• TDBListBox, which displays a scrollable list of items from which a user can choose
to enter in a data field. A data-aware list box displays a default value for a field in
the current record and highlights its corresponding entry in the list. If the current
row’s field value is not in the list, no value is highlighted in the list box. When a
user selects a list item, the corresponding field value is changed in the underlying
dataset.

• TDBComboBox, which combines the functionality of a data-aware edit control and
a drop-down list. At runtime it can display a drop-down list from which a user can
pick from a predefined set of values, and it can permit a user to enter an entirely
different value.

• TDBLookupListBox, which behaves like TDBListBox except the list of display items
is looked up in another dataset.

• TDBLookupComboBox, which behaves like TDBComboBox except the list of display
items is looked up in another dataset.

Note At runtime, users can use an incremental search to find list box items. When the
control has focus, for example, typing ‘ROB’ selects the first item in the list box
beginning with the letters ‘ROB’. Typing an additional ‘E’ selects the first item
starting with ‘ROBE’, such as ‘Robert Johnson’. The search is case-insensitive.
Backspace and Esc cancel the current search string (but leave the selection intact), as
does a two second pause between keystrokes.

Using TDBListBox and TDBComboBox
When using TDBListBox or TDBComboBox, you must use the String List editor at
design time to create the list of items to display. To bring up the String List editor,
click the ellipsis button for the Items property in the Object Inspector. Then type in
the items that you want to have appear in the list. At runtime, use the methods of the
Items property to manipulate its string list.

U s i n g d a t a c o n t r o l s 19-11

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

When a TDBListBox or TDBComboBox control is linked to a field through its DataField
property, the field value appears selected in the list. If the current value is not in the
list, no item appears selected. However, TDBComboBox displays the current value for
the field in its edit box, regardless of whether it appears in the Items list.

For TDBListBox, the Height property determines how many items are visible in the
list box at one time. The IntegralHeight property controls how the last item can
appear. If IntegralHeight is false (the default), the bottom of the list box is determined
by the ItemHeight property, and the bottom item may not be completely displayed. If
IntegralHeight is true, the visible bottom item in the list box is fully displayed.

For TDBComboBox, the Style property determines user interaction with the control. By
default, Style is csDropDown, meaning a user can enter values from the keyboard, or
choose an item from the drop-down list. The following properties determine how the
Items list is displayed at runtime:

• Style determines the display style of the component:

• csDropDown (default): Displays a drop-down list with an edit box in which the
user can enter text. All items are strings and have the same height.

• csSimple: Combines an edit control with a fixed size list of items that is always
displayed. When setting Style to csSimple, be sure to increase the Height
property so that the list is displayed.

• csDropDownList: Displays a drop-down list and edit box, but the user cannot
enter or change values that are not in the drop-down list at runtime.

• csOwnerDrawFixed and csOwnerDrawVariable: Allows the items list to display
values other than strings (for example, bitmaps) or to use different fonts for
individual items in the list.

• DropDownCount: the maximum number of items displayed in the list. If the
number of Items is greater than DropDownCount, the user can scroll the list. If the
number of Items is less than DropDownCount, the list will be just large enough to
display all the Items.

• ItemHeight: The height of each item when style is csOwnerDrawFixed.

• Sorted: If true, then the Items list is displayed in alphabetical order.

Displaying and editing data in lookup list and combo boxes
Lookup list boxes and lookup combo boxes (TDBLookupListBox and
TDBLookupComboBox) present the user with a restricted list of choices from which to
set a valid field value. When a user selects a list item, the corresponding field value is
changed in the underlying dataset.

For example, consider an order form whose fields are tied to the OrdersTable.
OrdersTable contains a CustNo field corresponding to a customer ID, but OrdersTable
does not have any other customer information. The CustomersTable, on the other
hand, contains a CustNo field corresponding to a customer ID, and also contains
additional information, such as the customer’s company and mailing address. It
would be convenient if the order form enabled a clerk to select a customer by
company name instead of customer ID when creating an invoice. A

19-12 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

TDBLookupListBox that displays all company names in CustomersTable enables a user
to select the company name from the list, and set the CustNo on the order form
appropriately.

These lookup controls derive the list of display items from one of two sources:

• A lookup field defined for a dataset.
To specify list box items using a lookup field, the dataset to which you link the
control must already define a lookup field. (This process is described in “Defining
a lookup field” on page 23-8). To specify the lookup field for the list box items,

1 Set the DataSource property of the list box to the data source for the dataset
containing the lookup field to use.

2 Choose the lookup field to use from the drop-down list for the DataField
property.

When you activate a table associated with a lookup control, the control recognizes
that its data field is a lookup field, and displays the appropriate values from the
lookup.

• A secondary data source, data field, and key.
If you have not defined a lookup field for a dataset, you can establish a similar
relationship using a secondary data source, a field value to search on in the
secondary data source, and a field value to return as a list item. To specify a
secondary data source for list box items,

1 Set the DataSource property of the list box to the data source for the control.

2 Choose a field into which to insert looked-up values from the drop-down list
for the DataField property. The field you choose cannot be a lookup field.

3 Set the ListSource property of the list box to the data source for the dataset that
contain the field whose values you want to look up.

4 Choose a field to use as a lookup key from the drop-down list for the KeyField
property. The drop-down list displays fields for the dataset associated with
data source you specified in Step 3. The field you choose need not be part of an
index, but if it is, lookup performance is even faster.

5 Choose a field whose values to return from the drop-down list for the ListField
property. The drop-down list displays fields for the dataset associated with the
data source you specified in Step 3.

When you activate a table associated with a lookup control, the control recognizes
that its list items are derived from a secondary source, and displays the
appropriate values from that source.

To specify the number of items that appear at one time in a TDBLookupListBox
control, use the RowCount property. The height of the list box is adjusted to fit this
row count exactly.

To specify the number of items that appear in the drop-down list of
TDBLookupComboBox, use the DropDownRows property instead.

Note You can also set up a column in a data grid to act as a lookup combo box. For
information on how to do this, see “Defining a lookup list column” on page 19-20.

U s i n g d a t a c o n t r o l s 19-13

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

Handling Boolean field values with check boxes
TDBCheckBox is a data-aware check box control. It can be used to set the values of
Boolean fields in a dataset. For example, a customer invoice form might have a check
box control that when checked indicates the customer is tax-exempt, and when
unchecked indicates that the customer is not tax-exempt.

The data-aware check box control manages its checked or unchecked state by
comparing the value of the current field to the contents of ValueChecked and
ValueUnchecked properties. If the field value matches the ValueChecked property, the
control is checked. Otherwise, if the field matches the ValueUnchecked property, the
control is unchecked.

Note The values in ValueChecked and ValueUnchecked cannot be identical.

Set the ValueChecked property to a value the control should post to the database if the
control is checked when the user moves to another record. By default, this value is set
to “true,” but you can make it any alphanumeric value appropriate to your needs.
You can also enter a semicolon-delimited list of items as the value of ValueChecked. If
any of the items matches the contents of that field in the current record, the check box
is checked. For example, you can specify a ValueChecked string like:

DBCheckBox1->ValueChecked = “true;Yes;On”;

If the field for the current record contains values of “true,” “Yes,” or “On,” then the
check box is checked. Comparison of the field to ValueChecked strings is case-
insensitive. If a user checks a box for which there are multiple ValueChecked strings,
the first string is the value that is posted to the database.

Set the ValueUnchecked property to a value the control should post to the database if
the control is not checked when the user moves to another record. By default, this
value is set to “false,” but you can make it any alphanumeric value appropriate to
your needs. You can also enter a semicolon-delimited list of items as the value of
ValueUnchecked. If any of the items matches the contents of that field in the current
record, the check box is unchecked.

A data-aware check box is disabled whenever the field for the current record does
not contain one of the values listed in the ValueChecked or ValueUnchecked properties.

If the field with which a check box is associated is a logical field, the check box is
always checked if the contents of the field is true, and it is unchecked if the contents
of the field is false. In this case, strings entered in the ValueChecked and
ValueUnchecked properties have no effect on logical fields.

Restricting field values with radio controls
TDBRadioGroup is a data-aware version of a radio group control. It enables you to set
the value of a data field with a radio button control where there is a limited number
of possible values for the field. The radio group includes one button for each value a
field can accept. Users can set the value for a data field by selecting the desired radio
button.

The Items property determines the radio buttons that appear in the group. Items is a
string list. One radio button is displayed for each string in Items, and each string
appears to the right of a radio button as the button’s label.

19-14 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o o r g a n i z e t h e d a t a

If the current value of a field associated with a radio group matches one of the strings
in the Items property, that radio button is selected. For example, if three strings,
“Red,” “Yellow,” and “Blue,” are listed for Items, and the field for the current record
contains the value “Blue,” then the third button in the group appears selected.

Note If the field does not match any strings in Items, a radio button may still be selected if
the field matches a string in the Values property. If the field for the current record
does not match any strings in Items or Values, no radio button is selected.

The Values property can contain an optional list of strings that can be returned to the
dataset when a user selects a radio button and posts a record. Strings are associated
with buttons in numeric sequence. The first string is associated with the first button,
the second string with the second button, and so on. For example, suppose Items
contains “Red,” “Yellow,” and “Blue,” and Values contains “Magenta,” “Yellow,”
and “Cyan.” If a user selects the button labeled “Red,” “Magenta” is posted to the
database.

If strings for Values are not provided, the Item string for a selected radio button is
returned to the database when a record is posted.

Displaying multiple records

Sometimes you want to display many records in the same form. For example, an
invoicing application might show all the orders made by a single customer on the
same form.

To display multiple records, use a grid control. Grid controls provide a multi-field,
multi-record view of data that can make your application’s user interface more
compelling and effective. They are discussed in “Viewing and editing data with
TDBGrid” on page 19-15 and “Creating a grid that contains other data-aware
controls” on page 19-27.

Note You can’t display multiple records when using a unidirectional dataset.

You may want to design a user interface that displays both fields from a single record
and grids that represent multiple records. There are two models that combine these
two approaches:

• Master-detail forms: You can represent information from both a master table and
a detail table by including both controls that display a single field and grid
controls. For example, you could display information about a single customer with
a detail grid that displays the orders for that customer. For information about
linking the underlying tables in a master-detail form, see “Creating master/detail
relationships” on page 22-34 and “Establishing master/detail relationships using
parameters” on page 22-46.

• Drill-down forms: In a form that displays multiple records, you can include single
field controls that display detailed information from the current record only. This
approach is particularly useful when the records include long memos or graphic
information. As the user scrolls through the records of the grid, the memo or
graphic updates to represent the value of the current record. Setting this up is very

U s i n g d a t a c o n t r o l s 19-15

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

easy. The synchronization between the two displays is automatic if the grid and
the memo or image control share a common data source.

Tip It is generally not a good idea to combine these two approaches on a single form. It is
usually confusing for users to understand the data relationships in such forms.

Viewing and editing data with TDBGrid
A TDBGrid control lets you view and edit records in a dataset in a tabular grid
format.

Figure 19.1 TDBGrid control

Three factors affect the appearance of records displayed in a grid control:

• Existence of persistent column objects defined for the grid using the Columns
editor. Persistent column objects provide great flexibility setting grid and data
appearance. For information on using persistent columns, see “Creating a
customized grid” on page 19-16.

• Creation of persistent field components for the dataset displayed in the grid. For
more information about creating persistent field components using the Fields
editor, see Chapter 23, “Working with field components.”

• The dataset’s ObjectView property setting for grids displaying ADT and array
fields. See “Displaying ADT and array fields” on page 19-22.

A grid control has a Columns property that is itself a wrapper on a TDBGridColumns
object. TDBGridColumns is a collection of TColumn objects representing all of the
columns in a grid control. You can use the Columns editor to set up column
attributes at design time, or use the Columns property of the grid to access the
properties, events, and methods of TDBGridColumns at runtime.

Using a grid control in its default state

The State property of the grid’s Columns property indicates whether persistent
column objects exist for the grid. Columns->State is a runtime-only property that is
automatically set for a grid. The default state is csDefault, meaning that persistent
column objects do not exist for the grid. In that case, the display of data in the grid is

Current field Column titles

Record
indicator

19-16 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

determined primarily by the properties of the fields in the grid’s dataset, or, if there
are no persistent field components, by a default set of display characteristics.

When the grid’s Columns->State property is csDefault, grid columns are dynamically
generated from the visible fields of the dataset and the order of columns in the grid
matches the order of fields in the dataset. Every column in the grid is associated with
a field component. Property changes to field components immediately show up in
the grid.

Using a grid control with dynamically-generated columns is useful for viewing and
editing the contents of arbitrary tables selected at runtime. Because the grid’s
structure is not set, it can change dynamically to accommodate different datasets. A
single grid with dynamically-generated columns can display a Paradox table at one
moment, then switch to display the results of an SQL query when the grid’s
DataSource property changes or when the DataSet property of the data source itself is
changed.

You can change the appearance of a dynamic column at design time or runtime, but
what you are actually modifying are the corresponding properties of the field
component displayed in the column. Properties of dynamic columns exist only so
long as a column is associated with a particular field in a single dataset. For example,
changing the Width property of a column changes the DisplayWidth property of the
field associated with that column. Changes made to column properties that are not
based on field properties, such as Font, exist only for the lifetime of the column.

If a grid’s dataset consists of dynamic field components, the fields are destroyed each
time the dataset is closed. When the field components are destroyed, all dynamic
columns associated with them are destroyed as well. If a grid’s dataset consists of
persistent field components, the field components exist even when the dataset is
closed, so the columns associated with those fields also retain their properties when
the dataset is closed.

Note Changing a grid’s Columns->State property to csDefault at runtime deletes all column
objects in the grid (even persistent columns), and rebuilds dynamic columns based
on the visible fields of the grid’s dataset.

Creating a customized grid

A customized grid is one for which you define persistent column objects that
describe how a column appears and how the data in the column is displayed. A
customized grid lets you configure multiple grids to present different views of the
same dataset (different column orders, different field choices, and different column
colors and fonts, for example). A customized grid also enables you to let users
modify the appearance of the grid at runtime without affecting the fields used by the
grid or the field order of the dataset.

Customized grids are best used with datasets whose structure is known at design
time. Because they expect field names established at design time to exist in the
dataset, customized grids are not well suited to browsing arbitrary tables selected at
runtime.

U s i n g d a t a c o n t r o l s 19-17

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Understanding persistent columns
When you create persistent column objects for a grid, they are only loosely associated
with underlying fields in a grid’s dataset. Default property values for persistent
columns are dynamically fetched from a default source (the associated field or the
grid itself) until a value is assigned to the column property. Until you assign a
column property a value, its value changes as its default source changes. Once you
assign a value to a column property, it no longer changes when its default source
changes.

For example, the default source for a column title caption is an associated field’s
DisplayLabel property. If you modify the DisplayLabel property, the column title
reflects that change immediately. If you then assign a string to the column title’s
caption, the tile caption becomes independent of the associated field’s DisplayLabel
property. Subsequent changes to the field’s DisplayLabel property no longer affect the
column’s title.

Persistent columns exist independently from field components with which they are
associated. In fact, persistent columns do not have to be associated with field objects
at all. If a persistent column’s FieldName property is blank, or if the field name does
not match the name of any field in the grid’s current dataset, the column’s Field
property is NULL and the column is drawn with blank cells. If you override the cell’s
default drawing method, you can display your own custom information in the blank
cells. For example, you can use a blank column to display aggregated values on the
last record of a group of records that the aggregate summarizes. Another possibility
is to display a bitmap or bar chart that graphically depicts some aspect of the record’s
data.

Two or more persistent columns can be associated with the same field in a dataset.
For example, you might display a part number field at the left and right extremes of a
wide grid to make it easier to find the part number without having to scroll the grid.

Note Because persistent columns do not have to be associated with a field in a dataset, and
because multiple columns can reference the same field, a customized grid’s
FieldCount property can be less than or equal to the grid’s column count. Also note
that if the currently selected column in a customized grid is not associated with a
field, the grid’s SelectedField property is NULL and the SelectedIndex property is –1.

Persistent columns can be configured to display grid cells as a combo box drop-down
list of lookup values from another dataset or from a static pick list, or as an ellipsis
button (…) in a cell that can be clicked upon to launch special data viewers or dialogs
related to the current cell.

Creating persistent columns
To customize the appearance of grid at design time, you invoke the Columns editor
to create a set of persistent column objects for the grid. At runtime, the State property
for a grid with persistent column objects is automatically set to csCustomized.

19-18 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To create persistent columns for a grid control,

1 Select the grid component in the form.

2 Invoke the Columns editor by double clicking on the grid’s Columns property in
the Object Inspector.

The Columns list box displays the persistent columns that have been defined for the
selected grid. When you first bring up the Columns editor, this list is empty because
the grid is in its default state, containing only dynamic columns.

You can create persistent columns for all fields in a dataset at once, or you can create
persistent columns on an individual basis. To create persistent columns for all fields:

1 Right-click the grid to invoke the context menu and choose Add All Fields. Note
that if the grid is not already associated with a data source, Add All Fields is
disabled. Associate the grid with a data source that has an active dataset before
choosing Add All Fields.

2 If the grid already contains persistent columns, a dialog box asks if you want to
delete the existing columns, or append to the column set. If you choose Yes, any
existing persistent column information is removed, and all fields in the current
dataset are inserted by field name according to their order in the dataset. If you
choose No, any existing persistent column information is retained, and new
column information, based on any additional fields in the dataset, are appended to
the dataset.

3 Click Close to apply the persistent columns to the grid and close the dialog box.

To create persistent columns individually:

1 Choose the Add button in the Columns editor. The new column will be selected in
the list box. The new column is given a sequential number and default name (for
example, 0 - TColumn).

2 To associate a field with this new column, set the FieldName property in the Object
Inspector.

3 To set the title for the new column, expand the Title property in the Object
Inspector and set its Caption property.

4 Close the Columns editor to apply the persistent columns to the grid and close the
dialog box.

At runtime, you can switch to persistent columns by assigning csCustomized to the
Columns::State property. Any existing columns in the grid are destroyed and new
persistent columns are built for each field in the grid’s dataset. You can then add a
persistent column at runtime by calling the Add method for the column list:

DBGrid1->Columns->Add();

Deleting persistent columns
Deleting a persistent column from a grid is useful for eliminating fields that you do
not want to display. To remove a persistent column from a grid,

1 Double-click the grid to display the Columns editor.

U s i n g d a t a c o n t r o l s 19-19

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

2 Select the field to remove in the Columns list box.

3 Click Delete (you can also use the context menu or Del key, to remove a column).

Note If you delete all the columns from a grid, the Columns->State property reverts to its
csDefault state and automatically build dynamic columns for each field in the dataset.

You can delete a persistent column at runtime by simply freeing the column object:

delete DBGrid1->Columns->Items[5];

Arranging the order of persistent columns
The order in which columns appear in the Columns editor is the same as the order
the columns appear in the grid. You can change the column order by dragging and
dropping columns within the Columns list box.

To change the order of a column,

1 Select the column in the Columns list box.

2 Drag it to a new location in the list box.

You can also change the column order at runtime by clicking on the column title and
dragging the column to a new position.

Note Reordering persistent fields in the Fields editor also reorders columns in a default
grid, but not a custom grid.

Important You cannot reorder columns in grids containing both dynamic columns and dynamic
fields at design time, since there is nothing persistent to record the altered field or
column order.

At runtime, a user can use the mouse to drag a column to a new location in the grid if
its DragMode property is set to dmManual. Reordering the columns of a grid with a
State property of csDefault state also reorders field components in the dataset
underlying the grid. The order of fields in the physical table is not affected. To
prevent a user from rearranging columns at runtime, set the grid’s DragMode
property to dmAutomatic.

At runtime, the grid’s OnColumnMoved event fires after a column has been moved.

Setting column properties at design time
Column properties determine how data is displayed in the cells of that column. Most
column properties obtain their default values from properties associated with
another component (called the default source) such as a grid or an associated field
component.

19-20 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

To set a column’s properties, select the column in The Columns editor and set its
properties in the Object Inspector. The following table summarizes key column
properties you can set.

The following table summarizes the options you can specify for the Title property.

Defining a lookup list column
You can create a column that displays a drop-down list of values, similar to a lookup
combo box control. To specify that the column acts like a combo box, set the column’s
ButtonStyle property to cbsAuto. Once you populate the list with values, the grid
automatically displays a combo box-like drop-down button when a cell of that
column is in edit mode.

Table 19.2 Column properties

Property Purpose

Alignment Left justifies, right justifies, or centers the field data in the column. Default
source: TField::Alignment.

ButtonStyle cbsAuto: (default) Displays a drop-down list if the associated field is a lookup
field, or if the column’s PickList property contains data.
cbsEllipsis: Displays an ellipsis (...) button to the right of the cell. Clicking on
the button fires the grid’s OnEditButtonClick event.
cbsNone: The column uses only the normal edit control to edit data in the
column.

Color Specifies the background color of the cells of the column. Default source:
TDBGrid::Color. (For text foreground color, see the Font property.)

DropDownRows The number of lines of text displayed by the drop-down list. Default: 7.

Expanded Specifies whether the column is expanded. Only applies to columns
representing ADT or array fields.

FieldName Specifies the field name associated with this column. This can be blank.

ReadOnly true: The data in the column cannot be edited by the user.
false: (default) The data in the column can be edited.

Width Specifies the width of the column in screen pixels. Default source:
TField::DisplayWidth.

Font Specifies the font type, size, and color used to draw text in the column. Default
source: TDBGrid::Font.

PickList Contains a list of values to display in a drop-down list in the column.

Title Sets properties for the title of the selected column.

Table 19.3 Expanded TColumn Title properties

Property Purpose

Alignment Left justifies (default), right justifies, or centers the caption text in the column title.

Caption Specifies the text to display in the column title. Default source: TField::DisplayLabel.

Color Specifies the background color used to draw the column title cell. Default source:
TDBGrid::FixedColor.

Font Specifies the font type, size, and color used to draw text in the column title. Default
source: TDBGrid::TitleFont.

U s i n g d a t a c o n t r o l s 19-21

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

There are two ways to populate that list with the values for users to select:

• You can fetch the values from a lookup table. To make a column display a drop-
down list of values drawn from a separate lookup table, you must define a lookup
field in the dataset. For information about creating lookup fields, see “Defining a
lookup field” on page 23-8. Once the lookup field is defined, set the column’s
FieldName to the lookup field name. The drop-down list is automatically
populated with lookup values defined by the lookup field.

• You can specify a list of values explicitly at design time. To enter the list values at
design time, double-click the PickList property for the column in the Object
Inspector. This brings up the String List editor, where you can enter the values that
populate the pick list for the column.

By default, the drop-down list displays 7 values. You can change the length of this list
by setting the DropDownRows property.

Note To restore a column with an explicit pick list to its normal behavior, delete all the text
from the pick list using the String List editor.

Putting a button in a column
A column can display an ellipsis button (…) to the right of the normal cell editor.
Ctrl+Enter or a mouse click fires the grid’s OnEditButtonClick event. You can use the
ellipsis button to bring up forms containing more detailed views of the data in the
column. For example, in a table that displays summaries of invoices, you could set up
an ellipsis button in the invoice total column to bring up a form that displays the
items in that invoice, or the tax calculation method, and so on. For graphic fields, you
could use the ellipsis button to bring up a form that displays an image.

To create an ellipsis button in a column:

1 Select the column in the Columns list box.

2 Set ButtonStyle to cbsEllipsis.

3 Write an OnEditButtonClick event handler.

Restoring default values to a column
At runtime you can test a column’s AssignedValues property to determine whether a
column property has been explicitly assigned. Values that are not explicitly defined
are dynamically based on the associated field or the grid’s defaults.

You can undo property changes made to one or more columns. In the Columns
editor, select the column or columns to restore, and then select Restore Defaults from
the context menu. Restore defaults discards assigned property settings and restores a
column’s properties to those derived from its underlying field component

At runtime, you can reset all default properties for a single column by calling the
column’s RestoreDefaults method. You can also reset default properties for all
columns in a grid by calling the column list’s RestoreDefaults method:

DBGrid1->Columns->RestoreDefaults();

19-22 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Displaying ADT and array fields

Sometimes the fields of the grid’s dataset do not represent simple values such as text,
graphics, numerical values, and so on. Some database servers allow fields that are a
composite of simpler data types, such as ADT fields or array fields.

There are two ways a grid can display composite fields:

• It can “flatten out” the field so that each of the simpler types that make up the field
appears as a separate field in the dataset. When a composite field is flattened out,
its constituents appear as separate fields that reflect their common source only in
that each field name is preceded by the name of the common parent field in the
underlying database table.

To display composite fields as if they were flattened out, set the dataset’s
ObjectView property to false. The dataset stores composite fields as a set of
separate fields, and the grid reflects this by assigning each constituent part a
separate column.

• It can display composite fields in a single column, reflecting the fact that they are a
single field. When displaying composite fields in a single column, the column can
be expanded and collapsed by clicking on the arrow in the title bar of the field, or
by setting the Expanded property of the column:

• When a column is expanded, each child field appears in its own sub-column
with a title bar that appears below the title bar of the parent field. That is, the
title bar for the grid increases in height, with the first row giving the name of
the composite field, and the second row subdividing that for the individual
parts. Fields that are not composites appear with title bars that are extra high.
This expansion continues for constituents that are in turn composite fields (for
example, a detail table nested in a detail table), with the title bar growing in
height accordingly.

• When the field is collapsed, only one column appears with an uneditable
comma delimited string containing the child fields.

To display a composite field in an expanding and collapsing column, set the
dataset’s ObjectView property to true. The dataset stores the composite field as a
single field component that contains a set of nested sub-fields. The grid reflects
this in a column that can expand or collapse

Figure 19.2 shows a grid with an ADT field and an array field. The dataset’s
ObjectView property is set to false so that each child field has a column.

U s i n g d a t a c o n t r o l s 19-23

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Figure 19.2 TDBGrid control with ObjectView set to false

Figure 19.3 and 19.4 show the grid with an ADT field and an array field. Figure 19.3
shows the fields collapsed. In this state they cannot be edited. Figure 19.4 shows the
fields expanded. The fields are expanded and collapsed by clicking on the arrow in
the fields title bar.

Figure 19.3 TDBGrid control with Expanded set to false

Figure 19.4 TDBGrid control with Expanded set to true

The following table lists the properties that affect the way ADT and array fields
appear in a TDBGrid:

Table 19.4 Properties that affect the way composite fields appear

Property Object Purpose

Expandable TColumn Indicates whether the column can be expanded to show child
fields in separate, editable columns. (read-only)

Expanded TColumn Specifies whether the column is expanded.

MaxTitleRows TDBGrid Specifies the maximum number of title rows that can appear in
the grid

ObjectView TDataSet Specifies whether fields are displayed flattened out, or in object
mode, where each object field can be expanded and collapsed.

ParentColumn TColumn Refers to the TColumn object that owns the child field’s column.

ADT child fields Array child fields

ADT child field columns Array child field columns

19-24 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Note In addition to ADT and array fields, some datasets include fields that refer to another
dataset (dataset fields) or a record in another dataset (reference) fields. Data-aware
grids display such fields as “(DataSet)” or “(Reference)”, respectively. At runtime an
ellipsis button appears to the right. Clicking on the ellipsis brings up a new form with
a grid displaying the contents of the field. For dataset fields, this grid displays the
dataset that is the field’s value. For reference fields, this grid contains a single row
that displays the record from another dataset.

Setting grid options

You can use the grid Options property at design time to control basic grid behavior
and appearance at runtime. When a grid component is first placed on a form at
design time, the Options property in the Object Inspector is displayed with a + (plus)
sign to indicate that the Options property can be expanded to display a series of
Boolean properties that you can set individually. To view and set these properties,
click on the + sign. The list of options in the Object Inspector below the Options
property. The + sign changes to a – (minus) sign, that collapses the list back when
you click it.

The following table lists the Options properties that can be set, and describes how
they affect the grid at runtime.

Table 19.5 Expanded TDBGrid Options properties

Option Purpose

dgEditing true: (Default). Enables editing, inserting, and deleting records in the
grid.
false: Disables editing, inserting, and deleting records in the grid.

dgAlwaysShowEditor true: When a field is selected, it is in Edit state.
false: (Default). A field is not automatically in Edit state when
selected.

dgTitles true: (Default). Displays field names across the top of the grid.
false: Field name display is turned off.

dgIndicator true: (Default). The indicator column is displayed at the left of the
grid, and the current record indicator (an arrow at the left of the grid)
is activated to show the current record. On insert, the arrow becomes
an asterisk. On edit, the arrow becomes an I-beam.
false: The indicator column is turned off.

dgColumnResize true: (Default). Columns can be resized by dragging the column rulers
in the title area. Resizing changes the corresponding width of the
underlying TField component.
false: Columns cannot be resized in the grid.

dgColLines true: (Default). Displays vertical dividing lines between columns.
false: Does not display dividing lines between columns.

dgRowLines true: (Default). Displays horizontal dividing lines between records.
false: Does not display dividing lines between records.

dgTabs true: (Default). Enables tabbing between fields in records.
false: Tabbing exits the grid control.

U s i n g d a t a c o n t r o l s 19-25

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

Editing in the grid

At runtime, you can use a grid to modify existing data and enter new records, if the
following default conditions are met:

• The CanModify property of the Dataset is true.

• The ReadOnly property of grid is false.

When a user edits a record in the grid, changes to each field are posted to an internal
record buffer, but are not posted until the user moves to a different record in the grid.
Even if focus is changed to another control on a form, the grid does not post changes
until another the cursor for the dataset is moved to another record. When a record is
posted, the dataset checks all associated data-aware components for a change in
status. If there is a problem updating any fields that contain modified data, the grid
raises an exception, and does not modify the record.

Note If your application caches updates, posting record changes only adds them to an
internal cache. They are not posted back to the underlying database table until your
application applies the updates.

You can cancel all edits for a record by pressing Esc in any field before moving to
another record.

Controlling grid drawing

Your first level of control over how a grid control draws itself is setting column
properties. The grid automatically uses the font, color, and alignment properties of a
column to draw the cells of that column. The text of data fields is drawn using the
DisplayFormat or EditFormat properties of the field component associated with the
column.

dgRowSelect true: The selection bar spans the entire width of the grid.
false: (Default). Selecting a field in a record selects only that field.

dgAlwaysShowSelection true: (Default). The selection bar in the grid is always visible, even if
another control has focus.
false: The selection bar in the grid is only visible when the grid has
focus.

dgConfirmDelete true: (Default). Prompt for confirmation to delete records (Ctrl+Del).
false: Delete records without confirmation.

dgCancelOnExit true: (Default). Cancels a pending insert when focus leaves the grid.
This option prevents inadvertent posting of partial or blank records.
false: Permits pending inserts.

dgMultiSelect true: Allows user to select noncontiguous rows in the grid using
Ctrl+Shift or Shift+ arrow keys.
false: (Default). Does not allow user to multi-select rows.

Table 19.5 Expanded TDBGrid Options properties (continued)

Option Purpose

19-26 D e v e l o p e r ’ s G u i d e

V i e w i n g a n d e d i t i n g d a t a w i t h T D B G r i d

You can augment the default grid display logic with code in a grid’s
OnDrawColumnCell event. If the grid’s DefaultDrawing property is true, all the normal
drawing is performed before your OnDrawColumnCell event handler is called. Your
code can then draw on top of the default display. This is primarily useful when you
have defined a blank persistent column and want to draw special graphics in that
column’s cells.

If you want to replace the drawing logic of the grid entirely, set DefaultDrawing to
false and place your drawing code in the grid’s OnDrawColumnCell event. If you
want to replace the drawing logic only in certain columns or for certain field data
types, you can call the DefaultDrawColumnCell inside your OnDrawColumnCell event
handler to have the grid use its normal drawing code for selected columns. This
reduces the amount of work you have to do if you only want to change the way
Boolean field types are drawn, for example.

Responding to user actions at runtime

You can modify grid behavior by writing event handlers to respond to specific
actions within the grid at runtime. Because a grid typically displays many fields and
records at once, you may have very specific needs to respond to changes to
individual columns. For example, you might want to activate and deactivate a button
elsewhere on the form every time a user enters and exits a specific column.

The following table lists the grid events available in the Object Inspector.

Table 19.6 Grid control events

Event Purpose

OnCellClick Occurs when a user clicks on a cell in the grid.

OnColEnter Occurs when a user moves into a column on the grid.

OnColExit Occurs when a user leaves a column on the grid.

OnColumnMoved Occurs when the user moves a column to a new location.

OnDblClick Occurs when a user double clicks in the grid.

OnDragDrop Occurs when a user drags and drops in the grid.

OnDragOver Occurs when a user drags over the grid.

OnDrawColumnCell Occurs when application needs to draw individual cells.

OnDrawDataCell (obsolete) Occurs when application needs to draw individual cells if State
is csDefault.

OnEditButtonClick Occurs when the user clicks on an ellipsis button in a column.

OnEndDrag Occurs when a user stops dragging on the grid.

OnEnter Occurs when the grid gets focus.

OnExit Occurs when the grid loses focus.

OnKeyDown Occurs when a user presses any key or key combination on the keyboard
when in the grid.

OnKeyPress Occurs when a user presses a single alphanumeric key on the keyboard
when in the grid.

OnKeyUp Occurs when a user releases a key when in the grid.

OnStartDrag Occurs when a user starts dragging on the grid.

OnTitleClick Occurs when a user clicks the title for a column.

U s i n g d a t a c o n t r o l s 19-27

C r e a t i n g a g r i d t h a t c o n t a i n s o t h e r d a t a - a w a r e c o n t r o l s

There are many uses for these events. For example, you might write a handler for the
OnDblClick event that pops up a list from which a user can choose a value to enter in
a column. Such a handler would use the SelectedField property to determine to
current row and column.

Creating a grid that contains other data-aware controls
A TDBCtrlGrid control displays multiple fields in multiple records in a tabular grid
format. Each cell in a grid displays multiple fields from a single row. To use a
database control grid:

1 Place a database control grid on a form.

2 Set the grid’s DataSource property to the name of a data source.

3 Place individual data controls within the design cell for the grid. The design cell
for the grid is the top or leftmost cell in the grid, and is the only cell into which you
can place other controls.

4 Set the DataField property for each data control to the name of a field. The data
source for these data controls is already set to the data source of the database
control grid.

5 Arrange the controls within the cell as desired.

When you compile and run an application containing a database control grid, the
arrangement of data controls you set in the design cell at runtime is replicated in each
cell of the grid. Each cell displays a different record in a dataset.

Figure 19.5 TDBCtrlGrid at design time

19-28 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

The following table summarizes some of the unique properties for database control
grids that you can set at design time:

For more information about database control grid properties and methods, see the
online VCL Reference.

Navigating and manipulating records
TDBNavigator provides users a simple control for navigating through records in a
dataset, and for manipulating records. The navigator consists of a series of buttons
that enable a user to scroll forward or backward through records one at a time, go to
the first record, go to the last record, insert a new record, update an existing record,
post data changes, cancel data changes, delete a record, and refresh record display.

Figure 19.6 shows the navigator that appears by default when you place it on a form
at design time. The navigator consists of a series of buttons that let a user navigate
from one record to another in a dataset, and edit, delete, insert, and post records. The
VisibleButtons property of the navigator enables you to hide or show a subset of these
buttons dynamically.

Figure 19.6 Buttons on the TDBNavigator control

Table 19.7 Selected database control grid properties

Property Purpose

AllowDelete true (default): Permits record deletion.
false: Prevents record deletion.

AllowInsert true (default): Permits record insertion.
false: Prevents record insertion.

ColCount Sets the number of columns in the grid. Default = 1.

Orientation goVertical (default): Display records from top to bottom.
goHorizontal: Displays records from left to right.

PanelHeight Sets the height for an individual panel. Default = 72.

PanelWidth Sets the width for an individual panel. Default = 200.

RowCount Sets the number of panels to display. Default = 3.

ShowFocus true (default): Displays a focus rectangle around the current record’s panel at
runtime.
false: Does not display a focus rectangle.

First record

Insert record Delete current record

Post record edits

Refresh records

Cancel record edits

Edit current recordLast record

Prior record

Next record

U s i n g d a t a c o n t r o l s 19-29

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

The following table describes the buttons on the navigator.

Choosing navigator buttons to display

When you first place a TDBNavigator on a form at design time, all its buttons are
visible. You can use the VisibleButtons property to turn off buttons you do not want to
use on a form. For example, when working with a unidirectional dataset, only the
First, Next, and Refresh buttons are meaningful. On a form that is intended for
browsing rather than editing, you might want to disable the Edit, Insert, Delete, Post,
and Cancel buttons.

Hiding and showing navigator buttons at design time
The VisibleButtons property in the Object Inspector is displayed with a + sign to
indicate that it can be expanded to display a Boolean value for each button on the
navigator. To view and set these values, click on the + sign. The list of buttons that
can be turned on or off appears in the Object Inspector below the VisibleButtons
property. The + sign changes to a – (minus) sign, which you can click to collapse the
list of properties.

Button visibility is indicated by the Boolean state of the button value. If a value is set
to true, the button appears in the TDBNavigator. If false, the button is removed from
the navigator at design time and runtime.

Note As button values are set to false, they are removed from the TDBNavigator on the
form, and the remaining buttons are expanded in width to fill the control. You can
drag the control’s handles to resize the buttons.

Hiding and showing navigator buttons at runtime
At runtime you can hide or show navigator buttons in response to user actions or
application states. For example, suppose you provide a single navigator for

Table 19.8 TDBNavigator buttons

Button Purpose

First Calls the dataset’s First method to set the current record to the first record.

Prior Calls the dataset’s Prior method to set the current record to the previous record.

Next Calls the dataset’s Next method to set the current record to the next record.

Last Calls the dataset’s Last method to set the current record to the last record.

Insert Calls the dataset’s Insert method to insert a new record before the current record, and
set the dataset in Insert state.

Delete Deletes the current record. If the ConfirmDelete property is true it prompts for
confirmation before deleting.

Edit Puts the dataset in Edit state so that the current record can be modified.

Post Writes changes in the current record to the database.

Cancel Cancels edits to the current record, and returns the dataset to Browse state.

Refresh Clears data control display buffers, then refreshes its buffers from the physical table or
query. Useful if the underlying data may have been changed by another application.

19-30 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

navigating through two different datasets, one of which permits users to edit records,
and the other of which is read-only. When you switch between datasets, you want to
hide the navigator’s Insert, Delete, Edit, Post, Cancel, and Refresh buttons for the read-
only dataset, and show them for the other dataset.

For example, suppose you want to prevent edits to the OrdersTable by hiding the
Insert, Delete, Edit, Post, Cancel, and Refresh buttons on the navigator, but that you also
want to allow editing for the CustomersTable. The VisibleButtons property controls
which buttons are displayed in the navigator. Here’s one way you might code the
event handler:

void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{

if (Sender == (TObject *)CustomerCompany)
{

DBNavigatorAll->DataSource = CustomerCompany->DataSource;
DBNavigatorAll->VisibleButtons = TButtonSet() << nbFirst << nbPrior << nbNext << nbLast;

}
else
{

DBNavigatorAll->DataSource = OrderNum->DataSource;
DBNavigatorAll->VisibleButtons = TButtonSet() << nbInsert << nbDelete << nbEdit

<< nbPost << nbCancel << nbRefresh;
}

}

Displaying fly-over help

To display fly-over help for each navigator button at runtime, set the navigator
ShowHint property to true. When ShowHint is true, the navigator displays fly-by Help
hints whenever you pass the mouse cursor over the navigator buttons. ShowHint is
false by default.

The Hints property controls the fly-over help text for each button. By default Hints is
an empty string list. When Hints is empty, each navigator button displays default
help text. To provide customized fly-over help for the navigator buttons, use the
String list editor to enter a separate line of hint text for each button in the Hints
property. When present, the strings you provide override the default hints provided
by the navigator control.

Using a single navigator for multiple datasets

As with other data-aware controls, a navigator’s DataSource property specifies the
data source that links the control to a dataset. By changing a navigator’s DataSource
property at runtime, a single navigator can provide record navigation and
manipulation for multiple datasets.

Suppose a form contains two edit controls linked to the CustomersTable and
OrdersTable datasets through the CustomersSource and OrdersSource data sources
respectively. When a user enters the edit control connected to CustomersSource, the
navigator should also use CustomersSource, and when the user enters the edit control

U s i n g d a t a c o n t r o l s 19-31

N a v i g a t i n g a n d m a n i p u l a t i n g r e c o r d s

connected to OrdersSource, the navigator should switch to OrdersSource as well. You
can code an OnEnter event handler for one of the edit controls, and then share that
event with the other edit control. For example:

void __fastcall TForm1::CustomerCompanyEnter(TObject *Sender)
{

if (Sender == (TObject *)CustomerCompany)
DBNavigatorAll->DataSource = CustomerCompany->DataSource;

else
DBNavigatorAll->DataSource = OrderNum->DataSource;

}

19-32 D e v e l o p e r ’ s G u i d e

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-1

C h a p t e r

20
Chapter20Using decision support components

The decision support components help you create cross-tabulated—or, crosstab—
tables and graphs. You can then use these tables and graphs to view and summarize
data from different perspectives. For more information on cross-tabulated data, see
“About crosstabs” on page 20-2.

Overview
The decision support components appear on the Decision Cube page of the
component palette:

• The decision cube, TDecisionCube, is a multidimensional data store.

• The decision source, TDecisionSource, defines the current pivot state of a decision
grid or a decision graph.

• The decision query, TDecisionQuery, is a specialized form of TQuery used to define
the data in a decision cube.

• The decision pivot, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons.

• The decision grid, TDecisionGrid, displays single- and multidimensional data in
table form.

• The decision graph, TDecisionGraph, displays fields from a decision grid as a
dynamic graph that changes when data dimensions are modified.

Figure 20.1 shows all the decision support components placed on a form at design
time.

20-2 D e v e l o p e r ’ s G u i d e

A b o u t c r o s s t a b s

Figure 20.1 Decision support components at design time

About crosstabs
Cross-tabulations, or crosstabs, are a way of presenting subsets of data so that
relationships and trends are more visible. Table fields become the dimensions of the
crosstab while field values define categories and summaries within a dimension.

You can use the decision support components to set up crosstabs in forms.
TDecisionGrid shows data in a table, while TDecisionGraph charts it graphically.
TDecisionPivot has buttons that make it easier to display and hide dimensions and
move them between columns and rows.

Crosstabs can be one-dimensional or multidimensional.

One-dimensional crosstabs

One-dimensional crosstabs show a summary row (or column) for the categories of a
single dimension. For example, if Payment is the chosen column dimension and

Decision query
Decision cube

Decision grid

Decision pivot

Decision graph

Decision source

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-3

G u i d e l i n e s f o r u s i n g d e c i s i o n s u p p o r t c o m p o n e n t s

Amount Paid is the summary category, the crosstab in Figure 20.2 shows the amount
paid using each method.

Figure 20.2 One-dimensional crosstab

Multidimensional crosstabs

Multidimensional crosstabs use additional dimensions for the rows and/or columns.
For example, a two-dimensional crosstab could show amounts paid by payment
method for each country.

A three-dimensional crosstab could show amounts paid by payment method and
terms by country, as shown in Figure 20.3.

Figure 20.3 Three-dimensional crosstab

Guidelines for using decision support components
The decision support components listed on page 20-1 can be used together to present
multidimensional data as tables and graphs. More than one grid or graph can be
attached to each dataset. More than one instance of TDecisionPivot can be used to
display the data from different perspectives at runtime.

To create a form with tables and graphs of multidimensional data, follow these steps:

1 Create a form.

2 Add these components to the form and use the Object Inspector to bind them as
indicated:

• A dataset, usually TDecisionQuery (for details, see “Creating decision datasets
with the Decision Query editor” on page 20-6) or TQuery

20-4 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

• A decision cube, TDecisionCube, bound to the dataset by setting its DataSet
property to the dataset’s name

• A decision source, TDecisionSource, bound to the decision cube by setting its
DecisionCube property to the decision cube’s name

3 Add a decision pivot, TDecisionPivot, and bind it to the decision source with the
Object Inspector by setting its DecisionSource property to the appropriate decision
source name. The decision pivot is optional but useful; it lets the form developer
and end users change the dimensions displayed in decision grids or decision
graphs by pushing buttons.

In its default orientation, horizontal, buttons on the left side of the decision pivot
apply to fields on the left side of the decision grid (rows); buttons on the right side
apply to fields at the top of the decision grid (columns).

You can determine where the decision pivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default). For
more information on decision pivot properties, see “Using decision pivots” on
page 20-9.

4 Add one or more decision grids and graphs, bound to the decision source. For
details, see “Creating and using decision grids” on page 20-10 and “Creating and
using decision graphs” on page 20-13.

5 Use the Decision Query editor or SQL property of TDecisionQuery (or TQuery) to
specify the tables, fields, and summaries to display in the grid or graph. The last
field of the SQL SELECT should be the summary field. The other fields in the
SELECT must be GROUP BY fields. For instructions, see “Creating decision
datasets with the Decision Query editor” on page 20-6.

6 Set the Active property of the decision query (or alternate dataset component) to
true.

7 Use the decision grid and graph to show and chart different data dimensions. See
“Using decision grids” on page 20-11 and “Using decision graphs” on page 20-13
for instructions and suggestions.

For an illustration of all decision support components on a form, see Figure 20.1 on
page 20-2.

Using datasets with decision support components
The only decision support component that binds directly to a dataset is the decision
cube, TDecisionCube. TDecisionCube expects to receive data with groups and
summaries defined by an SQL statement of an acceptable format. The GROUP BY
phrase must contain the same non-summarized fields (and in the same order) as the
SELECT phrase, and summary fields must be identified.

The decision query component, TDecisionQuery, is a specialized form of TQuery. You
can use TDecisionQuery to more simply define the setup of dimensions (rows and
columns) and summary values used to supply data to decision cubes
(TDecisionCube). You can also use an ordinary TQuery or other BDE-enabled dataset

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-5

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

as a dataset for TDecisionCube, but the correct setup of the dataset and TDecisionCube
are then the responsibility of the designer.

To work correctly with the decision cube, all projected fields in the dataset must
either be dimensions or summaries. The summaries should be additive values (like
sum or count), and should represent totals for each combination of dimension values.
For maximum ease of setup, sums should be named “Sum...” in the dataset while
counts should be named “Count...”.

The Decision Cube can pivot, subtotal, and drill-in correctly only for summaries
whose cells are additive. (SUM and COUNT are additive, while AVERAGE, MAX,
and MIN are not.) Build pivoting crosstab displays only for grids that contain only
additive aggregators. If you are using non-additive aggregators, use a static decision
grid that does not pivot, drill, or subtotal.

Since averages can be calculated using SUM divided by COUNT, a pivoting average
is added automatically when SUM and COUNT dimensions for a field are included
in the dataset. Use this type of average in preference to an average calculated using
an AVERAGE statement.

Averages can also be calculated using COUNT(*). To use COUNT(*) to calculate
averages, include a “COUNT(*) COUNTALL” selector in the query. If you use
COUNT(*) to calculate averages, the single aggregator can be used for all fields. Use
COUNT(*) only in cases where none of the fields being summarized include blank
values, or where a COUNT aggregator is not available for every field.

Creating decision datasets with TQuery or TTable

If you use an ordinary TQuery component as a decision dataset, you must manually
set up the SQL statement, taking care to supply a GROUP BY phrase which contains
the same fields (and in the same order) as the SELECT phrase.

The SQL should look similar to this:

SELECT ORDERS."Terms", ORDERS."ShipVIA",
ORDERS."PaymentMethod", SUM(ORDERS."AmountPaid")

FROM "ORDERS.DB" ORDERS
GROUP BY ORDERS."Terms", ORDERS."ShipVIA", ORDERS."PaymentMethod"

The ordering of the SELECT fields should match the ordering of the GROUP BY
fields.

With TTable, you must supply information to the decision cube about which of the
fields in the query are grouping fields, and which are summaries. To do this, Fill in
the Dimension Type for each field in the DimensionMap of the Decision Cube. You
must indicate whether each field is a dimension or a summary, and if a summary,
you must provide the summary type. Since pivoting averages depend on SUM/
COUNT calculations, you must also provide the base field name to allow the decision
cube to match pairs of SUM and COUNT aggregators.

20-6 D e v e l o p e r ’ s G u i d e

U s i n g d a t a s e t s w i t h d e c i s i o n s u p p o r t c o m p o n e n t s

Creating decision datasets with the Decision Query editor

All data used by the decision support components passes through the decision cube,
which accepts a specially formatted dataset most easily produced by an SQL query.
See “Using datasets with decision support components” on page 20-4 for more
information.

While both TTable and TQuery can be used as decision datasets, it is easier to use
TDecisionQuery; the Decision Query editor supplied with it can be used to specify
tables, fields, and summaries to appear in the decision cube and will help you set up
the SELECT and GROUP BY portions of the SQL correctly.

To use the Decision Query editor:

1 Select the decision query component on the form, then right-click and choose
Decision Query editor. The Decision Query editor dialog box appears.

2 Choose the database to use.

3 For single-table queries, click the Select Table button.

For more complex queries involving multi-table joins, click the Query Builder
button to display the SQL Builder or type the SQL statement into the edit box on
the SQL tab page.

4 Return to the Decision Query editor dialog box.

5 In the Decision Query editor dialog box, select fields in the Available Fields list
box and assign them to be either Dimensions or Summaries by clicking the
appropriate right arrow button. As you add fields to the Summaries list, select
from the menu displayed the type of summary to use: sum, count, or average.

6 By default, all fields and summaries defined in the SQL property of the decision
query appear in the Active Dimensions and Active Summaries list boxes. To
remove a dimension or summary, select it in the list and click the left arrow beside
the list, or double-click the item to remove. To add it back, select it in the Available
Fields list box and click the appropriate right arrow.

Once you define the contents of the decision cube, you can further manipulate
dimension display with its DimensionMap property and the buttons of TDecisionPivot.
For more information, see the next section, “Using decision cubes,” “Using decision
sources” on page 20-9, and “Using decision pivots” on page 20-9.

Note When you use the Decision Query editor, the query is initially handled in ANSI-92
SQL syntax, then translated (if necessary) into the dialect used by the server. The
Decision Query editor reads and displays only ANSI standard SQL. The dialect
translation is automatically assigned to the TDecisionQuery’s SQL property. To
modify a query, edit the ANSI-92 version in the Decision Query rather then the SQL
property.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-7

U s i n g d e c i s i o n c u b e s

Using decision cubes
The decision cube component, TDecisionCube, is a multidimensional data store that
fetches its data from a dataset (typically a specially structured SQL statement entered
through TDecisionQuery or TQuery). The data is stored in a form that makes its easy
to pivot (that is, change the way in which the data is organized and summarized)
without needing to run the query a second time.

Decision cube properties and events

The DimensionMap properties of TDecisionCube not only control which dimensions
and summaries appear but also let you set date ranges and specify the maximum
number of dimensions the decision cube may support. You can also indicate whether
or not to display data during design. You can display names, (categories) values,
subtotals, or data. Display of data at design time can be time consuming, depending
on the data source.

When you click the ellipsis next to DimensionMap in the Object Inspector, the
Decision Cube editor dialog box appears. You can use its pages and controls to set
the DimensionMap properties.

The OnRefresh event fires whenever the decision cube cache is rebuilt. Developers can
access the new dimension map and change it at that time to free up memory, change
the maximum summaries or dimensions, and so on. OnRefresh is also useful if users
access the Decision Cube editor; application code can respond to user changes at that
time.

Using the Decision Cube editor

You can use the Decision Cube editor to set the DimensionMap properties of decision
cubes. You can display the Decision Cube editor through the Object Inspector, as
described in the previous section, or by right-clicking a decision cube on a form at
design time and choosing Decision Cube editor.

The Decision Cube Editor dialog box has two tabs:

• Dimension Settings, used to activate or disable available dimensions, rename and
reformat dimensions, put dimensions in a permanently drilled state, and set date
ranges to display.

• Memory Control, used to set the maximum number of dimensions and summaries
that can be active at one time, to display information about memory usage, and to
determine the names and data that appear at design time.

20-8 D e v e l o p e r ’ s G u i d e

U s i n g d e c i s i o n c u b e s

Viewing and changing dimension settings
To view the dimension settings, display the Decision Cube editor and click the
Dimension Settings tab. Then, select a dimension or summary in the Available Fields
list. Its information appears in the boxes on the right side of the editor:

• To change the dimension or summary name that appears in the decision pivot,
decision grid, or decision graph, enter a new name in the Display Name edit box.

• To determine whether the selected field is a dimension or summary, read the text
in the Type edit box. If the dataset is a TTable component, you can use Type to
specify whether the selected field is a dimension or summary.

• To disable or activate the selected dimension or summary, change the setting in
the Active Type drop-down list box: Active, As Needed, or Inactive. Disabling a
dimension or setting it to As Needed saves memory.

• To change the format of that dimension or summary, enter a format string in the
Format edit box.

• To display that dimension or summary by Year, Quarter, or Month, change the
setting in the Binning drop-down list box. Note that you can choose Set in the
Binning list box to put the selected dimension or summary in a permanently
“drilled down” state. This can be useful for saving memory when a dimension has
many values. For more information, see “Decision support components and
memory control” on page 20-19.

• To determine the starting value for ranges, or the drill-down value for a “Set”
dimension, first choose the appropriate Grouping value in the Grouping drop-
down, and then enter the starting range value or permanent drill-down value in
the Initial Value drop-down list.

Setting the maximum available dimensions and summaries
To determine the maximum number of dimensions and summaries available for
decision pivots, decision grids, and decision graphs bound to the selected decision
cube, display the Decision Cube editor and click the Memory Control tab. Use the
edit controls to adjust the current settings, if necessary. These settings help to control
the amount of memory required by the decision cube. For more information, see
“Decision support components and memory control” on page 20-19.

Viewing and changing design options
To determine how much information appears at design time, display the Decision
Cube editor and click the Memory Control tab. Then, check the setting that indicates
which names and data to display. Display of data or field names at design time can
cause performance delays in some cases because of the time needed to fetch the data.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-9

U s i n g d e c i s i o n s o u r c e s

Using decision sources
The decision source component, TDecisionSource, defines the current pivot state of
decision grids or decision graphs. Any two objects which use the same decision
source also share pivot states.

Properties and events

The following are some special properties and events that control the appearance and
behavior of decision sources:

• The ControlType property of TDecisionSource indicates whether the decision pivot
buttons should act like check boxes (multiple selections) or radio buttons
(mutually exclusive selections).

• The SparseCols and SparseRows properties of TDecisionSource indicate whether to
display columns or rows with no values; if true, sparse columns or rows are
displayed.

• TDecisionSource has the following events:

• OnLayoutChange occurs when the user performs pivots or drill-downs that
reorganize the data.

• OnNewDimensions occurs when the data is completely altered, such as when the
summary or dimension fields are altered.

• OnSummaryChange occurs when the current summary is changed.

• OnStateChange occurs when the Decision Cube activates or deactivates.

• OnBeforePivot occurs when changes are committed but not yet reflected in the
user interface. Developers have an opportunity to make changes, for example,
in capacity or pivot state, before application users see the result of their
previous action.

• OnAfterPivot fires after a change in pivot state. Developers can capture
information at that time.

Using decision pivots
The decision pivot component, TDecisionPivot, lets you open or close decision cube
dimensions, or fields, by pressing buttons. When a row or column is opened by
pressing a TDecisionPivot button, the corresponding dimension appears on the
TDecisionGrid or TDecisionGraph component. When a dimension is closed, its detailed
data doesn’t appear; it collapses into the totals of other dimensions. A dimension
may also be in a “drilled” state, where only the summaries for a particular value of
the dimension field appear.

20-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

You can also use the decision pivot to reorganize dimensions displayed in the
decision grid and decision graph. Just drag a button to the row or column area or
reorder buttons within the same area.

For illustrations of decision pivots at design time, see Figures 20.1, 20.2, and 20.3.

Decision pivot properties

The following are some special properties that control the appearance and behavior
of decision pivots:

• The first properties listed for TDecisionPivot define its overall behavior and
appearance. You might want to set ButtonAutoSize to false for TDecisionPivot to
keep buttons from expanding and contracting as you adjust the size of the
component.

• The Groups property of TDecisionPivot defines which dimension buttons appear.
You can display the row, column, and summary selection button groups in any
combination. Note that if you want more flexibility over the placement of these
groups, you can place one TDecisionPivot on your form which contains only rows
in one location, and a second which contains only columns in another location.

• Typically, TDecisionPivot is added above TDecisionGrid. In its default orientation,
horizontal, buttons on the left side of TDecisionPivot apply to fields on the left side
of TDecisionGrid (rows); buttons on the right side apply to fields at the top of
TDecisionGrid (columns).

• You can determine where TDecisionPivot’s buttons appear by setting its
GroupLayout property to xtVertical, xtLeftTop, or xtHorizontal (the default, described
in the previous paragraph).

Creating and using decision grids
Decision grid components, TDecisionGrid, present cross-tabulated data in table form.
These tables are also called crosstabs, described on page 20-2. Figure 20.1 on
page 20-2 shows a decision grid on a form at design time.

Creating decision grids

To create a form with one or more tables of cross-tabulated data,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 20-3.

2 Add one or more decision grid components (TDecisionGrid) and bind them to the
decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-11

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

For a description of what appears in the decision grid and how to use it, see “Using
decision grids” on page 20-11.

To add a graph to the form, follow the instructions in “Creating decision graphs” on
page 20-13.

Using decision grids

The decision grid component, TDecisionGrid, displays data from decision cubes
(TDecisionCube) bound to decision sources (TDecisionSource).

By default, the grid appears with dimension fields at its left side and/or top,
depending on the grouping instructions defined in the dataset. Categories, one for
each data value, appear under each field. You can

• Open and close dimensions

• Reorganize, or pivot, rows and columns

• Drill down for detail

• Limit dimension selection to a single dimension for each axis

For more information about special properties and events of the decision grid, see
“Decision grid properties” on page 20-12.

Opening and closing decision grid fields
If a plus sign (+) appears in a dimension or summary field, one or more fields to its
right are closed (hidden). You can open additional fields and categories by clicking
the sign. A minus sign (-) indicates a fully opened (expanded) field. When you click
the sign, the field closes. This outlining feature can be disabled; see “Decision grid
properties” on page 20-12 for details.

Reorganizing rows and columns in decision grids
You can drag row and column headings to new locations within the same axis or to
the other axis. In this way, you can reorganize the grid and see the data from new
perspectives as the data groupings change. This pivoting feature can be disabled; see
“Decision grid properties” on page 20-12 for details.

If you included a decision pivot, you can push and drag its buttons to reorganize the
display. See “Using decision pivots” on page 20-9 for instructions.

Drilling down for detail in decision grids
You can drill down to see more detail in a dimension.

For example, if you right-click a category label (row heading) for a dimension with
others collapsed beneath it, you can choose to drill down and only see data for that
category. When a dimension is drilled, you do not see the category labels for that
dimension displayed on the grid, since only the records for a single category value
are being displayed. If you have a decision pivot on the form, it displays category
values and lets you change to other values if you want.

20-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r i d s

To drill down into a dimension,

• Right-click a category label and choose Drill In To This Value, or

• Right-click a pivot button and choose Drilled In.

To make the complete dimension active again,

• Right-click the corresponding pivot button, or right-click the decision grid in the
upper-left corner and select the dimension.

Limiting dimension selection in decision grids
You can change the ControlType property of the decision source to determine whether
more than one dimension can be selected for each axis of the grid. For more
information, see “Using decision sources” on page 20-9.

Decision grid properties

The decision grid component, TDecisionGrid, displays data from the TDecisionCube
component bound to TDecisionSource. By default, data appears in a grid with
category fields on the left side and top of the grid.

The following are some special properties that control the appearance and behavior
of decision grids:

• TDecisionGrid has unique properties for each dimension. To set these, choose
Dimensions in the Object Inspector, then select a dimension. Its properties then
appear in the Object Inspector: Alignment defines the alignment of category labels
for that dimension, Caption can be used to override the default dimension name,
Color defines the color of category labels, FieldName displays the name of the active
dimension, Format can hold any standard format for that data type, and Subtotals
indicates whether to display subtotals for that dimension. With summary fields,
these same properties are used to changed the appearance of the data that appears
in the summary area of the grid. When you’re through setting dimension
properties, either click a component in the form or choose a component in the
drop-down list box at the top of the Object Inspector.

• The Options property of TDecisionGrid lets you control display of grid lines
(cgGridLines = true), enabling of outline features (collapse and expansion of
dimensions with + and - indicators; cgOutliner = true), and enabling of drag-and-
drop pivoting (cgPivotable = true).

• The OnDecisionDrawCell event of TDecisionGrid gives you a chance to change the
appearance of each cell as it is drawn. The event passes the String, Font, and Color
of the current cell as reference parameters. You are free to alter those parameters to
achieve effects such as special colors for negative values. In addition to the
DrawState which is passed by TCustomGrid, the event passes TDecisionDrawState,
which can be used to determine what type of cell is being drawn. Further
information about the cell can be fetched using the Cells, CellValueArray, or
CellDrawState functions.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-13

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

• The OnDecisionExamineCell event of TDecisionGrid lets you hook the right-click-on-
event to data cells, and is intended to allow a program to display information
(such as detail records) about that particular data cell. When the user right-clicks a
data cell, the event is supplied with all the information which is was used to
compose the data value, including the currently active summary value and a
ValueArray of all the dimension values which were used to create the summary
value.

Creating and using decision graphs
Decision graph components, TDecisionGraph, present cross-tabulated data in graphic
form. Each decision graph shows the value of a single summary, such as Sum, Count,
or Avg, charted for one or more dimensions. For more information on crosstabs, see
page 20-2. For illustrations of decision graphs at design time, see Figure 20.1 on
page 20-2 and Figure 20.4 on page 20-14.

Creating decision graphs

To create a form with one or more decision graphs,

1 Follow steps 1–3 listed under “Guidelines for using decision support components”
on page 20-3.

2 Add one or more decision graph components (TDecisionGraph) and bind them to
the decision source, TDecisionSource, with the Object Inspector by setting their
DecisionSource property to the appropriate decision source component.

3 Continue with steps 5–7 listed under “Guidelines for using decision support
components.”

4 Finally, right-click the graph and choose Edit Chart to modify the appearance of
the graph series. You can set template properties for each graph dimension, then
set individual series properties to override these defaults. For details, see
“Customizing decision graphs” on page 20-15.

For a description of what appears in the decision graph and how to use it, see the
next section, “Using decision graphs.”

To add a decision grid—or crosstab table—to the form, follow the instructions in
“Creating and using decision grids” on page 20-10.

Using decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot).

20-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Graphed data comes from a specially formatted dataset such as TDecisionQuery. For
an overview of how the decision support components handle and arrange this data,
see page 20-1.

By default, the first row dimension appears as the x-axis and the first column
dimension appears as the y-axis.

You can use decision graphs instead of or in addition to decision grids, which present
cross-tabulated data in tabular form. Decision grids and decision graphs that are
bound to the same decision source present the same data dimensions. To show
different summary data for the same dimensions, you can bind more than one
decision graph to the same decision source. To show different dimensions, bind
decision graphs to different decision sources.

For example, in Figure 20.4 the first decision pivot and graph are bound to the first
decision source and the second decision pivot and graph are bound to the second. So,
each graph can show different dimensions.

Figure 20.4 Decision graphs bound to different decision sources

For more information about what appears in a decision graph, see the next section,
“The decision graph display.”

To create a decision graph, see the previous section, “Creating decision graphs.”

For a discussion of decision graph properties and how to change the appearance and
behavior of decision graphs, see “Customizing decision graphs” on page 20-15.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-15

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

The decision graph display

By default, the decision graph plots summary values for categories in the first active
row field (along the y-axis) against values in the first active column field (along the x-
axis). Each graphed category appears as a separate series.

If only one dimension is selected—for example, by clicking only one TDecisionPivot
button—only one series is graphed.

If you used a decision pivot, you can push its buttons to determine which decision
cube fields (dimensions) are graphed. To exchange graph axes, drag the decision
pivot dimension buttons from one side of the separator space to the other. If you
have a one-dimensional graph with all buttons on one side of the separator space,
you can use the Row or Column icon as a drop target for adding buttons to the other
side of the separator and making the graph multidimensional.

If you only want one column and one row to be active at a time, you can set the
ControlType property for TDecisionSource to xtRadio. Then, there can be only one
active field at a time for each decision cube axis, and the decision pivot’s
functionality will correspond to the graph’s behavior. xtRadioEx works the same as
xtRadio, but does not allow the state where all row or all columns dimensions are
closed.

When you have both a decision grid and graph connected to the same
TDecisionSource, you’ll probably want to set ControlType back to xtCheck to
correspond to the more flexible behavior of TDecisionGrid.

Customizing decision graphs

The decision graph component, TDecisionGraph, displays fields from the decision
source (TDecisionSource) as a dynamic graph that changes when data dimensions are
opened, closed, dragged and dropped, or rearranged with the decision pivot
(TDecisionPivot). You can change the type, colors, marker types for line graphs, and
many other properties of decision graphs.

To customize a graph,

1 Right-click it and choose Edit Chart. The Chart Editing dialog box appears.

2 Use the Chart page of the Chart Editing dialog box to view a list of visible series,
select the series definition to use when two or more are available for the same
series, change graph types for a template or series, and set overall graph
properties.

The Series list on the Chart page shows all decision cube dimensions (preceded by
Template:) and currently visible categories. Each category, or series, is a separate
object. You can:

• Add or delete series derived from existing decision-graph series. Derived series
can provide annotations for existing series or represent values calculated from
other series.

20-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

• Change the default graph type, and change the title of templates and series.

For a description of the other Chart page tabs, search for the following topic in
online Help: “Chart page (Chart Editing dialog box).”

3 Use the Series page to establish dimension templates, then customize properties
for each individual graph series.

By default, all series are graphed as bar graphs and up to 16 default colors are
assigned. You can edit the template type and properties to create a new default.
Then, as you pivot the decision source to different states, the template is used to
dynamically create the series for each new state. For template details, see “Setting
decision graph template defaults” on page 20-16.

To customize individual series, follow the instructions in “Customizing decision
graph series” on page 20-17.

For a description of each Series page tab, search for the following topic in online
Help: “Series page (Chart Editing dialog box).”

Setting decision graph template defaults
Decision graphs display the values from two dimensions of the decision cube: one
dimension is displayed as an axis of the graph, and the other is used to create a set of
series. The template for that dimension provides default properties for those series
(such as whether the series are bar, line, area, and so on). As users pivot from one
state to another, any required series for the dimension are created using the series
type and other defaults specified in the template.

A separate template is provided for cases where users pivot to a state where only one
dimension is active. A one-dimensional state is often represented with a pie chart, so
a separate template is provided for this case.

You can

• Change the default graph type.
• Change other graph template properties.
• View and set overall graph properties.

Changing the default decision graph type
To change the default graph type,

1 Select a template in the Series list on the Chart page of the Chart Editing dialog
box.

2 Click the Change button.

3 Select a new type and close the Gallery dialog box.

Changing other decision graph template properties
To change color or other properties of a template,

1 Select the Series page at the top of the Chart Editing dialog box.

2 Choose a template in the drop-down list at the top of the page.

3 Choose the appropriate property tab and select settings.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-17

C r e a t i n g a n d u s i n g d e c i s i o n g r a p h s

Viewing overall decision graph properties
To view and set decision graph properties other than type and series,

1 Select the Chart page at the top of the Chart Editing dialog box.

2 Choose the appropriate property tab and select settings.

Customizing decision graph series
The templates supply many defaults for each decision cube dimension, such as graph
type and how series are displayed. Other defaults, such as series color, are defined by
TDecisionGraph. If you want you can override the defaults for each series.

The templates are intended for use when you want the program to create the series
for categories as they are needed, and discard them when they are no longer needed.
If you want, you can set up custom series for specific category values. To do this,
pivot the graph so its current display has a series for the category you want to
customize. When the series is displayed on the graph, you can use the Chart editor to

• Change the graph type.
• Change other series properties.
• Save specific graph series that you have customized.

To define series templates and set overall graph defaults, see “Setting decision graph
template defaults” on page 20-16.

Changing the series graph type
By default, each series has the same graph type, defined by the template for its
dimension. To change all series to the same graph type, you can change the template
type. See “Changing the default decision graph type” on page 20-16 for instructions.

To change the graph type for a single series,

1 Select a series in the Series list on the Chart page of the Chart editor.

2 Click the Change button.

3 Select a new type and close the Gallery dialog box.

4 Check the Save Series check box.

Changing other decision graph series properties
To change color or other properties of a decision graph series,

1 Select the Series page at the top of the Chart Editing dialog box.

2 Choose a series in the drop-down list at the top of the page.

3 Choose the appropriate property tab and select settings.

4 Check the Save Series check box.

20-18 D e v e l o p e r ’ s G u i d e

D e c i s i o n s u p p o r t c o m p o n e n t s a t r u n t i m e

Saving decision graph series settings
By default, only settings for templates are saved at design time. Changes made to
specific series are only saved if the Save box is checked for that series in the Chart
Editing dialog box.

Saving series can be memory intensive, so if you don’t need to save them you can
uncheck the Save box.

Decision support components at runtime
At runtime, users can perform many operations by left-clicking, right-clicking, and
dragging visible decision support components. These operations, discussed earlier in
this chapter, are summarized below.

Decision pivots at runtime

Users can:

• Left-click the summary button at the left end of the decision pivot to display a list
of available summaries. They can use this list to change the summary data
displayed in decision grids and decision graphs.

• Right-click a dimension button and choose to:

• Move it from the row area to the column area or the reverse.

• Drill In to display detail data.

• Left-click a dimension button following the Drill In command and choose:

• Open Dimension to move back to the top level of that dimension.

• All Values to toggle between displaying just summaries and summaries plus all
other values in decision grids.

• From a list of available categories for that dimension, a category to drill into for
detail values.

• Left-click a dimension button to open or close that dimension.

• Drag and drop dimension buttons from the row area to the column area and the
reverse; they can drop them next to existing buttons in that area or onto the row or
column icon.

Decision grids at runtime

Users can:

• Right-click within the decision grid and choose to:

• Toggle subtotals on and off for individual data groups, for all values of a
dimension, or for the whole grid.

U s i n g d e c i s i o n s u p p o r t c o m p o n e n t s 20-19

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

• Display the Decision Cube editor, described on page 20-7.

• Toggle dimensions and summaries open and closed.

• Click + and – within the row and column headings to open and close dimensions.

• Drag and drop dimensions from rows to columns and the reverse.

Decision graphs at runtime

Users can drag from side to side or up and down in the graph grid area to scroll
through off-screen categories and values.

Decision support components and memory control
When a dimension or summary is loaded into the decision cube, it takes up memory.
Adding a new summary increases memory consumption linearly: that is, a decision
cube with two summaries uses twice as much memory as the same cube with only
one summary, a decision cube with three summaries uses three times as much
memory as the same cube with one summary, and so on. Memory consumption for
dimensions increases more quickly. Adding a dimension with 10 values increases
memory consumption by a factor of 10. Adding a dimension with 100 values
increases memory consumption 100 times. Thus adding dimensions to a decision
cube can have a dramatic effect on memory use, and can quickly lead to performance
problems. This effect is especially pronounced when adding dimensions that have
many values.

The decision support components have a number of settings to help you control how
and when memory is used. For more information on the properties and techniques
mentioned here, look up TDecisionCube in the online Help.

Setting maximum dimensions, summaries, and cells

The decision cube’s MaxDimensions and MaxSummaries properties can be used with
the CubeDim->ActiveFlag property to control how many dimensions and summaries
can be loaded at a time. You can set the maximum values on the Cube Capacity page
of the Decision Cube editor to place some overall control on how many dimensions
or summaries can be brought into memory at the same time.

Limiting the number of dimensions or summaries provides a rough limit on the
amount of memory used by the decision cube. However, it does not distinguish
between dimensions with many values and those with only a few. For greater control
of the absolute memory demands of the decision cube, you can also limit the number
of cells in the cube. Set the maximum number of cells on the Cube Capacity page of
the Decision Cube editor.

20-20 D e v e l o p e r ’ s G u i d e

D e c i s i o n s u p p o r t c o m p o n e n t s a n d m e m o r y c o n t r o l

Setting dimension state

The ActiveFlag property controls which dimensions get loaded. You can set this
property on the Dimension Settings tab of the Decision Cube editor using the
Activity Type control. When this control is set to Active, the dimension is loaded
unconditionally, and will always take up space. Note that the number of dimensions
in this state must always be less than MaxDimensions, and the number of summaries
set to Active must be less than MaxSummaries. You should set a dimension or
summary to Active only when it is critical that it be available at all times. An Active
setting decreases the ability of the cube to manage the available memory.

When ActiveFlag is set to AsNeeded, a dimension or summary is loaded only if it can
be loaded without exceeding the MaxDimensions, MaxSummaries, or MaxCells limit.
The decision cube will swap dimensions and summaries that are marked AsNeeded in
and out of memory to keep within the limits imposed by MaxCells, MaxDimensions,
and MaxSummaries. Thus, a dimension or summary may not be loaded in memory if
it is not currently being used. Setting dimensions that are not used frequently to
AsNeeded results in better loading and pivoting performance, although there will be a
time delay to access dimensions which are not currently loaded.

Using paged dimensions

When Binning is set to Set on the Dimension Settings tab of the Decision cube editor
and Start Value is not NULL, the dimension is said to be “paged,” or “permanently
drilled down.” You can access data for just a single value of that dimension at a time,
although you can programmatically access a series of values sequentially. Such a
dimension may not be pivoted or opened.

It is extremely memory intensive to include dimensional data for dimensions that
have very large numbers of values. By making such dimensions paged, you can
display summary information for one value at a time. Information is usually easier to
read when displayed this way, and memory consumption is much easier to manage.

C o n n e c t i n g t o d a t a b a s e s 21-1

C h a p t e r

21
Chapter21Connecting to databases

Most dataset components can connect directly to a database server. Once connected,
the dataset communicates with the server automatically. When you open the dataset,
it populates itself with data from the server, and when you post records, they are sent
back the server and applied. A single connection component can be shared by
multiple datasets, or each dataset can use its own connection.

Each type of dataset connects to the database server using its own type of connection
component, which is designed to work with a single data access mechanism. The
following table lists these data access mechanisms and the associated connection
components:

Note For a discussion of some pros and cons of each of these mechanisms, see “Using
databases” on page 18-1.

The connection component provides all the information necessary to establish a
database connection. This information is different for each type of connection
component:

• For information about describing a BDE-based connection, see “Identifying the
database” on page 24-13.

• For information about describing an ADO-based connection, see “Connecting to a
data store using TADOConnection” on page 25-3.

• For information about describing a dbExpress connection, see “Setting up
TSQLConnection” on page 26-3.

Table 21.1 Database connection components

Data access mechanism Connection component

Borland Database Engine (BDE) TDatabase

ActiveX Data Objects (ADO) TADOConnection

dbExpress TSQLConnection

InterBase Express TIBDatabase

21-2 D e v e l o p e r ’ s G u i d e

U s i n g i m p l i c i t c o n n e c t i o n s

• For information about describing an InterBase Express connection, see the online
help for TIBDatabase.

Although each type of dataset uses a different connection component, they are all
descendants of TCustomConnection. They all perform many of the same tasks and
surface many of the same properties, methods, and events. This chapter discusses
many of these common tasks.

Using implicit connections
No matter what data access mechanism you are using, you can always create the
connection component explicitly and use it to manage the connection to and
communication with a database server. For BDE-enabled and ADO-based datasets,
you also have the option of describing the database connection through properties of
the dataset and letting the dataset generate an implicit connection. For BDE-enabled
datasets, you specify an implicit connection using the DatabaseName property. For
ADO-based datasets, you use the ConnectionString property.

When using an implicit connection, you do not need to explicitly create a connection
component. This can simplify your application development, and the default
connection you specify can cover a wide variety of situations. For complex, mission-
critical client/server applications with many users and different requirements for
database connections, however, you should create your own connection components
to tune each database connection to your application’s needs. Explicit connection
components give you greater control. For example, you need to access the connection
component to perform the following tasks:

• Customize database server login support. (Implicit connections display a default
login dialog to prompt the user for a user name and password.)

• Control transactions and specify transaction isolation levels.

• Execute SQL commands on the server without using a dataset.

• Perform actions on all open datasets that are connected to the same database.

In addition, if you have multiple datasets that all use the same server, it can be easier
to use an connection component, so that you only have to specify the server to use in
one place. That way, if you later change the server, you do not need to update several
dataset components: only the connection component.

Controlling connections
Before you can establish a connection to a database server, your application must
provide certain key pieces of information that describe the desired server. Each type
of connection component surfaces a different set of properties to let you identify the
server. In general, however, they all provide a way for you to name the server you
want and supply a set of connection parameters that control how the connection is
formed. Connection parameters vary from server to server. They can include
information such as user name and password, the maximum size of BLOB fields,
SQL roles, and so on.

C o n n e c t i n g t o d a t a b a s e s 21-3

C o n t r o l l i n g c o n n e c t i o n s

Once you have identified the desired server and any connection parameters, you can
use the connection component to explicitly open or close a connection. The
connection component generates events when it opens or closes a connection that
you can use to customize the response of your application to changes in the database
connection.

Connecting to a database server

There are two ways to connect to a database server using a connection component:

• Call the Open method.

• Set the Connected property to true.

Calling the Open method sets Connected to true.

Note When a connection component is not connected to a server and an application
attempts to open one of its associated datasets, the dataset automatically calls the
connection component’s Open method.

When you set Connected to true, the connection component first generates a
BeforeConnect event, where you can perform any initialization. For example, you can
use this event to alter connection parameters.

After the BeforeConnect event, the connection component may display a default login
dialog, depending on how you choose to control server login. It then passes the user
name and password to the driver, opening a connection.

Once the connection is open, the connection component generates an AfterConnect
event, where you can perform any tasks that require an open connection.

Note Some connection components generate additional events as well when establishing a
connection.

Once a connection is established, it is maintained as long as there is at least one active
dataset using it. When there are no more active datasets, the connection component
drops the connection. Some connection components surface a KeepConnection
property that allows the connection to remain open even if all the datasets that use it
are closed. If KeepConnection is true, the connection is maintained. For connections to
remote database servers, or for applications that frequently open and close datasets,
setting KeepConnection to true reduces network traffic and speeds up the application.
If KeepConnection is false, the connection is dropped when there are no active datasets
using the database. If a dataset that uses the database is later opened, the connection
must be reestablished and initialized.

Disconnecting from a database server

There are two ways to disconnect a server using a connection component:

• Set the Connected property to false.

• Call the Close method.

21-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g s e r v e r l o g i n

Calling Close sets Connected to false.

When Connected is set to false, the connection component generates a BeforeDisconnect
event, where you can perform any cleanup before the connection closes. For example,
you can use this event to cache information about all open datasets before they are
closed.

After the BeforeConnect event, the connection component closes all open datasets and
disconnects from the server.

Finally, the connection component generates an AfterDisconnect event, where you can
respond to the change in connection status, such as enabling a Connect button in
your user interface.

Note Calling Close or setting Connected to false disconnects from a database server even if
the connection component has a KeepConnection property that is true.

Controlling server login
Most remote database servers include security features to prohibit unauthorized
access. Usually, the server requires a user name and password login before
permitting database access.

At design time, if a server requires a login, a standard login dialog box prompts for a
user name and password when you first attempt to connect to the database.

At runtime, there are three ways you can handle a server’s request for a login:

• Let the default login dialog and processes handle the login. This is the default
approach. Set the LoginPrompt property of the connection component to true (the
default) and include DBLogDlg.hpp in the unit that declares the connection
component. Your application displays the standard login dialog box when the
server requests a user name and password.

• Supply the login information before the login attempt. Each type of connection
component uses a different mechanism for specifying the user name and
password:

• For BDE, dbExpress, and InterBase express datasets, the user name and
password connection parameters can be accessed through the Params property.
(For BDE datasets, the parameter values can also be associated with a BDE alias,
while for dbExpress datasets, they can also be associated with a connection
name).

• For ADO datasets, the user name and password can be included in the
ConnectionString property (or provided as parameters to the Open method).

If you specify the user name and password before the server requests them, be
sure to set the LoginPrompt to false, so that the default login dialog does not
appear. For example, the following code sets the user name and password on a

C o n n e c t i n g t o d a t a b a s e s 21-5

C o n t r o l l i n g s e r v e r l o g i n

SQL connection component in the BeforeConnect event handler, decrypting an
encrypted password that is associated with the current connection name:

void __fastcall TForm1::SQLConnectionBeforeConnect(TObject *Sender)
{

if (SQLConnection1->LoginPrompt == false)
{

SQLConnection1->Params->Values["User_Name"] = "SYSDBA";
SQLConnection1->Params->Values["Password"] =

Decrypt(SQLConnection1->Params->Values["Password"]);
}

}

Note that setting the user name and password at design-time or using hard-coded
strings in code causes the values to be embedded in the application’s executable
file. This still leaves them easy to find, compromising server security.

• Provide your own custom handling for the login event. The connection
component generates an event when it needs the user name and password.

• For TDatabase, TSQLConnection, and TIBDatabase, this is an OnLogin event. The
event handler has two parameters, the connection component, and a local copy
of the user name and password parameters in a string list. (TSQLConnection
includes the database parameter as well). You must set the LoginPrompt
property to true for this event to occur. Having a LoginPrompt value of false and
assigning a handler for the OnLogin event creates a situation where it is
impossible to log in to the database because the default dialog does not appear
and the OnLogin event handler never executes.

• For TADOConnection, the event is an OnWillConnect event. The event handler
has five parameters, the connection component and four parameters that return
values to influence the connection (including two for user name and password).
This event always occurs, regardless of the value of LoginPrompt.

Write an event handler for the event in which you set the login parameters. Here is
an example where the values for the USER NAME and PASSWORD parameters
are provided from a global variable (UserName) and a method that returns a
password given a user name (PasswordSearch)

void __fastcall TForm1::Database1Login(TDatabase *Database, TStrings *LoginParams)
{

LoginParams->Values["USER NAME"] = UserName;
LoginParams->Values["PASSWORD"] = PasswordSearch(UserName);

}

As with the other methods of providing login parameters, when writing an
OnLogin or OnWillConnect event handler, avoid hard coding the password in your
application code. It should appear only as an encrypted value, an entry in a secure
database your application uses to look up the value, or be dynamically obtained
from the user.

21-6 D e v e l o p e r ’ s G u i d e

M a n a g i n g t r a n s a c t i o n s

Managing transactions
A transaction is a group of actions that must all be carried out successfully on one or
more tables in a database before they are committed (made permanent). If one of the
actions in the group fails, then all actions are rolled back (undone). By using
transactions, you ensure that the database is not left in an inconsistent state when a
problem occurs completing one of the actions that make up the transaction.

For example, in a banking application, transferring funds from one account to
another is an operation you would want to protect with a transaction. If, after
decrementing the balance in one account, an error occurred incrementing the balance
in the other, you want to roll back the transaction so that the database still reflects the
correct total balance.

It is always possible to manage transactions by sending SQL commands directly to
the database. Most databases provide their own transaction management model,
although some have no transaction support at all. For servers that support it, you
may want to code your own transaction management directly, taking advantage of
advanced transaction management capabilities on a particular database server, such
as schema caching.

If you do not need to use any advanced transaction management capabilities,
connection components provide a set of methods and properties you can use to
manage transactions without explicitly sending any SQL commands. Using these
properties and methods has the advantage that you do not need to customize your
application for each type of database server you use, as long as the server supports
transactions. (The BDE also provides limited transaction support for local tables with
no server transaction support. When not using the BDE, trying to start transactions
on a database that does not support them causes connection components to raise an
exception.)

Warning When a dataset provider component applies updates, it implicitly generates
transactions for any updates. Be careful that any transactions you explicitly start do
not conflict with those generated by the provider.

Starting a transaction

When you start a transaction, all subsequent statements that read from or write to the
database occur in the context of that transaction, until the transaction is explicitly
terminated or (in the case of overlapping transactions) until another transaction is
started. Each statement is considered part of a group. Changes must be successfully
committed to the database, or every change made in the group must be undone.

While the transaction is in process, your view of the data in database tables is
determined by your transaction isolation level. For information about transaction
isolation levels, see “Specifying the transaction isolation level” on page 21-9.

For TADOConnection, start a transaction by calling the BeginTrans method:

Level = ADOConnection1->BeginTrans();

C o n n e c t i n g t o d a t a b a s e s 21-7

M a n a g i n g t r a n s a c t i o n s

BeginTrans returns the level of nesting for the transaction that started. A nested
transaction is one that is nested within another, parent, transaction. After the server
starts the transaction, the ADO connection receives an OnBeginTransComplete event.

For TDatabase, use the StartTransactionmethod instead. TDataBase does not support
nested or overlapped transactions: If you call a TDatabase component’s
StartTransaction method while another transaction is underway, it raises an
exception. To avoid calling StartTransaction, you can check the InTransaction
property:

if (!Database1->InTransaction)
Database1->StartTransaction();

TSQLConnection also uses the StartTransactionmethod, but it uses a version that gives
you a lot more control. Specifically, StartTransaction takes a transaction descriptor,
which lets you manage multiple simultaneous transactions and specify the
transaction isolation level on a per-transaction basis. (For more information on
transaction levels, see “Specifying the transaction isolation level” on page 21-9.) In
order to manage multiple simultaneous transactions, set the TransactionID field of the
transaction descriptor to a unique value. TransactionID can be any value you choose,
as long as it is unique (does not conflict with any other transaction currently
underway). Depending on the server, transactions started by TSQLConnection can be
nested (as they can be when using ADO) or they can be overlapped.

TTransactionDesc TD;
TD.TransactionID = 1;
TD.IsolationLevel = xilREADCOMMITTED;
SQLConnection1->StartTransaction(TD);

By default, with overlapped transactions, the first transaction becomes inactive when
the second transaction starts, although you can postpone committing or rolling back
the first transaction until later. If you are using TSQLConnection with an InterBase
database, you can identify each dataset in your application with a particular active
transaction, by setting its TransactionLevel property. That is, after starting a second
transaction, you can continue to work with both transactions simultaneously, simply
by associating a dataset with the transaction you want.

Note Unlike TADOConnection, TSQLConnection and TDatabase do not receive any events
when the transactions starts.

InterBase express offers you even more control than TSQLConnection by using a
separate transaction component rather than starting transactions using the
connection component. You can, however, use TIBDatabase to start a default
transaction:

if (!IBDatabase1->DefaultTransaction->InTransaction)
IBDatabase1->DefaultTransaction->StartTransaction();

You can have overlapped transactions by using two separate transaction
components. Each transaction component has a set of parameters that let you
configure the transaction. These let you specify the transaction isolation level, as well
as other properties of the transaction.

21-8 D e v e l o p e r ’ s G u i d e

M a n a g i n g t r a n s a c t i o n s

Ending a transaction

Ideally, a transaction should only last as long as necessary. The longer a transaction is
active, the more simultaneous users that access the database, and the more
concurrent, simultaneous transactions that start and end during the lifetime of your
transaction, the greater the likelihood that your transaction will conflict with another
when you attempt to commit any changes.

Ending a successful transaction
When the actions that make up the transaction have all succeeded, you can make the
database changes permanent by committing the transaction. For TDatabase, you
commit a transaction using the Commit method:

MyOracleConnection->Commit();

For TSQLConnection, you also use the Commit method, but you must specify which
transaction you are committing by supplying the transaction descriptor you gave to
the StartTransaction method:

MyOracleConnection->Commit(TD);

For TIBDatabase, you commit a transaction object using its Commit method:

IBDatabase1->DefaultTransaction->Commit();

For TADOConnection, you commit a transaction using the CommitTrans method:

ADOConnection1->CommitTrans();

Note It is possible for a nested transaction to be committed, only to have the changes rolled
back later if the parent transaction is rolled back.

After the transaction is successfully committed, an ADO connection component
receives an OnCommitTransComplete event. Other connection components do not
receive any similar events.

A call to commit the current transaction is usually attempted in a try...catch
statement. That way, if the transaction cannot commit successfully, you can use the
catch block to handle the error and retry the operation or to roll back the transaction.

Ending an unsuccessful transaction
If an error occurs when making the changes that are part of the transaction or when
trying to commit the transaction, you will want to discard all changes that make up
the transaction. Discarding these changes is called rolling back the transaction.

For TDatabase, you roll back a transaction by calling the Rollback method:

MyOracleConnection->Rollback();

For TSQLConnection, you also use the Rollback method, but you must specify which
transaction you are rolling back by supplying the transaction descriptor you gave to
the StartTransaction method:

MyOracleConnection->Rollback(TD);

C o n n e c t i n g t o d a t a b a s e s 21-9

M a n a g i n g t r a n s a c t i o n s

For TIBDatabase, you roll back a transaction object by calling its Rollback method:

IBDatabase1->DefaultTransaction->Rollback();

For TADOConnection, you roll back a transaction by calling the RollbackTrans method:

ADOConnection1->RollbackTrans();

After the transaction is successfully rolled back, an ADO connection component
receives an OnRollbackTransComplete event. Other connection components do not
receive any similar events.

A call to roll back the current transaction usually occurs in

• Exception handling code when you can’t recover from a database error.

• Button or menu event code, such as when a user clicks a Cancel button.

Specifying the transaction isolation level

Transaction isolation level determines how a transaction interacts with other
simultaneous transactions when they work with the same tables. In particular, it
affects how much a transaction “sees” of other transactions’ changes to a table.

Each server type supports a different set of possible transaction isolation levels.
There are three possible transaction isolation levels:

• DirtyRead: When the isolation level is DirtyRead, your transaction sees all changes
made by other transactions, even if they have not been committed. Uncommitted
changes are not permanent, and might be rolled back at any time. This value
provides the least isolation, and is not available for many database servers (such as
Oracle, Sybase, MS-SQL, and InterBase).

• ReadCommitted: When the isolation level is ReadCommitted, only committed
changes made by other transactions are visible. Although this setting protects
your transaction from seeing uncommitted changes that may be rolled back, you
may still receive an inconsistent view of the database state if another transaction is
committed while you are in the process of reading. This level is available for all
transactions except local transactions managed by the BDE.

• RepeatableRead: When the isolation level is RepeatableRead, your transaction is
guaranteed to see a consistent state of the database data. Your transaction sees a
single snapshot of the data. It cannot see any subsequent changes to data by other
simultaneous transactions, even if they are committed. This isolation level
guarantees that once your transaction reads a record, its view of that record will
not change. At this level your transaction is most isolated from changes made by
other transactions. This level is not available on some servers, such as Sybase and
MS-SQL and is unavailable on local transactions managed by the BDE.

In addition, TSQLConnection lets you specify database-specific custom isolation
levels. Custom isolation levels are defined by the dbExpress driver. See you driver
documentation for details.

Note For a detailed description of how each isolation level is implemented, see your server
documentation.

21-10 D e v e l o p e r ’ s G u i d e

S e n d i n g c o m m a n d s t o t h e s e r v e r

TDatabase and TADOConnection let you specify the transaction isolation level by
setting the TransIsolation property. When you set TransIsolation to a value that is not
supported by the database server, you get the next highest level of isolation (if
available). If there is no higher level available, the connection component raises an
exception when you try to start a transaction.

When using TSQLConnection, transaction isolation level is controlled by the
IsolationLevel field of the transaction descriptor.

When using InterBase express, transaction isolation level is controlled by a
transaction parameter.

Sending commands to the server
All database connection components except TIBDatabase let you execute SQL
statements on the associated server by calling the Execute method. Although Execute
can return a cursor when the statement is a SELECT statement, this use is not
recommended. The preferred method for executing statements that return data is to
use a dataset.

The Execute method is very convenient for executing simple SQL statements that do
not return any records. Such statements include Data Definition Language (DDL)
statements, which operate on or create a database’s metadata, such as CREATE
INDEX, ALTER TABLE, and DROP DOMAIN. Some Data Manipulation Language
(DML) SQL statements also do not return a result set. The DML statements that
perform an action on data but do not return a result set are: INSERT, DELETE, and
UPDATE.

The syntax for the Execute method varies with the connection type:

• For TDatabase, Execute takes four parameters: an AnsiString that specifies a single
SQL statement that you want to execute, a TParams object that supplies any
parameter values for that statement, a boolean that indicates whether the
statement should be cached because you will call it again, and a pointer to a BDE
cursor that can be returned (It is recommended that you pass NULL).

• For TADOConnection, there are two versions of Execute. The first takes a
WideString that specifies the SQL statement and a second parameter that specifies
a set of options that control whether the statement is executed asynchronously and
whether it returns any records. This first syntax returns an interface for the
returned records. The second syntax takes a WideString that specifies the SQL
statement, a second parameter that returns the number of records affected when
the statement executes, and a third that specifies options such as whether the
statement executes asynchronously. Note that neither syntax provides for passing
parameters.

• For TSQLConnection, Execute takes three parameters: an AnsiString that specifies a
single SQL statement that you want to execute, a TParams object that supplies any
parameter values for that statement, and a pointer that can receive a
TCustomSQLDataSet that is created to return records NULL.

C o n n e c t i n g t o d a t a b a s e s 21-11

S e n d i n g c o m m a n d s t o t h e s e r v e r

Note Execute can only execute one SQL statement at a time. It is not possible to execute
multiple SQL statements with a single call to Execute, as you can with SQL scripting
utilities. To execute more than one statement, call Execute repeatedly.

It is relatively easy to execute a statement that does not include any parameters. For
example, the following code executes a CREATE TABLE statement (DDL) without
any parameters on a TSQLConnection component:

void __fastcall TDataForm::CreateTableButtonClick(TObject *Sender)
{

SQLConnection1->Connected = true;
AnsiString SQLstmt = "CREATE TABLE NewCusts " +

"(" +
" CustNo INTEGER, " +
" Company CHAR(40), " +
" State CHAR(2), " +
" PRIMARY KEY (CustNo) " +
")";

SQLConnection1->Execute(SQLstmt, NULL, NULL);
}

To use parameters, you must create a TParams object. For each parameter value, use
the TParams::CreateParam method to add a TParam object. Then use properties of
TParam to describe the parameter and set its value.

This process is illustrated in the following example, which uses TDatabase to execute
an INSERT statement. The INSERT statement has a single parameter named
:StateParam. A TParams object (called stmtParams) is created to supply a value of
“CA” for that parameter.

void __fastcall TForm1::INSERT_WithParamsButtonClick(TObject *Sender)
{

AnsiString SQLstmt;
TParams *stmtParams = new TParams;
try
{

Database1->Connected = true;
stmtParams->CreateParam(ftString, "StateParam", ptInput);
stmtParams->ParamByName("StateParam")->AsString = "CA";
SQLstmt = "INSERT INTO 'Custom.db' ";
SQLstmt += "(CustNo, Company, State) ";
SQLstmt += "VALUES (7777, 'Robin Dabank Consulting', :StateParam)";
Database1->Execute(SQLstmt, stmtParams, false, NULL);

}
__finally
{

delete stmtParams;
}

}

If the SQL statement includes a parameter but you do not supply a TParam object to
provide its value, the SQL statement may cause an error when executed (this
depends on the particular database back-end used). If a TParam object is provided
but there is no corresponding parameter in the SQL statement, an exception is
thrown when the application attempts to use the TParam.

21-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h a s s o c i a t e d d a t a s e t s

Working with associated datasets
All database connection components maintain a list of all datasets that use them to
connect to a database. A connection component uses this list, for example, to close all
of the datasets when it closes the database connection.

You can use this list as well, to perform actions on all the datasets that use a specific
connection component to connect to a particular database.

Closing all datasets without disconnecting from the server

The connection component automatically closes all datasets when you close its
connection. There may be times, however, when you want to close all datasets
without disconnecting from the database server.

To close all open datasets without disconnecting from a server, you can use the
CloseDataSets method.

For TADOConnection and TIBDatabase, calling CloseDataSets always leaves the
connection open. For TDatabase and TSQLConnection, you must also set the
KeepConnection property to true.

Iterating through the associated datasets

To perform any actions (other than closing them all) on all the datasets that use a
connection component, use the DataSets and DataSetCount properties. DataSets is an
indexed array of all datasets that are linked to the connection component. For all
connection components except TADOConnection, this list includes only the active
datasets. TADOConnection lists the inactive datasets as well. DataSetCount is the
number of datasets in this array.

Note When you use a specialized client dataset to cache updates (as opposed to the generic
client dataset, TClientDataSet), the DataSets property lists the internal dataset owned
by the client dataset, not the client dataset itself.

You can use DataSets with DataSetCount to cycle through all currently active datasets
in code. For example, the following code cycles through all active datasets and
disables any controls that use the data they provide:

for (int i = 0; i < MyDBConnection->DataSetCount; i++)
MyDBConnection->DataSets[i]->DisableControls();

Note TADOConnection supports command objects as well as datasets. You can iterate
through these much like you iterate through the datasets, by using the Commands and
CommandCount properties.

C o n n e c t i n g t o d a t a b a s e s 21-13

O b t a i n i n g m e t a d a t a

Obtaining metadata
All database connection components can retrieve lists of metadata on the database
server, although they vary in the types of metadata they retrieve. The methods that
retrieve metadata fill a string list with the names of various entities available on the
server. You can then use this information, for example, to let your users dynamically
select a table at runtime.

You can use a TADOConnection component to retrieve metadata about the tables and
stored procedures available on the ADO data store. You can then use this
information, for example, to let your users dynamically select a table or stored
procedure at runtime.

Listing available tables

The GetTableNames method copies a list of table names to an already-existing string
list object. This can be used, for example, to fill a list box with table names that the
user can then use to choose a table to open. The following line fills a listbox with the
names of all tables on the database:

MyDBConnection->GetTableNames(ListBox1->Items, false);

GetTableNames has two parameters: the string list to fill with table names, and a
boolean that indicates whether the list should include system tables, or ordinary
tables. Note that not all servers use system tables to store metadata, so asking for
system tables may result in an empty list.

Note For most database connection components, GetTableNames returns a list of all
available non-system tables when the second parameter is false. For TSQLConnection,
however, you have more control over what type is added to the list when you are not
fetching only the names of system tables. When using TSQLConnection, the types of
names added to the list are controlled by the TableScope property. TableScope indicates
whether the list should contain any or all of the following: ordinary tables, system
tables, synonyms, and views.

Listing the fields in a table

The GetFieldNames method fills an existing string list with the names of all fields
(columns) in a specified table. GetFieldNames takes two parameters, the name of the
table for which you want to list the fields, and an existing string list to be filled with
field names:

MyDBConnection->GetTableNames("Employee", ListBox1->Items);

21-14 D e v e l o p e r ’ s G u i d e

O b t a i n i n g m e t a d a t a

Listing available stored procedures

To get a listing of all of the stored procedures contained in the database, use the
GetProcedureNamesmethod. This method takes a single parameter: an already-
existing string list to fill:

MyDBConnection->GetProcedureNames(ListBox1->Items);

Note GetProcedureNames is only available for TADOConnection and TSQLConnection.

Listing available indexes

To get a listing of all indexes defined for a specific table, use the GetIndexNames
method. This method takes two parameters: the table whose indexes you want, and
an already-existing string list to fill:

MyDBConnection1->GetIndexNames("Employee", ListBox1->Items);

Note GetIndexNames is only available for TSQLConnection, although most table-type
datasets have an equivalent method.

Listing stored procedure parameters

To get a list of all parameters defined for a specific stored procedure, use the
GetProcedureParams method. GetProcedureParams fills a TList object with pointers to
parameter description structures, where each structure describes a parameter of a
specified stored procedure, including its name, index, parameter type, field type, and
so on.

GetProcedureParams takes two parameters: the name of the stored procedure, and an
already-existing TList object to fill:

MyDBConnection1->GetIndexNames("GetInterestRate", List1);

To convert the parameter descriptions that are added to the list into the more familiar
TParams object, call the global LoadParamListItemsprocedure. Because
GetProcedureParams dynamically allocates the individual structures, your application
must free them when it is finished with the information. The global FreeProcParams
routine can do this for you.

Note GetProcedureParams is only available for TSQLConnection.

U n d e r s t a n d i n g d a t a s e t s 22-1

C h a p t e r

22
Chapter22Understanding datasets

The fundamental unit for accessing data is the dataset family of objects. Your
application uses datasets for all database access. A dataset object represents a set of
records from a database organized into a logical table. These records may be the
records from a single database table, or they may represent the results of executing a
query or stored procedure.

All dataset objects that you use in your database applications descend from TDataSet,
and they inherit data fields, properties, events, and methods from this class. This
chapter describes the functionality of TDataSet that is inherited by the dataset objects
you use in your database applications. You need to understand this shared
functionality to use any dataset object.

TDataSet is a virtualized dataset, meaning that many of its properties and methods
are virtual or pure virtual. A virtual method is a function or procedure declaration
where the implementation of that method can be (and usually is) overridden in
descendant objects. A pure virtual method is a function or procedure declaration
without an actual implementation. The declaration is a prototype that describes the
method (and its parameters and return type, if any) that must be implemented in all
descendant dataset objects, but that might be implemented differently by each of
them.

Because TDataSet contains pure virtual methods, you cannot use it directly in an
application without generating a runtime error. Instead, you either create instances
of the built-in TDataSet descendants and use them in your application, or you derive
your own dataset object from TDataSet or its descendants and write implementations
for all its pure virtual methods.

TDataSet defines much that is common to all dataset objects. For example, TDataSet
defines the basic structure of all datasets: an array of TField components that
correspond to actual columns in one or more database tables, lookup fields provided
by your application, or calculated fields provided by your application. For
information about TField components, see Chapter 23, “Working with field
components.”

22-2 D e v e l o p e r ’ s G u i d e

U s i n g T D a t a S e t d e s c e n d a n t s

This chapter describes how to use the common database functionality introduced by
TDataSet. Bear in mind, however, that although TDataSet introduces the methods for
this functionality, not all TDataSet dependants implement them. In particular,
unidirectional datasets implement only a limited subset.

Using TDataSet descendants
TDataSet has several immediate descendants, each of which corresponds to a
different data access mechanism. You do not work directly with any of these
descendants. Rather, each descendant introduces the properties and methods for
using a particular data access mechanism. These properties and methods are then
exposed by descendant classes that are adapted to different types of server data. The
immediate descendants of TDataSet include

• TBDEDataSet, which uses the Borland Database Engine (BDE) to communicate
with the database server. The TBDEDataSet descendants you use are TTable,
TQuery, TStoredProc, and TNestedTable. The unique features of BDE-enabled
datasets are described in Chapter 24, “Using the Borland Database Engine.”

• TCustomADODataSet, which uses ActiveX Data Objects (ADO) to communicate
with an OLEDB data store. The TCustomADODataSet descendants you use are
TADODataSet, TADOTable, TADOQuery, and TADOStoredProc. The unique
features of ADO-based datasets are described in Chapter 25, “Working with ADO
components.”

• TCustomSQLDataSet, which uses dbExpress to communicate with a database
server. The TCustomSQLDataSet descendants you use are TSQLDataSet,
TSQLTable, TSQLQuery, and TSQLStoredProc. The unique features of dbExpress
datasets are described in Chapter 26, “Using unidirectional datasets.”

• TIBCustomDataSet, which communicates directly with an InterBase database
server. The TIBCustomDataSet descendants you use are TIBDataSet, TIBTable,
TIBQuery, and TIBStoredProc.

• TCustomClientDataSet, which represents the data from another dataset component
or the data from a dedicated file on disk. The TCustomClientDataSet descendants
you use are TClientDataSet, which can connect to an external (source) dataset, and
the client datasets that are specialized to a particular data access mechanism
(TBDEClientDataSet, TSQLClientDataSet, and TIBClientDataSet), which use an
internal source dataset. The unique features of client datasets are described in
Chapter 27, “Using client datasets.”

Some pros and cons of the various data access mechanisms employed by these
TDataSet descendants are described in “Using databases” on page 18-1.

In addition to the built-in datasets, you can create your own custom TDataSet
descendants — for example to supply data from a process other than a database
server, such as a spreadsheet. Writing custom datasets allows you the flexibility of
managing the data using any method you choose, while still letting you use the VCL
data controls to build your user interface. For more information about creating
custom components, see Chapter 45, “Overview of component creation.”

U n d e r s t a n d i n g d a t a s e t s 22-3

D e t e r m i n i n g d a t a s e t s t a t e s

Although each TDataSet descendant has its own unique properties and methods,
some of the properties and methods introduced by descendant classes are the same
as those introduced by other descendant classes that use another data access
mechanism. For example, there are similarities between the “table” components
(TTable, TADOTable, TSQLTable, and TIBTable). For information about the
commonalities introduced by TDataSet descendants, see “Types of datasets” on
page 22-23.

Determining dataset states
The state—or mode—of a dataset determines what can be done to its data. For
example, when a dataset is closed, its state is dsInactive, meaning that nothing can be
done to its data. At runtime, you can examine a dataset’s read-only State property to
determine its current state. The following table summarizes possible values for the
State property and what they mean:

Table 22.1 Values for the dataset State property

Value State Meaning

dsInactive Inactive DataSet closed. Its data is unavailable.

dsBrowse Browse DataSet open. Its data can be viewed, but not changed. This is
the default state of an open dataset.

dsEdit Edit DataSet open. The current row can be modified. (not supported
on unidirectional datasets)

dsInsert Insert DataSet open. A new row is inserted or appended. (not
supported on unidirectional datasets)

dsSetKey SetKey DataSet open. Enables setting of ranges and key values used for
ranges and GotoKey operations. (not supported by all datasets)

dsCalcFields CalcFields DataSet open. Indicates that an OnCalcFields event is under way.
Prevents changes to fields that are not calculated.

dsCurValue CurValue DataSet open. Indicates that the CurValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsNewValue NewValue DataSet open. Indicates that the NewValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsOldValue OldValue DataSet open. Indicates that the OldValue property of fields is
being fetched for an event handler that responds to errors in
applying cached updates.

dsFilter Filter DataSet open. Indicates that a filter operation is under way. A
restricted set of data can be viewed, and no data can be changed.
(not supported on unidirectional datasets)

22-4 D e v e l o p e r ’ s G u i d e

O p e n i n g a n d c l o s i n g d a t a s e t s

Typically, an application checks the dataset state to determine when to perform
certain tasks. For example, you might check for the dsEdit or dsInsert state to ascertain
whether you need to post updates.

Note Whenever a dataset’s state changes, the OnStateChange event is called for any data
source components associated with the dataset. For more information about data
source components and OnStateChange, see “Responding to changes mediated by the
data source” on page 19-4.

Opening and closing datasets
To read or write data in a dataset, an application must first open it. You can open a
dataset in two ways,

• Set the Active property of the dataset to true, either at design time in the Object
Inspector, or in code at runtime:

CustTable->Active = true;

• Call the Open method for the dataset at runtime,

CustQuery->Open();

When you open the dataset, the dataset first receives a BeforeOpen event, then it opens
a cursor, populating itself with data, and finally, it receives an AfterOpen event.

The newly-opened dataset is in browse mode, which means your application can
read the data and navigate through it.

You can close a dataset in two ways,

• Set the Active property of the dataset to false, either at design time in the Object
Inspector, or in code at runtime,

CustQuery->Active = false;

• Call the Close method for the dataset at runtime,

CustTable->Close();

Just as the dataset receives BeforeOpen and AfterOpen events when you open it, it
receives a BeforeClose and AfterClose event when you close it. handlers that respond to
the Close method for a dataset. You can use these events, for example, to prompt the

dsBlockRead Block Read DataSet open. Data-aware controls are not updated and events
are not triggered when the current record changes.

dsInternalCalc Internal Calc DataSet open. An OnCalcFields event is underway for calculated
values that are stored with the record. (client datasets only)

dsOpening Opening DataSet is in the process of opening but has not finished. This
state occurs when the dataset is opened for asynchronous
fetching.

Table 22.1 Values for the dataset State property (continued)

Value State Meaning

U n d e r s t a n d i n g d a t a s e t s 22-5

N a v i g a t i n g d a t a s e t s

user to post pending changes or cancel them before closing the dataset. The following
code illustrates such a handler:

void __fastcall TForm1::VerifyBeforeClose(TDataSet *DataSet)
{
 if (DataSet->State == dsEdit || DataSet->State == dsInsert)
 {
 TMsgDlgButtons btns;
 btns << mbYes << mbNo;
 if (MessageDlg(“Post changes before closing?”, mtConfirmation, btns, 0) == mrYes)
 DataSet->Post();
 else
 DataSet->Cancel();
 }
}

Note You may need to close a dataset when you want to change certain of its properties,
such as TableName on a TTable component. When you reopen the dataset, the new
property value takes effect.

Navigating datasets
Each active dataset has a cursor, or pointer, to the current row in the dataset. The
current row in a dataset is the one whose field values currently show in single-field,
data-aware controls on a form, such as TDBEdit, TDBLabel, and TDBMemo. If the
dataset supports editing, the current record contains the values that can be
manipulated by edit, insert, and delete methods.

You can change the current row by moving the cursor to point at a different row. The
following table lists methods you can use in application code to move to different
records:

The data-aware, visual component TDBNavigator encapsulates these methods as
buttons that users can click to move among records at runtime. For information
about the navigator component, see “Navigating and manipulating records” on
page 19-28.

Whenever you change the current record using one of these methods (or by other
methods that navigate based on a search criterion), the dataset receives two events:
BeforeScroll (before leaving the current record) and AfterScroll (after arriving at the

Table 22.2 Navigational methods of datasets

Method Moves the cursor to

First The first row in a dataset.

Last The last row in a dataset. (not available for unidirectional datasets)

Next The next row in a dataset.

Prior The previous row in a dataset. (not available for unidirectional datasets)

MoveBy A specified number of rows forward or back in a dataset.

22-6 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

new record). You can use these events to update your user interface (for example, to
update a status bar that indicates information about the current record).

TDataSet also defines two boolean properties that provide useful information when
iterating through the records in a dataset.

Using the First and Last methods

The First method moves the cursor to the first row in a dataset and sets the Bof
property to true. If the cursor is already at the first row in the dataset, First does
nothing.

For example, the following code moves to the first record in CustTable:

CustTable->First();

The Last method moves the cursor to the last row in a dataset and sets the Eof
property to true. If the cursor is already at the last row in the dataset, Last does
nothing.

The following code moves to the last record in CustTable:

CustTable->Last();

Note The Last method raises an exception in unidirectional datasets.

Tip While there may be programmatic reasons to move to the first or last rows in a
dataset without user intervention, you can also enable your users to navigate from
record to record using the TDBNavigator component. The navigator component
contains buttons that, when active and visible, enable a user to move to the first and
last rows of an active dataset. The OnClick events for these buttons call the First and
Last methods of the dataset. For more information about making effective use of the
navigator component, see “Navigating and manipulating records” on page 19-28.

Using the Next and Prior methods

The Next method moves the cursor forward one row in the dataset and sets the Bof
property to false if the dataset is not empty. If the cursor is already at the last row in
the dataset when you call Next, nothing happens.

For example, the following code moves to the next record in CustTable:

CustTable->Next();

Table 22.3 Navigational properties of datasets

Property Description

Bof (Beginning-of-file) true: the cursor is at the first row in the dataset.
false: the cursor is not known to be at the first row in the dataset

Eof (End-of-file) true: the cursor is at the last row in the dataset.
false: the cursor is not known to be at the first row in the dataset

U n d e r s t a n d i n g d a t a s e t s 22-7

N a v i g a t i n g d a t a s e t s

The Prior method moves the cursor back one row in the dataset, and sets Eof to false
if the dataset is not empty. If the cursor is already at the first row in the dataset when
you call Prior, Prior does nothing.

For example, the following code moves to the previous record in CustTable:

CustTable->Prior();

Note The Prior method raises an exception in unidirectional datasets.

Using the MoveBy method

MoveBy lets you specify how many rows forward or back to move the cursor in a
dataset. Movement is relative to the current record at the time that MoveBy is called.
MoveBy also sets the Bof and Eof properties for the dataset as appropriate.

This function takes an integer parameter, the number of records to move. Positive
integers indicate a forward move and negative integers indicate a backward move.

Note MoveBy raises an exception in unidirectional datasets if you use a negative argument.

MoveBy returns the number of rows it moves. If you attempt to move past the
beginning or end of the dataset, the number of rows returned by MoveBy differs from
the number of rows you requested to move. This is because MoveBy stops when it
reaches the first or last record in the dataset.

The following code moves two records backward in CustTable:

CustTable->MoveBy(-2);

Note If your application uses MoveBy in a multi-user database environment, keep in mind
that datasets are fluid. A record that was five records back a moment ago may now
be four, six, or even an unknown number of records back if several users are
simultaneously accessing the database and changing its data.

Using the Eof and Bof properties

Two read-only, runtime properties, Eof (End-of-file) and Bof (Beginning-of-file), are
useful when you want to iterate through all records in a dataset.

Eof
When Eof is true, it indicates that the cursor is unequivocally at the last row in a
dataset. Eof is set to true when an application

• Opens an empty dataset.

• Calls a dataset’s Last method.

• Calls a dataset’s Next method, and the method fails (because the cursor is
currently at the last row in the dataset.

• Calls SetRange on an empty range or dataset.

Eof is set to false in all other cases; you should assume Eof is false unless one of the
conditions above is met and you test the property directly.

22-8 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a t a s e t s

Eof is commonly tested in a loop condition to control iterative processing of all
records in a dataset. If you open a dataset containing records (or you call First) Eof is
false. To iterate through the dataset a record at a time, create a loop that steps
through each record by calling Next, and terminates when Eof is true. Eof remains
false until you call Next when the cursor is already on the last record.

The following code illustrates one way you might code a record-processing loop for a
dataset called CustTable:

CustTable->DisableControls();
try
{

for (CustTable->First(); !CustTable->Eof; CustTable->Next())
(

// Process each record here
ƒ

}
}
__finally
{

CustTable->EnableControls();
}

Tip This example also shows how to disable and enable data-aware visual controls tied to
a dataset. If you disable visual controls during dataset iteration, it speeds processing
because your application does not need to update the contents of the controls as the
current record changes. After iteration is complete, controls should be enabled again
to update them with values for the new current row. Note that enabling of the visual
controls takes place in the __finally clause of a try...__finally statement. This
guarantees that even if an exception terminates loop processing prematurely,
controls are not left disabled.

Bof
When Bof is true, it indicates that the cursor is unequivocally at the first row in a
dataset. Bof is set to true when an application

• Opens a dataset.

• Calls a dataset’s First method.

• Calls a dataset’s Prior method, and the method fails (because the cursor is
currently at the first row in the dataset.

• Calls SetRange on an empty range or dataset.

Bof is set to false in all other cases; you should assume Bof is false unless one of the
conditions above is met and you test the property directly.

Like Eof, Bof can be in a loop condition to control iterative processing of records in a
dataset. The following code illustrates one way you might code a record-processing
loop for a dataset called CustTable:

CustTable->DisableControls(); // Speed up processing; prevent screen flicker
try
{

while (!CustTable->Bof) // Cycle until Bof is true

U n d e r s t a n d i n g d a t a s e t s 22-9

N a v i g a t i n g d a t a s e t s

(
// Process each record here
ƒ
CustTable->Prior();
// Bof false on success; Bof true when Prior fails on first record

}
}
__finally
{

CustTable->EnableControls();
}

Marking and returning to records

In addition to moving from record to record in a dataset (or moving from one record
to another by a specific number of records), it is often also useful to mark a particular
location in a dataset so that you can return to it quickly when desired. TDataSet
introduces a bookmarking feature that consists of a Bookmark property and five
bookmark methods.

TDataSet implements virtual bookmark methods. While these methods ensure that
any dataset object derived from TDataSet returns a value if a bookmark method is
called, the return values are merely defaults that do not keep track of the current
location. TDataSet descendants vary in the level of support they provide for
bookmarks. None of the dbExpress datasets add any support for bookmarks. ADO
datasets can support bookmarks, depending on the underlying database tables. BDE
datasets, InterBase express datasets, and client datasets always support bookmarks.

The Bookmark property
The Bookmark property indicates which bookmark among any number of bookmarks
in your application is current. Bookmark is a string that identifies the current
bookmark. Each time you add another bookmark, it becomes the current bookmark.

The GetBookmark method
To create a bookmark, you must declare a variable of type TBookmark in your
application, then call GetBookmark to allocate storage for the variable and set its value
to a particular location in a dataset. The TBookmark type is a pointer (void *).

The GotoBookmark and BookmarkValid methods
When passed a bookmark, GotoBookmark moves the cursor for the dataset to the
location specified in the bookmark. Before calling GotoBookmark, you can call
BookmarkValid to determine if the bookmark points to a record. BookmarkValid returns
true if a specified bookmark points to a record.

The CompareBookmarks method
You can also call CompareBookmarks to see if a bookmark you want to move to is
different from another (or the current) bookmark. If the two bookmarks refer to the
same record (or if both are NULL), CompareBookmarks returns 0.

22-10 D e v e l o p e r ’ s G u i d e

S e a r c h i n g d a t a s e t s

The FreeBookmark method
FreeBookmark frees the memory allocated for a specified bookmark when you no
longer need it. You should also call FreeBookmark before reusing an existing
bookmark.

A bookmarking example
The following code illustrates one use of bookmarking:

void DoSomething (const TTable *Tbl)
{

TBookmark Bookmark = Tbl->GetBookmark(); // Allocate memory and assign a value
Tbl->DisableControls(); // Turn off display of records in data controls
try
{

for (Tbl->First(); !Tbl->Eof; Tbl->Next()) // Iterate through each record in table
{

// Do your processing here
ƒ

}
}
__finally
{

Tbl->GotoBookmark(Bookmark);
Tbl->EnableControls(); // Turn on display of records in data controls
Tbl->FreeBookmark(Bookmark); // Deallocate memory for the bookmark

}
}

Before iterating through records, controls are disabled. Should an error occur during
iteration through records, the __finally clause ensures that controls are always
enabled and that the bookmark is always freed even if the loop terminates
prematurely.

Searching datasets
If a dataset is not unidirectional, you can search against it using the Locate and Lookup
methods. These methods enable you to search on any type of columns in any dataset.

Note Some TDataSet descendants introduce an additional family of methods for searching
based on an index. For information about these additional methods, see “Using
Indexes to search for records” on page 22-27.

Using Locate

Locate moves the cursor to the first row matching a specified set of search criteria. In
its simplest form, you pass Locate the name of a column to search, a field value to
match, and an options flag specifying whether the search is case-insensitive or if it
can use partial-key matching. (Partial-key matching is when the criterion string need
only be a prefix of the field value.) For example, the following code moves the cursor

U n d e r s t a n d i n g d a t a s e t s 22-11

S e a r c h i n g d a t a s e t s

to the first row in the CustTable where the value in the Company column is
“Professional Divers, Ltd.”:

TLocateOptions SearchOptions;
SearchOptions.Clear();
SearchOptions << loPartialKey;
bool LocateSuccess = CustTable->Locate(“Company”, “Professional Divers, Ltd.”,

SearchOptions);

If Locate finds a match, the first record containing the match becomes the current
record. Locate returns true if it finds a matching record, false if it does not. If a search
fails, the current record does not change.

The real power of Locate comes into play when you want to search on multiple
columns and specify multiple values to search for. Search values are Variants, which
means you can specify different data types in your search criteria. To specify
multiple columns in a search string, separate individual items in the string with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array in code using the VarArrayOf
function. The following code illustrates a search on multiple columns using multiple
search values and partial-key matching:

TLocateOptions Opts;
Opts.Clear();
Opts << loPartialKey;
Variant locvalues[2];
locvalues[0] = Variant(“Sight Diver”);
locvalues[1] = Variant(“P”);
CustTable->Locate(“Company;Contact”, VarArrayOf(locvalues, 1), Opts);

Locate uses the fastest possible method to locate matching records. If the columns to
search are indexed and the index is compatible with the search options you specify,
Locate uses the index.

Using Lookup

Lookup searches for the first row that matches specified search criteria. If it finds a
matching row, it forces the recalculation of any calculated fields and lookup fields
associated with the dataset, then returns one or more fields from the matching row.
Lookup does not move the cursor to the matching row; it only returns values from it.

In its simplest form, you pass Lookup the name of field to search, the field value to
match, and the field or fields to return. For example, the following code looks for the
first record in the CustTable where the value of the Company field is “Professional
Divers, Ltd.”, and returns the company name, a contact person, and a phone number
for the company:

Variant LookupResults = CustTable->Lookup(“Company”, “Professional Divers, Ltd”,
“Company;Contact;Phone”);

22-12 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Lookup returns values for the specified fields from the first matching record it finds.
Values are returned as Variants. If more than one return value is requested, Lookup
returns a Variant array. If there are no matching records, Lookup returns a Null
Variant. For more information about Variant arrays, see the online help.

The real power of Lookup comes into play when you want to search on multiple
columns and specify multiple values to search for. To specify strings containing
multiple columns or result fields, separate individual fields in the string items with
semicolons.

Because search values are Variants, if you pass multiple values, you must either pass
a Variant array as an argument (for example, the return values from the Lookup
method), or you must construct the Variant array in code using the VarArrayOf
function. The following code illustrates a lookup search on multiple columns:

Variant LookupResults;
Variant locvalues[2];
Variant v;

locvalues[0] = Variant(“Sight Diver”);
locvalues[1] = Variant(“Kato Paphos”);
LookupResults = CustTable->Lookup(“Company;City”, VarArrayOf(locvalues, 1),

“Company;Addr1;Addr2;State;Zip”);
// now put the results in a global stringlist (created elsewhere)
pFieldValues->Clear();
for (int i = 0; i < 5; i++) // Lookup call requested 5 fields
{
 v = LookupResults.GetElement(i);
 if (v.IsNull())
 pFieldValues->Add(““);
 else
 pFieldValues->Add(v);
}

Like Locate, Lookup uses the fastest possible method to locate matching records. If the
columns to search are indexed, Lookup uses the index.

Displaying and editing a subset of data using filters
An application is frequently interested in only a subset of records from a dataset. For
example, you may be interested in retrieving or viewing only those records for
companies based in California in your customer database, or you may want to find a
record that contains a particular set of field values. In each case, you can use filters to
restrict an application’s access to a subset of all records in the dataset.

With unidirectional datasets, you can only limit the records in the dataset by using a
query that restricts the records in the dataset. With other TDataSet descendants,
however, you can define a subset of the data that has already been fetched. To restrict
an application’s access to a subset of all records in the dataset, you can use filters.

A filter specifies conditions a record must meet to be displayed. Filter conditions can
be stipulated in a dataset’s Filter property or coded into its OnFilterRecord event
handler. Filter conditions are based on the values in any specified number of fields in

U n d e r s t a n d i n g d a t a s e t s 22-13

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

a dataset, regardless of whether those fields are indexed. For example, to view only
those records for companies based in California, a simple filter might require that
records contain a value in the State field of “CA”.

Note Filters are applied to every record retrieved in a dataset. When you want to filter
large volumes of data, it may be more efficient to use a query to restrict record
retrieval, or to set a range on an indexed table rather than using filters.

Enabling and disabling filtering

Enabling filters on a dataset is a three step process:

1 Create a filter.
2 Set filter options for string-based filter tests, if necessary.
3 Set the Filtered property to true.

When filtering is enabled, only those records that meet the filter criteria are available
to an application. Filtering is always a temporary condition. You can turn off filtering
by setting the Filtered property to false.

Creating filters

There are two ways to create a filter for a dataset:

• Specify simple filter conditions in the Filter property. Filter is especially useful for
creating and applying filters at runtime.

• Write an OnFilterRecord event handler for simple or complex filter conditions.
With OnFilterRecord, you specify filter conditions at design time. Unlike the Filter
property, which is restricted to a single string containing filter logic, an
OnFilterRecord event can take advantage of branching and looping logic to create
complex, multi-level filter conditions.

The main advantage to creating filters using the Filter property is that your
application can create, change, and apply filters dynamically, (for example, in
response to user input). Its main disadvantages are that filter conditions must be
expressible in a single text string, cannot make use of branching and looping
constructs, and cannot test or compare its values against values not already in the
dataset.

The strengths of the OnFilterRecord event are that a filter can be complex and
variable, can be based on multiple lines of code that use branching and looping
constructs, and can test dataset values against values outside the dataset, such as the
text in an edit box. The main weakness of using OnFilterRecord is that you set the
filter at design time and it cannot be modified in response to user input. (You can,
however, create several filter handlers and switch among them in response to general
application conditions.)

The following sections describe how to create filters using the Filter property and the
OnFilterRecord event handler.

22-14 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Setting the Filter property
To create a filter using the Filter property, set the value of the property to a string that
contains the filter’s test condition. For example, the following statement creates a
filter that tests a dataset’s State field to see if it contains a value for the state of
California:

Dataset1->Filter = “State = ‘CA’”;

You can also supply a value for Filter based on text supplied by the user. For
example, the following statement assigns the text in from edit box to Filter:

Dataset1->Filter = Edit1->Text;

You can, of course, create a string based on both hard-coded text and user-supplied
data:

Dataset1->Filter = AnsiString(“State = ‘”) + Edit1->Text + “‘”;

Blank field values do not appear unless they are explicitly included in the filter:

Dataset1->Filter = “State <> ‘CA’ or State = BLANK”;

Note After you specify a value for Filter, to apply the filter to the dataset, set the Filtered
property to true.

Filters can compare field values to literals and to constants using the following
comparison and logical operators:

By using combinations of these operators, you can create fairly sophisticated filters.
For example, the following statement checks to make sure that two test conditions
are met before accepting a record for display:

(Custno > 1400) AND (Custno < 1500);

Table 22.4 Comparison and logical operators that can appear in a filter

Operator Meaning

< Less than

> Greater than

>= Greater than or equal to

<= Less than or equal to

= Equal to

<> Not equal to

AND Tests two statements are both true

NOT Tests that the following statement is not true

OR Tests that at least one of two statements is true

+ Adds numbers, concatenates strings, adds numbers to date/time values (only
available for some drivers)

- Subtracts numbers, subtracts dates, or subtracts a number from a date (only
available for some drivers)

* Multiplies two numbers (only available for some drivers)

/ Divides two numbers (only available for some drivers)

* wildcard for partial comparisons (FilterOptions must include foPartialCompare)

U n d e r s t a n d i n g d a t a s e t s 22-15

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

Note When filtering is on, user edits to a record may mean that the record no longer meets
a filter’s test conditions. The next time the record is retrieved from the dataset, it may
therefore “disappear.” If that happens, the next record that passes the filter condition
becomes the current record.

Writing an OnFilterRecord event handler
You can write code to filter records using the OnFilterRecord events generated by the
dataset for each record it retrieves. This event handler implements a test that
determines if a record should be included in those that are visible to the application.

To indicate whether a record passes the filter condition, your OnFilterRecord handler
sets its Accept parameter to true to include a record, or false to exclude it. For
example, the following filter displays only those records with the State field set to
“CA”:

void __fastcall TForm1::Table1FilterRecord(TDataSet *DataSet; bool &Accept)
{

Accept = DataSet->FieldByName[“State”]->AsString == “CA”;
}

When filtering is enabled, an OnFilterRecord event is generated for each record
retrieved. The event handler tests each record, and only those that meet the filter’s
conditions are displayed. Because the OnFilterRecord event is generated for every
record in a dataset, you should keep the event handler as tightly coded as possible to
avoid adversely affecting the performance.

Switching filter event handlers at runtime
You can code any number of OnFilterRecord event handlers and switch among them
at runtime. For example, the following statements switch to an OnFilterRecord event
handler called NewYorkFilter:

DataSet1->OnFilterRecord = NewYorkFilter;
Refresh();

Setting filter options

The FilterOptions property lets you specify whether a filter that compares string-
based fields accepts records based on partial comparisons and whether string
comparisons are case-sensitive. FilterOptions is a set property that can be an empty set
(the default), or that can contain either or both of the following values:

Table 22.5 FilterOptions values

Value Meaning

foCaseInsensitive Ignore case when comparing strings.

foNoPartialCompare Disable partial string matching; that is, don’t match strings that end with
an asterisk (*).

22-16 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g a n d e d i t i n g a s u b s e t o f d a t a u s i n g f i l t e r s

For example, the following statements set up a filter that ignores case when
comparing values in the State field:

TFilterOptions FilterOptions;
FilterOptions->Clear();
FilterOptions << foCaseInsensitive;
Table1->FilterOptions = FilterOptions;
Table1->Filter = “State = 'CA'”;

Navigating records in a filtered dataset

There are four dataset methods that navigate among records in a filtered dataset. The
following table lists these methods and describes what they do:

For example, the following statement finds the first filtered record in a dataset:

DataSet1->FindFirst();

Provided that you set the Filter property or create an OnFilterRecord event handler for
your application, these methods position the cursor on the specified record
regardless of whether filtering is currently enabled. If you call these methods when
filtering is not enabled, then they

• Temporarily enable filtering.
• Position the cursor on a matching record if one is found.
• Disable filtering.

Note If filtering is disabled and you do not set the Filter property or create an
OnFilterRecord event handler, these methods do the same thing as First(), Last(),
Next(), and Prior().

All navigational filter methods position the cursor on a matching record (if one is
found), make that record the current one, and return true. If a matching record is not
found, the cursor position is unchanged, and these methods return false. You can
check the status of the Found property to wrap these calls, and only take action when
Found is true. For example, if the cursor is already on the last matching record in the
dataset and you call FindNext, the method returns false, and the current record is
unchanged.

Table 22.6 Filtered dataset navigational methods

Method Purpose

FindFirst Move to the first record that matches the current filter criteria. The search for the
first matching record always begins at the first record in the unfiltered dataset.

FindLast Move to the last record that matches the current filter criteria.

FindNext Moves from the current record in the filtered dataset to the next one.

FindPrior Move from the current record in the filtered dataset to the previous one.

U n d e r s t a n d i n g d a t a s e t s 22-17

M o d i f y i n g d a t a

Modifying data
You can use the following dataset methods to insert, update, and delete data if the
read-only CanModify property is true. CanModify is true unless the dataset is
unidirectional, the database underlying the dataset does not permit read and write
privileges, or some other factor intervenes. (Intervening factors include the ReadOnly
property on some datasets or the RequestLive property on TQuery components.)

Editing records

A dataset must be in dsEdit mode before an application can modify records. In your
code you can use the Edit method to put a dataset into dsEdit mode if the read-only
CanModify property for the dataset is true.

When a dataset transitions to dsEdit mode, it first receives a BeforeEdit event. After the
transition to edit mode is successfully completed, the dataset receives an AfterEdit
event. Typically, these events are used for updating the user interface to indicate the
current state of the dataset. If the dataset can’t be put into edit mode for some reason,
an OnEditError event occurs, where you can inform the user of the problem or try to
correct the situation that prevented the dataset from entering edit mode.

On forms in your application, some data-aware controls can automatically put a
dataset into dsEdit state if

• The control’s ReadOnly property is false (the default),
• The AutoEdit property of the data source for the control is true, and
• CanModify is true for the dataset.

Note Even if a dataset is in dsEdit state, editing records may not succeed for SQL-based
databases if your application’s user does not have proper SQL access privileges.

Once a dataset is in dsEdit mode, a user can modify the field values for the current
record that appears in any data-aware controls on a form. Data-aware controls for
which editing is enabled automatically call Post when a user executes any action that
changes the current record (such as moving to a different record in a grid).

If you have a navigator component on your form, users can cancel edits by clicking
the navigator’s Cancel button. Canceling edits returns a dataset to dsBrowse state.

Table 22.7 Dataset methods for inserting, updating, and deleting data

Method Description

Edit Puts the dataset into dsEdit state if it is not already in dsEdit or dsInsert states.

Append Posts any pending data, moves current record to the end of the dataset, and puts the
dataset in dsInsert state.

Insert Posts any pending data, and puts the dataset in dsInsert state.

Post Attempts to post the new or altered record to the database. If successful, the dataset
is put in dsBrowse state; if unsuccessful, the dataset remains in its current state.

Cancel Cancels the current operation and puts the dataset in dsBrowse state.

Delete Deletes the current record and puts the dataset in dsBrowse state.

22-18 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

In code, you must write or cancel edits by calling the appropriate methods. You write
changes by calling Post. You cancel them by calling Cancel. In code, Edit and Post are
often used together. For example,

Table1->Edit();
Table1->FieldValues[“CustNo”] = 1234;
Table1->Post();

In the previous example, the first line of code places the dataset in dsEdit mode. The
next line of code assigns the number 1234 to the CustNo field of the current record.
Finally, the last line writes, or posts, the modified record. If you are not caching
updates, posting writes the change back to the database. If you are caching updates,
the change is written to a temporary buffer, where it stays until the dataset’s
ApplyUpdates method is called.

Adding new records

A dataset must be in dsInsert mode before an application can add new records. In
code, you can use the Insert or Append methods to put a dataset into dsInsert mode if
the read-only CanModify property for the dataset is true.

When a dataset transitions to dsInsert mode, it first receives a BeforeInsert event. After
the transition to insert mode is successfully completed, the dataset receives first an
OnNewRecord event hand then an AfterInsert event. You can use these events, for
example, to provide initial values to newly inserted records:

void __fastcall TForm1::OrdersTableNewRecord(TDataSet *DataSet)
{

DataSet->FieldByName("OrderDate")->AsDateTime = Date();
}

On forms in your application, the data-aware grid and navigator controls can put a
dataset into dsInsert state if

• The control’s ReadOnly property is false (the default), and

• CanModify is true for the dataset.

Note Even if a dataset is in dsInsert state, adding records may not succeed for SQL-based
databases if your application’s user does not have proper SQL access privileges.

Once a dataset is in dsInsert mode, a user or application can enter values into the
fields associated with the new record. Except for the grid and navigational controls,
there is no visible difference to a user between Insert and Append. On a call to Insert,
an empty row appears in a grid above what was the current record. On a call to
Append, the grid is scrolled to the last record in the dataset, an empty row appears at
the bottom of the grid, and the Next and Last buttons are dimmed on any navigator
component associated with the dataset.

Data-aware controls for which inserting is enabled automatically call Post when a
user executes any action that changes which record is current (such as moving to a
different record in a grid). Otherwise you must call Post in your code.

U n d e r s t a n d i n g d a t a s e t s 22-19

M o d i f y i n g d a t a

Post writes the new record to the database, or, if you are caching updates, Post writes
the record to an in-memory cache. To write cached inserts and appends to the
database, call the dataset’s ApplyUpdates method.

Inserting records
Insert opens a new, empty record before the current record, and makes the empty
record the current record so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a
newly inserted record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed Paradox and dBASE tables, the record is inserted into the dataset at
its current position.

• For SQL databases, the physical location of the insertion is implementation-
specific. If the table is indexed, the index is updated with the new record
information.

Appending records
Append opens a new, empty record at the end of the dataset, and makes the empty
record the current one so that field values for the record can be entered either by a
user or by your application code.

When an application calls Post (or ApplyUpdates when using cached updates), a
newly appended record is written to a database in one of three ways:

• For indexed Paradox and dBASE tables, the record is inserted into the dataset in a
position based on its index.

• For unindexed Paradox and dBASE tables, the record is added to the end of the
dataset.

• For SQL databases, the physical location of the append is implementation-specific.
If the table is indexed, the index is updated with the new record information.

Deleting records

Use the Delete method to delete the current record in an active dataset. When the
Delete method is called,

• The dataset receives a BeforeDelete event.
• The dataset attempts to delete the current record.
• The dataset returns to the dsBrowse state.
• The dataset receives an AfterDelete event.

22-20 D e v e l o p e r ’ s G u i d e

M o d i f y i n g d a t a

If want to prevent the deletion in the BeforeDelete event handler, you can call the
global Abort procedure:

void __fastcall TForm1::TableBeforeDelete (TDataSet *Dataset)
{

if (MessageBox(0, "Delete This Record?", "CONFIRM", MB_YESNO) != IDYES)
 Abort();
}

If Delete fails, it generates an OnDeleteError event. If the OnDeleteError event handler
can’t correct the problem, the dataset remains in dsEdit state. If Delete succeeds, the
dataset reverts to the dsBrowse state and the record that followed the deleted record
becomes the current record.

If you are caching updates, the deleted record is not removed from the underlying
database table until you call ApplyUpdates.

If you provide a navigator component on your forms, users can delete the current
record by clicking the navigator’s Delete button. In code, you must call Delete
explicitly to remove the current record.

Posting data

After you finish editing a record, you must call the Post method to write out your
changes. The Post method behaves differently, depending on the dataset’s state and
on whether you are caching updates.

• If you are not caching updates, and the dataset is in the dsEdit or dsInsert state, Post
writes the current record to the database and returns the dataset to the dsBrowse
state.

• If you are caching updates, and the dataset is in the dsEdit or dsInsert state, Post
writes the current record to an internal cache and returns the dataset to the
dsBrowse state. The edits are net written to the database until you call
ApplyUpdates.

• If the dataset is in the dsSetKey state, Post returns the dataset to the dsBrowse state.

Regardless of the initial state of the dataset, Post generates BeforePost and AfterPost
events, before and after writing the current changes. You can use these events to
update the user interface, or prevent the dataset from posting changes by calling the
Abort procedure. If the call to Post fails, the dataset receives an OnPostError event,
where you can inform the user of the problem or attempt to correct it.

Posting can be done explicitly, or implicitly as part of another procedure. When an
application moves off the current record, Post is called implicitly. Calls to the First,
Next, Prior, and Last methods perform a Post if the table is in dsEdit or dsInsert modes.
The Append and Insert methods also implicitly post any pending data.

Warning The Close method does not call Post implicitly. Use the BeforeClose event to post any
pending edits explicitly.

U n d e r s t a n d i n g d a t a s e t s 22-21

M o d i f y i n g d a t a

Canceling changes

An application can undo changes made to the current record at any time, if it has not
yet directly or indirectly called Post. For example, if a dataset is in dsEdit mode, and a
user has changed the data in one or more fields, the application can return the record
back to its original values by calling the Cancel method for the dataset. A call to Cancel
always returns a dataset to dsBrowse state.

If the dataset was in dsEdit or dsInsert mode when your application called Cancel, it
receives BeforeCancel and AfterCancel events before and after the current record is
restored to its original values.

On forms, you can allow users to cancel edit, insert, or append operations by
including the Cancel button on a navigator component associated with the dataset, or
you can provide code for your own Cancel button on the form.

Modifying entire records

On forms, all data-aware controls except for grids and the navigator provide access
to a single field in a record.

In code, however, you can use the following methods that work with entire record
structures provided that the structure of the database tables underlying the dataset is
stable and does not change. The following table summarizes the methods available
for working with entire records rather than individual fields in those records:

These method take an array of values as an argument, where each value corresponds
to a column in the underlying dataset. Use the ARRAYOFCONST macro to create
these arrays. The values can be literals, variables, or NULL. If the number of values in
an argument is less than the number of columns in a dataset, then the remaining
values are assumed to be NULL.

For unindexed datasets, AppendRecord adds a record to the end of the dataset and
InsertRecord inserts a record after the current cursor position. For indexed datasets,
both methods place the record in the correct position in the table, based on the index.
In both cases, the methods move the cursor to the record’s position.

Table 22.8 Methods that work with entire records

Method Description

AppendRecord([array of values]) Appends a record with the specified column values at the end
of a table; analogous to Append. Performs an implicit Post.

InsertRecord([array of values]) Inserts the specified values as a record before the current
cursor position of a table; analogous to Insert. Performs an
implicit Post.

SetFields([array of values]) Sets the values of the corresponding fields; analogous to
assigning values to TFields. The application must perform an
explicit Post.

22-22 D e v e l o p e r ’ s G u i d e

C a l c u l a t i n g f i e l d s

 SetFields assigns the values specified in the array of parameters to fields in the
dataset. To use SetFields, an application must first call Edit to put the dataset in dsEdit
mode. To apply the changes to the current record, it must perform a Post.

If you use SetFields to modify some, but not all fields in an existing record, you can
pass NULL values for fields you do not want to change. If you do not supply enough
values for all fields in a record, SetFields assigns NULL values to them. NULL values
overwrite any existing values already in those fields.

For example, suppose a database has a COUNTRY table with columns for Name,
Capital, Continent, Area, and Population. If a TTable component called CountryTable
were linked to the COUNTRY table, the following statement would insert a record
into the COUNTRY table:

CountryTable->InsertRecord(ARRAYOFCONST((“Japan”, “Tokyo”, “Asia”)));

This statement does not specify values for Area and Population, so NULL values are
inserted for them. The table is indexed on Name, so the statement would insert the
record based on the alphabetic collation of “Japan”.

To update the record, an application could use the following code:

TLocateOptions SearchOptions;
SearchOptions->Clear();
SearchOptions << loCaseInsensitive;
if (CountryTable->Locate(“Name”, “Japan”, SearchOptions))
{

CountryTable->Edit();
CountryTable->SetFields(ARRAYOFCONST(((void *)NULL, (void *)NULL, (void *)NULL,

344567, 164700000)));
CountryTable->Post();

}

This code assigns values to the Area and Population fields and then posts them to the
database. The three NULL pointers act as place holders for the first three columns to
preserve their current contents.

Warning When using NULL pointers with SetFields to leave some field values untouched, be
sure to cast the NULL to a void *. If you use NULL as a parameter without the cast,
you will set the field to a blank value.

Calculating fields
Using the Fields editor, you can define calculated fields for your datasets. When a
dataset contains calculated fields, you provide the code to calculate those field’s
values in an OnCalcFields event handler. For details on how to define calculated fields
using the Fields editor, see “Defining a calculated field” on page 23-7.

The AutoCalcFields property determines when OnCalcFields is called. If AutoCalcFields
is true, OnCalcFields is called when

• A dataset is opened.

• The dataset enters edit mode.

U n d e r s t a n d i n g d a t a s e t s 22-23

T y p e s o f d a t a s e t s

• A record is retrieved from the database.

• Focus moves from one visual component to another, or from one column to
another in a data-aware grid control and the current record has been modified.

If AutoCalcFields is false, then OnCalcFields is not called when individual fields within
a record are edited (the fourth condition above).

Caution OnCalcFields is called frequently, so the code you write for it should be kept short.
Also, if AutoCalcFields is true, OnCalcFields should not perform any actions that
modify the dataset (or a linked dataset if it is part of a master-detail relationship),
because this leads to recursion. For example, if OnCalcFields performs a Post, and
AutoCalcFields is true, then OnCalcFields is called again, causing another Post, and so
on.

When OnCalcFields executes, a dataset enters dsCalcFields mode. This state prevents
modifications or additions to the records except for the calculated fields the handler
is designed to modify. The reason for preventing other modifications is because
OnCalcFields uses the values in other fields to derive calculated field values. Changes
to those other fields might otherwise invalidate the values assigned to calculated
fields. After OnCalcFields is completed, the dataset returns to dsBrowse state.

Types of datasets
“Using TDataSet descendants” on page 22-2 classifies TDataSet descendants by the
method they use to access their data. Another useful way to classify TDataSet
descendants is to consider the type of server data they represent. Viewed this way,
there are three basic classes of datasets:

• Table type datasets: Table type datasets represent a single table from the database
server, including all of its rows and columns. Table type datasets include TTable,
TADOTable, TSQLTable, and TIBTable.

Table type datasets let you take advantage of indexes defined on the server.
Because there is a one-to-one correspondence between database table and dataset,
you can use server indexes that are defined for the database table. Indexes allow
your application to sort the records in the table, speed searches and lookups, and
can form the basis of a master/detail relationship. Some table type datasets also
take advantage of the one-to-one relationship between dataset and database table
to let you perform table-level operations such as creating and deleting database
tables.

• Query-type datasets: Query-type datasets represent a single SQL command, or
query. Queries can represent the result set from executing a command (typically a
SELECT statement), or they can execute a command that does not return any
records (for example, an UPDATE statement). Query-type datasets include
TQuery, TADOQuery, TSQLQuery, and TIBQuery.

To use a query-type dataset effectively, you must be familiar with SQL and your
server’s SQL implementation, including limitations and extensions to the SQL-92
standard. If you are new to SQL, you may want to purchase a third party book that
covers SQL in-depth. One of the best is Understanding the New SQL: A Complete
Guide, by Jim Melton and Alan R. Simpson, Morgan Kaufmann Publishers.

22-24 D e v e l o p e r ’ s G u i d e

T y p e s o f d a t a s e t s

• Stored procedure-type datasets: Stored procedure-type datasets represent a
stored procedure on the database server. Stored procedure-type datasets include
TStoredProc, TADOStoredProc, TSQLStoredProc, and TIBStoredProc.

A stored procedure is a self-contained program written in the procedure and
trigger language specific to the database system used. They typically handle
frequently repeated database-related tasks, and are especially useful for
operations that act on large numbers of records or that use aggregate or
mathematical functions. Using stored procedures typically improves the
performance of a database application by:

• Taking advantage of the server’s usually greater processing power and speed.

• Reducing network traffic by moving processing to the server.

Stored procedures may or may not return data. Those that return data may return
it as a cursor (similar to the results of a SELECT query), as multiple cursors
(effectively returning multiple datasets), or they may return data in output
parameters. These differences depend in part on the server: Some servers do not
allow stored procedures to return data, or only allow output parameters. Some
servers do not support stored procedures at all. See your server documentation to
determine what is available.

Note You can usually use a query-type dataset to execute stored procedures because most
servers provide extensions to SQL for working with stored procedures. Each server,
however, uses its own syntax for this. If you choose to use a query-type dataset
instead of a stored procedure-type dataset, see your server documentation for the
necessary syntax.

In addition to the datasets that fall neatly into these three categories, TDataSet has
some descendants that fit into more than one category:

• TADODataSet and TSQLDataSet have a CommandType property that lets you
specify whether they represent a table, query, or stored procedure. Property and
method names are most similar to query-type datasets, although TADODataSet
lets you specify an index like a table type dataset.

• TClientDataSet represents the data from another dataset. As such, it can represent a
table, query, or stored procedure. TClientDataSet behaves most like a table type
dataset, because of its index support. However, it also has some of the features of
queries and stored procedures: the management of parameters and the ability to
execute without retrieving a result set.

• Some other client datasets (TBDEClientDataSet and TSQLClientDataSet) have a
CommandType property that lets you specify whether they represent a table, query,
or stored procedure. Property and method names are like TClientDataSet,
including parameter support, indexes, and the ability to execute without
retrieving a result set.

• TIBDataSet can represent both queries and stored procedures. In fact, it can
represent multiple queries and stored procedures simultaneously, with separate
properties for each.

U n d e r s t a n d i n g d a t a s e t s 22-25

U s i n g t a b l e t y p e d a t a s e t s

Using table type datasets
To use a table type dataset,

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server that contains the table you want to use. Each table
type dataset does this differently, but typically you specify a database connection
component:

• For TTable, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOTable, specify a TADOConnection component using the Connection
property.

• For TSQLTable, specify a TSQLConnection component using the SQLConnection
property.

• For TIBTable, specify a TIBConnection component using the Database property.

For information about using database connection components, see Chapter 21,
“Connecting to databases.”

3 Set the TableName property to the name of the table in the database. You can select
tables from a drop-down list if you have already identified a database connection
component.

4 Place a data source component in the data module or on the form, and set its
DataSet property to the name of the dataset. The data source component is used to
pass a result set from the dataset to data-aware components for display.

Advantages of using table type datasets

The main advantage of using table type datasets is the availability of indexes. Indexes
enable your application to

• Sort the records in the dataset.
• Locate records quickly.
• Limit the records that are visible.
• Establish master/detail relationships.

In addition, the one-to-one relationship between table type datasets and database
tables enables many of them to be used for

• Controlling Read/write access to tables
• Creating and deleting tables
• Emptying tables
• Synchronizing tables

22-26 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Sorting records with indexes

An index determines the display order of records in a table. Typically, records appear
in ascending order based on a primary, or default, index. This default behavior does
not require application intervention. If you want a different sort order, however, you
must specify either

• An alternate index.

• A list of columns on which to sort (not available on servers that aren’t SQL-based).

Indexes let you present the data from a table in different orders. On SQL-based
tables, this sort order is implemented by using the index to generate an ORDER BY
clause in a query that fetches the table’s records. On other tables (such as Paradox
and dBASE tables), the index is used by the data access mechanism to present records
in the desired order.

Obtaining information about indexes
You application can obtain information about server-defined indexes from all table
type datasets. To obtain a list of available indexes for the dataset, call the
GetIndexNames method. GetIndexNames fills a string list with valid index names. For
example, the following code fills a listbox with the names of all indexes defined for
the CustomersTable dataset:

CustomersTable->GetIndexNames(ListBox1->Items);

Note For Paradox tables, the primary index is unnamed, and is therefore not returned by
GetIndexNames. You can still change the index back to a primary index on a Paradox
table after using an alternative index, however, by setting the IndexName property to
a blank string.

To obtain information about the fields of the current index, use the

• IndexFieldCount property, to determine the number of columns in the index.

• IndexFields property, to examine a list the field components for the columns that
comprise the index.

The following code illustrates how you might use IndexFieldCount and IndexFields to
iterate through a list of column names in an application:

AnsiString ListOfIndexFields[20];
for (int i = 0; i < CustomersTable->IndexFieldCount; i++)

ListOfIndexFields[i] = CustomersTable->IndexFields[i]->FieldName;

Note IndexFieldCount is not valid for a dBASE table opened on an expression index.

Specifying an index with IndexName
Use the IndexName property to cause an index to be active. Once active, an index
determines the order of records in the dataset. (It can also be used as the basis for a
master-detail link, an index-based search, or index-based filtering.)

To activate an index, set the IndexName property to the name of the index. In some
database systems, primary indexes do not have names. To activate one of these
indexes, set IndexName to a blank string.

U n d e r s t a n d i n g d a t a s e t s 22-27

U s i n g t a b l e t y p e d a t a s e t s

At design-time, you can select an index from a list of available indexes by clicking the
property’s ellipsis button in the Object Inspector. At runtime set IndexName using a
AnsiString literal or variable. You can obtain a list of available indexes by calling the
GetIndexNames method.

The following code sets the index for CustomersTable to CustDescending:

CustomersTable->IndexName = “CustDescending”;

Creating an index with IndexFieldNames
If there is no defined index that implements the sort order you want, you can create a
pseudo-index using the IndexFieldNames property.

Note IndexName and IndexFieldNames are mutually exclusive. Setting one property clears
values set for the other.

The value of IndexFieldNames is an AnsiString. To specify a sort order, list each
column name to use in the order it should be used, and delimit the names with
semicolons. Sorting is by ascending order only. Case-sensitivity of the sort depends
on the capabilities of your server. See your server documentation for more
information.

The following code sets the sort order for PhoneTable based on LastName, then
FirstName:

PhoneTable->IndexFieldNames = "LastName;FirstName";

Note If you use IndexFieldNames on Paradox and dBASE tables, the dataset attempts to find
an index that uses the columns you specify. If it cannot find such an index, it raises an
exception.

Using Indexes to search for records

You can search against any dataset using the Locate and Lookup methods of TDataSet.
However, by explicitly using indexes, some table type datasets can improve over the
searching performance provided by the Locate and Lookup methods.

ADO datasets all support the Seek method, which moves to a record based on a set of
field values for fields in the current index. Seek lets you specify where to move the
cursor relative to the first or last matching record.

TTable and all types of client dataset support similar indexed-based searches, but use
a combination of related methods. The following table summarizes the six related
methods provided by TTable and client datasets to support index-based searches:

Table 22.9 Index-based search methods

Method Purpose

EditKey Preserves the current contents of the search key buffer and puts the dataset into
dsSetKey state so your application can modify existing search criteria prior to
executing a search.

FindKey Combines the SetKey and GotoKey methods in a single method.

FindNearest Combines the SetKey and GotoNearest methods in a single method.

22-28 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

GotoKey and FindKey are boolean functions that, if successful, move the cursor to a
matching record and return true. If the search is unsuccessful, the cursor is not
moved, and these functions return false.

GotoNearest and FindNearest always reposition the cursor either on the first exact
match found or, if no match is found, on the first record that is greater than the
specified search criteria.

Executing a search with Goto methods
To execute a search using Goto methods, follow these general steps:

1 Specify the index to use for the search. This is the same index that sorts the records
in the dataset (see “Sorting records with indexes” on page 22-26). To specify the
index, use the IndexName or IndexFieldNames property.

2 Open the dataset.

3 Put the dataset in dsSetKey state by calling the SetKey method.

4 Specify the value(s) to search on in the Fields property. Fields is a TFields object,
which maintains an indexed list of field components you can access by specifying
ordinal numbers corresponding to columns. The first column number in a dataset
is 0.

5 Search for and move to the first matching record found with GotoKey or
GotoNearest.

For example, the following code, attached to a button’s OnClick event, uses the
GotoKey method to move to the first record where the first field in the index has a
value that exactly matches the text in an edit box:

void __fastcall TSearchDemo::SearchExactClick(TObject *Sender)
{

ClientDataSet1->SetKey();
ClientDataSet1->Fields->Fields[0]->AsString = Edit1->Text;
if (!ClientDataSet1->GotoKey())

ShowMessage(“Record not found”);
}

GotoNearest is similar. It searches for the nearest match to a partial field value. It can
be used only for string fields. For example,

Table1->SetKey();
Table1->Fields->Fields[0]->AsString = “Sm”;
Table1->GotoNearest();

GotoKey Searches for the first record in a dataset that exactly matches the search criteria,
and moves the cursor to that record if one is found.

GotoNearest Searches on string-based fields for the closest match to a record based on partial
key values, and moves the cursor to that record.

SetKey Clears the search key buffer and puts the table into dsSetKey state so your
application can specify new search criteria prior to executing a search.

Table 22.9 Index-based search methods (continued)

Method Purpose

U n d e r s t a n d i n g d a t a s e t s 22-29

U s i n g t a b l e t y p e d a t a s e t s

If a record exists with “Sm” as the first two characters of the first indexed field’s
value, the cursor is positioned on that record. Otherwise, the position of the cursor
does not change and GotoNearest returns false.

Executing a search with Find methods
The Find methods do the same thing as the Goto methods, except that you do not
need to explicitly put the dataset in dsSetKey state to specify the key field values on
which to search. To execute a search using Find methods, follow these general steps:

1 Specify the index to use for the search. This is the same index that sorts the records
in the dataset (see “Sorting records with indexes” on page 22-26). To specify the
index, use the IndexName or IndexFieldNames property.

2 Open the dataset.

3 Search for and move to the first or nearest record with FindKey or FindNearest. Both
methods take a single parameter, a comma-delimited list of field values, where
each value corresponds to an indexed column in the underlying table.

Note FindNearest can only be used for string fields.

Specifying the current record after a successful search
By default, a successful search positions the cursor on the first record that matches
the search criteria. If you prefer, you can set the KeyExclusive property to true to
position the cursor on the next record after the first matching record.

By default, KeyExclusive is false, meaning that successful searches position the cursor
on the first matching record.

Searching on partial keys
If the dataset has more than one key column, and you want to search for values in a
subset of that key, set KeyFieldCount to the number of columns on which you are
searching. For example, if the dataset’s current index has three columns, and you
want to search for values using just the first column, set KeyFieldCount to 1.

For table type datasets with multiple-column keys, you can search only for values in
contiguous columns, beginning with the first. For example, for a three-column key
you can search for values in the first column, the first and second, or the first, second,
and third, but not just the first and third.

Repeating or extending a search
Each time you call SetKey or FindKey, the method clears any previous values in the
Fields property. If you want to repeat a search using previously set fields, or you want
to add to the fields used in a search, call EditKey in place of SetKey and FindKey.

For example, suppose you have already executed a search of the Employee table
based on the City field of the “CityIndex” index. Suppose further that “CityIndex”

22-30 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

includes both the City and Company fields. To find a record with a specified company
name in a specified city, use the following code:

Employee->KeyFieldCount = 2;
Employee->EditKey();
Employee->FieldValues[“Company”] = Variant(Edit2->Text);
Employee->GotoNearest();

Limiting records with ranges

You can temporarily view and edit a subset of data for any dataset by using filters
(see “Displaying and editing a subset of data using filters” on page 22-12). Some table
type datasets support an additional way to access a subset of available records, called
ranges.

Ranges only apply to TTable and to client datasets. Despite their similarities, ranges
and filters have different uses. The following topics discuss the differences between
ranges and filters and how to use ranges.

Understanding the differences between ranges and filters
Both ranges and filters restrict visible records to a subset of all available records, but
the way they do so differs. A range is a set of contiguously indexed records that fall
between specified boundary values. For example, in an employee database indexed
on last name, you might apply a range to display all employees whose last names are
greater than “Jones” and less than “Smith”. Because ranges depend on indexes, you
must set the current index to one that can be used to define the range. As with
specifying an index to sort records, you can assign the index on which to define a
range using either the IndexName or the IndexFieldNames property.

A filter, on the other hand, is any set of records that share specified data points,
regardless of indexing. For example, you might filter an employee database to
display all employees who live in California and who have worked for the company
for five or more years. While filters can make use of indexes if they apply, filters are
not dependent on them. Filters are applied record-by-record as an application scrolls
through a dataset.

In general, filters are more flexible than ranges. Ranges, however, can be more
efficient when datasets are large and the records of interest to an application are
already blocked in contiguously indexed groups. For very large datasets, it may be
still more efficient to use the WHERE clause of a query-type dataset to select data. For
details on specifying a query, see “Using query-type datasets” on page 22-41.

Specifying ranges
There are two mutually exclusive ways to specify a range:

• Specify the beginning and ending separately using SetRangeStart and SetRangeEnd.

• Specify both endpoints at once using SetRange.

U n d e r s t a n d i n g d a t a s e t s 22-31

U s i n g t a b l e t y p e d a t a s e t s

Setting the beginning of a range
Call the SetRangeStart procedure to put the dataset into dsSetKey state and begin
creating a list of starting values for the range. Once you call SetRangeStart,
subsequent assignments to the Fields property are treated as starting index values to
use when applying the range. Fields specified must apply to the current index.

For example, suppose your application uses a TSQLClientDataSet component named
Customers, linked to the CUSTOMER table, and that you have created persistent field
components for each field in the Customers dataset. CUSTOMER is indexed on its first
column (CustNo). A form in the application has two edit components named StartVal
and EndVal, used to specify start and ending values for a range. The following code
can be used to create and apply a range:

Customers->SetRangeStart();
Customers->FieldValues[“CustNo”] = StrToInt(StartVal->Text);
Customers->SetRangeEnd();
if (!EndVal->Text.IsEmpty())

Customers->FieldValues[“CustNo”] = StrToInt(EndVal->Text);
Customers->ApplyRange();

This code checks that the text entered in EndVal is not null before assigning any
values to Fields. If the text entered for StartVal is null, then all records from the
beginning of the dataset are included, since all values are greater than null. However,
if the text entered for EndVal is null, then no records are included, since none are less
than null.

For a multi-column index, you can specify a starting value for all or some fields in the
index. If you do not supply a value for a field used in the index, a null value is
assumed when you apply the range. If you try to set a value for a field that is not in
the index, the dataset raises an exception.

Tip To start at the beginning of the dataset, omit the call to SetRangeStart.

To finish specifying the start of a range, call SetRangeEnd or apply or cancel the range.
For information about applying and canceling ranges, see “Applying or canceling a
range” on page 22-34.

Setting the end of a range
Call the SetRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call SetRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range. Fields specified must apply to the current index.

Warning Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, C++Builder assumes
the ending value of the range is a null value. A range with null ending values is
always empty.

The easiest way to assign ending values is to call the FieldByName method. For
example,

Contacts->SetRangeStart();
Contacts->FieldByName(“LastName”)->Value = Edit1->Text;
Contacts->SetRangeEnd();

22-32 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Contacts->FieldByName(“LastName”)->Value = Edit2->Text;
Contacts->ApplyRange();

As with specifying start of range values, if you try to set a value for a field that is not
in the index, the dataset raises an exception.

To finish specifying the end of a range, apply or cancel the range. For information
about applying and canceling ranges, see “Applying or canceling a range” on
page 22-34.

Setting start- and end-range values
Instead of using separate calls to SetRangeStart and SetRangeEnd to specify range
boundaries, you can call the SetRange procedure to put the dataset into dsSetKey state
and set the starting and ending values for a range with a single call.

SetRange takes two constant array parameters: a set of starting values, and a set of
ending values. For example, the following statements establish a range based on a
two-column index:

TVarRec StartVals[2];
TVarRec EndVals[2];
StartVals[0] = Edit1->Text;
StartVals[1] = Edit2->Text;
EndVals[0] = Edit3->Text;
EndVals[1] = Edit4->Text;

Table1->SetRange(StartVals, 1, EndVals, 1);

For a multi-column index, you can specify starting and ending values for all or some
fields in the index. If you do not supply a value for a field used in the index, a null
value is assumed when you apply the range. To omit a value for the first field in an
index, and specify values for successive fields, pass a null value for the omitted field.

Always specify the ending values for a range, even if you want a range to end on the
last record in the dataset. If you do not provide ending values, the dataset assumes
the ending value of the range is a null value. A range with null ending values is
always empty because the starting range is greater than or equal to the ending range.

Specifying a range based on partial keys
If a key is composed of one or more string fields, the SetRange methods support
partial keys. For example, if an index is based on the LastName and FirstName
columns, the following range specifications are valid:

Contacts->SetRangeStart();
Contacts->FieldValues[“LastName”] = “Smith”;
Contacts->SetRangeEnd();
Contacts->FieldValues[“LastName”] = “Zzzzzz”;
Contacts->ApplyRange();

This code includes all records in a range where LastName is greater than or equal to
“Smith.” The value specification could also be:

Contacts->FieldValues[“LastName”] = “Sm”;

This statement includes records that have LastName greater than or equal to “Sm.”

U n d e r s t a n d i n g d a t a s e t s 22-33

U s i n g t a b l e t y p e d a t a s e t s

Including or excluding records that match boundary values
By default, a range includes all records that are greater than or equal to the specified
starting range, and less than or equal to the specified ending range. This behavior is
controlled by the KeyExclusive property. KeyExclusive is false by default.

If you prefer, you can set the KeyExclusive property for a dataset to true to exclude
records equal to ending range. For example,

Contacts->SetRangeStart();
Contacts->KeyExclusive = true;
Contacts->FieldValues[“LastName”] = “Smith”;
Contacts->SetRangeEnd();
Contacts->FieldValues[“LastName”] = “Tyler”;
Contacts->ApplyRange();

This code includes all records in a range where LastName is greater than or equal to
“Smith” and less than “Tyler”.

Modifying a range
Two functions enable you to modify the existing boundary conditions for a range:
EditRangeStart, for changing the starting values for a range; and EditRangeEnd, for
changing the ending values for the range.

The process for editing and applying a range involves these general steps:

1 Putting the dataset into dsSetKey state and modifying the starting index value for
the range.

2 Modifying the ending index value for the range.

3 Applying the range to the dataset.

You can modify either the starting or ending values of the range, or you can modify
both boundary conditions. If you modify the boundary conditions for a range that is
currently applied to the dataset, the changes you make are not applied until you call
ApplyRange again.

Editing the start of a range
Call the EditRangeStart procedure to put the dataset into dsSetKey state and begin
modifying the current list of starting values for the range. Once you call
EditRangeStart, subsequent assignments to the Fields property overwrite the current
index values to use when applying the range.

Tip If you initially created a start range based on a partial key, you can use EditRangeStart
to extend the starting value for a range. For more information about ranges based on
partial keys, see “Specifying a range based on partial keys” on page 22-32.

Editing the end of a range
Call the EditRangeEnd procedure to put the dataset into dsSetKey state and start
creating a list of ending values for the range. Once you call EditRangeEnd, subsequent
assignments to the Fields property are treated as ending index values to use when
applying the range.

22-34 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Applying or canceling a range
When you call SetRangeStart or EditRangeStart to specify the start of a range, or
SetRangeEnd or EditRangeEnd to specify the end of a range, the dataset enters the
dsSetKey state. It stays in that state until you apply or cancel the range.

Applying a range
When you specify a range, the boundary conditions you define are not put into effect
until you apply the range. To make a range take effect, call the ApplyRange method.
ApplyRange immediately restricts a user’s view of and access to data in the specified
subset of the dataset.

Canceling a range
The CancelRange method ends application of a range and restores access to the full
dataset. Even though canceling a range restores access to all records in the dataset,
the boundary conditions for that range are still available so that you can reapply the
range at a later time. Range boundaries are preserved until you provide new range
boundaries or modify the existing boundaries. For example, the following code is
valid:

ƒ
MyTable->CancelRange();
ƒ
// later on, use the same range again. No need to call SetRangeStart, etc.
MyTable->ApplyRange();
ƒ

Creating master/detail relationships

Table type datasets can be linked into master/detail relationships. When you set up a
master/detail relationship, you link two datasets so that all the records of one (the
detail) always correspond to the single current record in the other (the master).

Table type datasets support master/detail relationships in two very distinct ways:

• All table type datasets can act as the detail of another dataset by linking cursors.
This process is described in “Making the table a detail of another dataset” below.

• TTable, TSQLTable, and all client datasets can act as the master in a master/detail
relationship that uses nested detail tables. This process is described in “Using
nested detail tables” on page 22-36.

Each of these approaches has its unique advantages. Linking cursors lets you create
master/detail relationships where the master table is any type of dataset. With
nested details, the type of dataset that can act as the detail table is limited, but they
provide for more options in how to display the data. If the master is a client dataset,
nested details provide a more robust mechanism for applying cached updates.

Making the table a detail of another dataset
A table type dataset’s MasterSource and MasterFields properties can be used to
establish one-to-many relationships between two datasets.

U n d e r s t a n d i n g d a t a s e t s 22-35

U s i n g t a b l e t y p e d a t a s e t s

The MasterSource property is used to specify a data source from which the table gets
data from the master table. This data source can be linked to any type of dataset. For
instance, by specifying a query’s data source in this property, you can link a client
dataset as the detail of the query, so that the client dataset tracks events occurring in
the query.

The dataset is linked to the master table based on its current index. Before you specify
the fields in the master dataset that are tracked by the detail dataset, first specify the
index in the detail dataset that starts with the corresponding fields. You can use
either the IndexName or the IndexFieldNames property.

Once you specify the index to use, use the MasterFields property to indicate the
column(s) in the master dataset that correspond to the index fields in the detail table.
To link datasets on multiple column names, separate field names with semicolons:

Parts->MasterFields = “OrderNo;ItemNo”;

To help create meaningful links between two datasets, you can use the Field Link
designer. To use the Field Link designer, double click on the MasterFields property in
the Object Inspector after you have assigned a MasterSource and an index.

The following steps create a simple form in which a user can scroll through customer
records and display all orders for the current customer. The master table is the
CustomersTable table, and the detail table is OrdersTable. The example uses the BDE-
based TTable component, but you can use the same methods to link any table type
datasets.

1 Place two TTable components and two TDataSource components in a data module.

2 Set the properties of the first TTable component as follows:

• DatabaseName: BCDEMOS
• TableName: CUSTOMER
• Name: CustomersTable

3 Set the properties of the second TTable component as follows:

• DatabaseName: BCDEMOS
• TableName: ORDERS
• Name: OrdersTable

4 Set the properties of the first TDataSource component as follows:

• Name: CustSource
• DataSet: CustomersTable

5 Set the properties of the second TDataSource component as follows:

• Name: OrdersSource
• DataSet: OrdersTable

6 Place two TDBGrid components on a form.

7 Choose File|Include Unit Hdr to specify that the form should use the data
module.

22-36 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

8 Set the DataSource property of the first grid component to
“CustSource”, and set the DataSource property of the second grid to
“OrdersSource”.

9 Set the MasterSource property of OrdersTable to “CustSource”. This links the
CUSTOMER table (the master table) to the ORDERS table (the detail table).

10 Double-click the MasterFields property value box in the Object Inspector to invoke
the Field Link Designer to set the following properties:

• In the Available Indexes field, choose CustNo to link the two tables by the
CustNo field.

• Select CustNo in both the Detail Fields and Master Fields field lists.

• Click the Add button to add this join condition. In the Joined Fields list,
“CustNo -> CustNo” appears.

• Choose OK to commit your selections and exit the Field Link Designer.

11 Set the Active properties of CustomersTable and OrdersTable to true to display data
in the grids on the form.

12 Compile and run the application.

If you run the application now, you will see that the tables are linked together, and
that when you move to a new record in the CUSTOMER table, you see only those
records in the ORDERS table that belong to the current customer.

Using nested detail tables
A nested table is a detail dataset that is the value of a single dataset field in another
(master) dataset. For datasets that represent server data, a nested detail dataset can
only be used for a dataset field on the server. TClientDataSet components do not
represent server data, but they can also contain dataset fields if you create a dataset
for them that contains nested details, or if they receive data from a provider that is
linked to the master table of a master/detail relationship.

Note For TClientDataSet, using nested detail sets is necessary if you want to apply updates
from master and detail tables to a database server.

To use nested detail sets, the ObjectView property of the master dataset must be true.
When your table type dataset contains nested detail datasets, TDBGrid provides
support for displaying the nested details in a popup window. For more information
on how this works, see “Displaying dataset fields” on page 23-26.

Alternately, you can display and edit detail datasets in data-aware controls by using
a separate dataset component for the detail set. At design time, create persistent
fields for the fields in your (master) dataset, using the Fields Editor: right click the
master dataset and choose Fields Editor. Add a new persistent field to your dataset
by right-clicking and choosing Add Fields. Define your new field with type DataSet
Field. In the Fields Editor, define the structure of the detail table. You must also add
persistent fields for any other fields used in your master dataset.

The dataset component for the detail table is a dataset descendant of a type allowed
by the master table. TTable components only allow TNestedDataSet components as

U n d e r s t a n d i n g d a t a s e t s 22-37

U s i n g t a b l e t y p e d a t a s e t s

nested datasets. TSQLTable components allow other TSQLTable components.
TClientDataset components allow other client datasets. Choose a dataset of the
appropriate type from the Component palette and add it to your form or data
module. Set this detail dataset’s DataSetField property to the persistent DataSet field
in the master dataset. Finally, place a data source component on the form or data
module and set its DataSet property to the detail dataset. Data-aware controls can use
this data source to access the data in the detail set.

Controlling Read/write access to tables

By default when a table type dataset is opened, it requests read and write access for
the underlying database table. Depending on the characteristics of the underlying
database table, the requested write privilege may not be granted (for example, when
you request write access to an SQL table on a remote server and the server restricts
the table’s access to read only).

Note This is not true for TClientDataSet, which determines whether users can edit data
from information that the dataset provider supplies with data packets. It is also not
true for TSQLTable, which is a unidirectional dataset, and hence always read-only.

When the table opens, you can check the CanModify property to ascertain whether the
underlying database (or the dataset provider) allows users to edit the data in the
table. If CanModify is false, the application cannot write to the database. If CanModify
is true, your application can write to the database provided the table’s ReadOnly
property is false.

ReadOnly determines whether a user can both view and edit data. When ReadOnly is
false (the default), a user can both view and edit data. To restrict a user to viewing
data, set ReadOnly to true before opening the table.

Note ReadOnly is implemented on all table type datasets except TSQLTable, which is
always read-only.

Creating and deleting tables

Some table type datasets let you create and delete the underlying tables at design
time or at runtime. Typically, database tables are created and deleted by a database
administrator. However, it can be handy during application development and testing
to create and destroy database tables that your application can use.

Creating tables
TTable and TIBTable both let you create the underlying database table without using
SQL. Similarly, TClientDataSet lets you create a dataset when you are not working
with a dataset provider. Using TTable and TClientDataSet, you can create the table at
design time or runtime. TIBTable only lets you create tables at runtime.

22-38 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Before you can create the table, you must be set properties to specify the structure of
the table you are creating. In particular, you must specify

• The database that will host the new table. For TTable, you specify the database
using the DatabaseName property. For TIBTable, you must use a TIBDatabase
component, which is assigned to the Database property. (Client datasets do not use
a database.)

• The type of database (TTable only). Set the TableType property to the desired type
of table. For Paradox, dBASE, or ASCII tables, set TableType to ttParadox, ttDBase,
or ttASCII, respectively. For all other table types, set TableType to ttDefault.

• The name of the table you want to create. Both TTable and TIBTable have a
TableName property for the name of the new table. Client datasets do not use a
table name, but you should specify the FileName property before you save the new
table. If you create a table that duplicates the name of an existing table, the existing
table and all its data are overwritten by the newly created table. The old table and
its data cannot be recovered. To avoid overwriting an existing table, you can check
the Exists property at runtime. Exists is only available on TTable and TIBTable.

• The fields for the new table. There are two ways to do this:

• You can add field definitions to the FieldDefs property. At design time, double-
click the FieldDefs property in the Object Inspector to bring up the collection
editor. Use the collection editor to add, remove, or change the properties of the
field definitions. At runtime, clear any existing field definitions and then use
the AddFieldDef method to add each new field definition. For each new field
definition, set the properties of the TFieldDef object to specify the desired
attributes of the field.

• You can use persistent field components instead. At design time, double-click
on the dataset to bring up the Fields editor. In the Fields editor, right-click and
choose the New Field command. Describe the basic properties of your field.
Once the field is created, you can alter its properties in the Object Inspector by
selecting the field in the Fields editor.

• Indexes for the new table (optional). At design time, double-click the IndexDefs
property in the Object Inspector to bring up the collection editor. Use the
collection editor to add, remove, or change the properties of index definitions. At
runtime, clear any existing index definitions, and then use the AddIndexDef
method to add each new index definition. For each new index definition, set the
properties of the TIndexDef object to specify the desired attributes of the index.

Note You can’t define indexes for the new table if you are using persistent field
components instead of field definition objects.

To create the table at design time, right-click the dataset and choose Create Table
(TTable) or Create Data Set (TClientDataSet). This command does not appear on the
context menu until you have specified all the necessary information.

To create the table at runtime, call the CreateTable method (TTable and TIBTable) or the
CreateDataSet method (TClientDataSet).

U n d e r s t a n d i n g d a t a s e t s 22-39

U s i n g t a b l e t y p e d a t a s e t s

Note You can set up the definitions at design time and then call the CreateTable (or
CreateDataSet) method at runtime to create the table. However, to do so you must
indicate that the definitions specified at runtime should be saved with the dataset
component. (by default, field and index definitions are generated dynamically at
runtime). Specify that the definitions should be saved with the dataset by setting its
StoreDefs property to true.

Tip If you are using TTable, you can preload the field definitions and index definitions of
an existing table at design time. Set the DatabaseName and TableName properties to
specify the existing table. Right click the table component and choose Update Table
Definition. This automatically sets the values of the FieldDefs and IndexDefs
properties to describe the fields and indexes of the existing table. Next, reset the
DatabaseName and TableName to specify the table you want to create, canceling any
prompts to rename the existing table.

Note When creating Oracle8 tables, you can’t create object fields (ADT fields, array fields,
and dataset fields).

The following code creates a new table at runtime and associates it with the
BCDEMOS alias. Before it creates the new table, it verifies that the table name
provided does not match the name of an existing table:

TTable *NewTable = new TTable(Form1);
NewTable->Active = false;
NewTable->DatabaseName = “BCDEMOS”;
NewTable->TableName = Edit1->Text;
NewTable->TableType = ttDefault;
NewTable->FieldDefs->Clear();
TFieldDef *NewField = NewTable->FieldDefs->AddFieldDef(); // define first field
NewField->DataType = ftInteger;
NewField->Name = Edit2->Text;
NewField = NewTable->FieldDefs->AddFieldDef(); // define second field
NewField->DataType = ftString;
NewField->Size = StrToInt(Edit3->Text);
NewField->Name = Edit4->Text;
NewTable->IndexDefs->Clear();
TIndexDef *NewIndex = NewTable->IndexDefs->AddIndexDef(); // add an index
NewIndex->Name = “PrimaryIndex”;
NewIndex->Fields = Edit2->Text;
NewIndex->Options << ixPrimary << ixUnique;
// Now check for prior existence of this table
bool CreateIt = (!NewTable->Exists);
if (!CreateIt)

 if (Application->MessageBox((AnsiString(“Overwrite table “) + Edit1->Text +
AnsiString(“?”)).c_str(),
“Table Exists”, MB_YESNO) == IDYES)

CreateIt = true;
if (CreateIt)

NewTable->CreateTable(); // create the table

22-40 D e v e l o p e r ’ s G u i d e

U s i n g t a b l e t y p e d a t a s e t s

Deleting tables
TTable and TIBTable let you delete tables from the underlying database table without
using SQL. To delete a table at runtime, call the dataset’s DeleteTable method. For
example, the following statement removes the table underlying a dataset:

CustomersTable->DeleteTable();

Caution When you delete a table with DeleteTable, the table and all its data are gone forever.

If you are using TTable, you can also delete tables at design time: Right-click the table
component and select Delete Table from the context menu. The Delete Table menu
pick is only present if the table component represents an existing database table (the
DatabaseName and TableName properties specify an existing table).

Emptying tables

Many table type datasets supply a single method that lets you delete all rows of data
in the table.

• For TTable and TIBTable, you can delete all the records by calling the EmptyTable
method at runtime:

PhoneTable->EmptyTable();

• For TADOTable, you can use the DeleteRecords method.

PhoneTable->DeleteRecords(arAll);

• For TSQLTable, you can use the DeleteRecords method as well. Note, however, that
the TSQLTable version of DeleteRecords does not take any parameters.

PhoneTable->DeleteRecords();

• For client datasets, you can use the EmptyDataSet method.

PhoneTable->EmptyDataSet();

Note For tables on SQL servers, these methods only succeed if you have DELETE privilege
for the table.

Caution When you empty a dataset, the data you delete is gone forever.

Synchronizing tables

If you have two or more datasets that represent the same database table but do not
share a data source component, then each dataset has its own view on the data and
its own current record. As users access records through each datasets, the
components’ current records will differ.

If the datasets are all instances of TTable, or all instances of TIBTable, or all client
datasets, you can force the current record for each of these datasets to be the same by
calling the GotoCurrent method. GotoCurrent sets its own dataset’s current record to
the current record of a matching dataset. For example, the following code sets the

U n d e r s t a n d i n g d a t a s e t s 22-41

U s i n g q u e r y - t y p e d a t a s e t s

current record of CustomerTableOne to be the same as the current record of
CustomerTableTwo:

CustomerTableOne->GotoCurrent(CustomerTableTwo);

Tip If your application needs to synchronize datasets in this manner, put the datasets in a
data module and include the header for the data module in each unit that accesses
the tables.

To synchronize datasets from separate forms, you must include one form’s header
file in the source unit of the other form, and you must qualify at least one of the
dataset names with its form name. For example:

CustomerTableOne->GotoCurrent(Form2->CustomerTableTwo);

Using query-type datasets
To use a query-type dataset,

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server to query. Each query-type dataset does this
differently, but typically you specify a database connection component:

• For TQuery, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOQuery, specify a TADOConnection component using the Connection
property.

• For TSQLQuery, specify a TSQLConnection component using the SQLConnection
property.

• For TIBQuery, specify a TIBConnection component using the Database property.

For information about using database connection components, see Chapter 21,
“Connecting to databases.”

3 Specify an SQL statement in the SQL property of the dataset, and optionally
specify any parameters for the statement. For more information, see “Specifying
the query” on page 22-42 and “Using parameters in queries” on page 22-43.

4 If the query data is to be used with visual data controls, add a data source
component to the data module, and set its DataSet property to the query-type
dataset. The data source component forwards the results of the query (called a
result set) to data-aware components for display. Connect data-aware components
to the data source using their DataSource and DataField properties.

5 Activate the query component. For queries that return a result set, use the Active
property or the Open method. To execute queries that only perform an action on a
table and return no result set, use the ExecSQL method at runtime. If you plan to
execute the query more than once, you may want to call Prepare to initialize the
data access layer and bind parameter values into the query. For information about
preparing a query, see “Preparing queries” on page 22-47.

22-42 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

Specifying the query

For true query-type datasets, you use the SQL property to specify the SQL statement
for the dataset to execute. Some datasets, such as TADODataSet, TSQLDataSet, and
client datasets, use a CommandText property to accomplish the same thing.

Most queries that return records are SELECT commands. Typically, they define the
fields to include, the tables from which to select those fields, conditions that limit
what records to include, and the order of the resulting dataset. For example:

SELECT CustNo, OrderNo, SaleDate
FROM Orders
WHERE CustNo = 1225
ORDER BY SaleDate

Queries that do not return records include statements that use Data Definition
Language (DDL) or Data Manipulation Language (DML) statements other than
SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE INDEX,
and ALTER TABLE commands do not return any records). The language used in
commands is server-specific, but usually compliant with the SQL-92 standard for the
SQL language.

The SQL command you execute must be acceptable to the server you are using.
Datasets neither evaluate the SQL nor execute it. They merely pass the command to
the server for execution. In most cases, the SQL command must be only one complete
SQL statement, although that statement can be as complex as necessary (for example,
a SELECT statement with a WHERE clause that uses several nested logical operators
such as AND and OR). Some servers also support “batch” syntax that permits
multiple statements; if your server supports such syntax, you can enter multiple
statements when you specify the query.

The SQL statements used by queries can be verbatim, or they can contain replaceable
parameters. Queries that use parameters are called parameterized queries. When you
use parameterized queries, the actual values assigned to the parameters are inserted
into the query before you execute, or run, the query. Using parameterized queries is
very flexible, because you can change a user’s view of and access to data on the fly at
runtime without having to alter the SQL statement. For more information about
parameterized queries, see “Using parameters in queries” on page 22-43.

Specifying a query using the SQL property
When using a true query-type dataset (TQuery, TADOQuery, TSQLQuery, or
TIBQuery), assign the query to the SQL property. The SQL property is a TStrings
object. Each separate string in this TStrings object is a separate line of the query.
Using multiple lines does not affect the way the query executes on the server, but can
make it easier to modify and debug the query if you divide the statement into logical
units:

MyQuery->Close();
MyQuery->SQL->Clear();
MyQuery->SQL->Add("SELECT CustNo, OrderNO, SaleDate");
MyQuery->SQL->Add("FROM Orders");
MyQuery->SQL->Add("ORDER BY SaleDate");
MyQuery->Open();

U n d e r s t a n d i n g d a t a s e t s 22-43

U s i n g q u e r y - t y p e d a t a s e t s

The code below demonstrates modifying only a single line in an existing SQL
statement. In this case, the ORDER BY clause already exists on the third line of the
statement. It is referenced via the SQL property using an index of 2.

MyQuery->SQL->Strings[2] = "ORDER BY OrderNO";

Note The dataset must be closed when you specify or modify the SQL property.

At design time, use the String List editor to specify the query. Click the ellipsis button
by the SQL property in the Object Inspector to display the String List editor.

Note With some versions of C++Builder, if you are using TQuery, you can also use the SQL
Builder to construct a query based on a visible representation of tables and fields in a
database. To use the SQL Builder, select the query component, right-click it to invoke
the context menu, and choose Graphical Query Editor. To learn how to use SQL
Builder, open it and use its online help.

Because the SQL property is a TStrings object, you can load the text of the query from
a file by calling the TStrings::LoadFromFile method:

MyQuery->SQL->LoadFromFile("custquery.sql");

You can also use the Assign method of the SQL property to copy the contents of a
string list object into the SQL property. The Assign method automatically clears the
current contents of the SQL property before copying the new statement:

MyQuery->SQL->Assign(Memo1->Lines);

Specifying a query using the CommandText property
When using TADODataSet, TSQLDataSet, or a client dataset, assign the text of the
query statement to the CommandText property:

MyQuery->CommandText = "SELECT CustName, Address FROM Customer";

At design time, you can type the query directly into the Object Inspector, or, if the
dataset already has an active connection to the database, you can click the ellipsis
button by the CommandText property to display the Command Text editor. The
Command Text editor lists the available tables, and the fields in those tables, to make
it easier to compose your queries.

Using parameters in queries

A parameterized SQL statement contains parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values,
such as those used in a WHERE clause for comparisons, that appear in an SQL
statement. Ordinarily, parameters stand in for data values passed to the statement.
For example, in the following INSERT statement, values to insert are passed as
parameters:

INSERT INTO Country (Name, Capital, Population)
VALUES (:Name, :Capital, :Population)

In this SQL statement, :Name, :Capital, and :Population are placeholders for actual
values supplied to the statement at runtime by your application. Note that the names
of parameters begin with a colon. The colon is required so that the parameter names

22-44 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

can be distinguished from literal values. You can also include unnamed parameters
by adding a question mark (?) to your query. Unnamed parameters are identified by
position, because they do not have unique names.

Before the dataset can execute the query, you must supply values for any parameters
in the query text. TQuery, TIBQuery, TSQLQuery, and client datasets use the Params
property to store these values. TADOQuery uses the Parameters property instead.
Params (or Parameters) is a collection of parameter objects (TParam or TParameter),
where each object represents a single parameter. When you specify the text for the
query, the dataset generates this set of parameter objects, and (depending on the
dataset type) initializes any of their properties that it can deduce from the query.

Note You can suppress the automatic generation of parameter objects in response to
changing the query text by setting the ParamCheck property to false. This is useful for
data definition language (DDL) statements that contain parameters as part of the
DDL statement that are not parameters for the query itself. For example, the DDL
statement to create a stored procedure may define parameters that are part of the
stored procedure. By setting ParamCheck to false, you prevent these parameters from
being mistaken for parameters of the query.

Parameter values must be bound into the SQL statement before it is executed for the
first time. Query components do this automatically for you even if you do not
explicitly call the Prepare method before executing a query.

Tip It is a good programming practice to provide variable names for parameters that
correspond to the actual name of the column with which it is associated. For
example, if a column name is “Number,” then its corresponding parameter would be
“:Number”. Using matching names is especially important if the dataset uses a data
source to obtain parameter values from another dataset. This process is described in
“Establishing master/detail relationships using parameters” on page 22-46.

Supplying parameters at design time
At design time, you can specify parameter values using the parameter collection
editor. To display the parameter collection editor, click on the ellipsis button for the
Params or Parameters property in the Object Inspector. If the SQL statement does not
contain any parameters, no objects are listed in the collection editor.

Note The parameter collection editor is the same collection editor that appears for other
collection properties. Because the editor is shared with other properties, its right-click
context menu contains the Add and Delete commands. However, they are never
enabled for query parameters. The only way to add or delete parameters is in the
SQL statement itself.

For each parameter, select it in the parameter collection editor. Then use the Object
Inspector to modify its properties.

When using the Params property (TParam objects), you will want to inspect or modify
the following:

• The DataType property lists the data type for the parameter’s value. For some
datasets, this value may be correctly initialized. If the dataset did not deduce the
type, DataType is ftUnknown, and you must change it to indicate the type of the
parameter value.

U n d e r s t a n d i n g d a t a s e t s 22-45

U s i n g q u e r y - t y p e d a t a s e t s

The DataType property lists the logical data type for the parameter. In general,
these data types conform to server data types. For specific logical type-to-server
data type mappings, see the documentation for the data access mechanism (BDE,
dbExpress, InterBase).

• The ParamType property lists the type of the selected parameter. For queries, this is
always ptInput, because queries can only contain input parameters. If the value of
ParamType is ptUnknown, change it to ptInput.

• The Value property specifies a value for the selected parameter. You can leave
Value blank if your application supplies parameter values at runtime.

When using the Parameters property (TParameter objects), you will want to inspect or
modify the following:

• The DataType property lists the data type for the parameter’s value. For some data
types, you must provide additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The Direction property lists the type of the selected parameter. For queries, this is
always pdInput, because queries can only contain input parameters.

• The Attributes property controls the type of values the parameter will accept.
Attributes may be set to a combination of psSigned, psNullable, and psLong.

• The Value property specifies a value for the selected parameter. You can leave
Value blank if your application supplies parameter values at runtime.

Supplying parameters at runtime
To create parameters at runtime, you can use the

• ParamByName method to assign values to a parameter based on its name (not
available for TADOQuery)

• Params::Items or Parameters::Items property to assign values to a parameter based
on the parameter’s ordinal position within the SQL statement.

• Params::ParamValues or Parameters::ParamValues property to assign values to one or
more parameters in a single command line, based on the name of each parameter
set.

The following code uses ParamByName to assign the text of an edit box to the :Capital
parameter:

SQLQuery1->ParamByName("Capital")->AsString = Edit1->Text;

The same code can be rewritten using the Params property, using an index of 0
(assuming the :Capital parameter is the first parameter in the SQL statement):

SQLQuery1->Params->Items[0]->AsString = Edit1->Text;

22-46 D e v e l o p e r ’ s G u i d e

U s i n g q u e r y - t y p e d a t a s e t s

The command line below sets three parameters at once, using the
Params::ParamValues property:

Query1->Params->ParamValues["Name;Capital;Continent"] =
VarArrayOf(OPENARRAY(Variant, (Edit1->Text, Edit2->Text, Edit3->Text)));

Note that ParamValues uses Variants, avoiding the need to cast values.

Establishing master/detail relationships using parameters

To set up a master/detail relationship where the detail set is a query-type dataset,
you must specify a query that uses parameters. These parameters refer to current
field values on the master dataset. Because the current field values on the master
dataset change dynamically at runtime, you must rebind the detail set’s parameters
every time the master record changes. Although you could write code to do this
using an event handler, all query-type datasets except TIBQuery provide an easier
mechanism using the DataSource property.

If parameter values for a parameterized query are not bound at design time or
specified at runtime, query-type datasets attempt to supply values for them based on
the DataSource property. DataSource identifies a different dataset that is searched for
field names that match the names of unbound parameters. This search dataset can be
any type of dataset. The search dataset must be created and populated before you
create the detail dataset that uses it. If matches are found in the search dataset, the
detail dataset binds the parameter values to the values of the fields in the current
record pointed to by the data source.

To illustrate how this works, consider two tables: a customer table and an orders
table. For every customer, the orders table contains a set of orders that the customer
made. The Customer table includes an ID field that specifies a unique customer ID.
The orders table includes a CustID field that specifies the ID of the customer who
made an order.

The first step is to set up the Customer dataset:

1 Add a table type dataset to your application and bind it to the Customer table.

2 Add a TDataSource component named CustomerSource. Set its DataSet property to
the dataset added in step 1. This data source now represents the Customer dataset.

3 Add a query-type dataset and set its SQL property to

SELECT CustID, OrderNo, SaleDate
FROM Orders
WHERE CustID = :ID

Note that the name of the parameter is the same as the name of the field in the
master (Customer) table.

4 Set the detail dataset’s DataSource property to CustomerSource. Setting this
property makes the detail dataset a linked query.

At runtime the :ID parameter in the SQL statement for the detail dataset is not
assigned a value, so the dataset tries to match the parameter by name against a
column in the dataset identified by CustomersSource. CustomersSource gets its data

U n d e r s t a n d i n g d a t a s e t s 22-47

U s i n g q u e r y - t y p e d a t a s e t s

from the master dataset, which, in turn, derives its data from the Customer table.
Because the Customer table contains a column called “ID,” the value from the ID
field in the current record of the master dataset is assigned to the :ID parameter for
the detail dataset’s SQL statement. The datasets are linked in a master-detail
relationship. Each time the current record changes in the Customers dataset, the
detail dataset’s SELECT statement executes to retrieve all orders based on the current
customer id.

Preparing queries

Preparing a query is an optional step that precedes query execution. Preparing a
query submits the SQL statement and its parameters, if any, to the data access layer
and the database server for parsing, resource allocation, and optimization. In some
datasets, the dataset may perform additional setup operations when preparing the
query. These operations improve query performance, making your application
faster, especially when working with updatable queries.

An application can prepare a query by setting the Prepared property to true. If you do
not prepare a query before executing it, the dataset automatically prepares it for you
each time you call Open or ExecSQL. Even though the dataset prepares queries for
you, you can improve performance by explicitly preparing the dataset before you
open it the first time.

CustQuery->Prepared = true;

When you explicitly prepare the dataset, the resources allocated for executing the
statement are not freed until you set Prepared to false.

Set the Prepared property to false if you want to ensure that the dataset is re-prepared
before it executes (for example, if you add a parameter).

Note When you change the text of the SQL property for a query, the dataset automatically
closes and unprepares the query.

Executing queries that don’t return a result set

When a query returns a set of records (such as a SELECT query), you execute the
query the same way you populate any dataset with records: by setting Active to true
or calling the Open method.

However, often SQL commands do not return any records. Such commands include
statements that use Data Definition Language (DDL) or Data Manipulation
Language (DML) statements other than SELECT statements (For example, INSERT,
DELETE, UPDATE, CREATE INDEX, and ALTER TABLE commands do not return
any records).

For all query-type datasets, you can execute a query that does not return a result set
by calling ExecSQL:

CustomerQuery->ExecSQL(); // Does not return a result set

22-48 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Tip If you are executing the query multiple times, it is a good idea to set the Prepared
property to true.

Although the query does not return any records, you may want to know the number
of records it affected (for example, the number of records deleted by a DELETE
query). The RowsAffected property gives the number of affected records after a call to
ExecSQL.

Tip When you do not know at design time whether the query returns a result set (for
example, if the user supplies the query dynamically at runtime), you can code both
types of query execution statements in a try...catch block. Put a call to the Open
method in the try clause. An action query is executed when the query is activated
with the Open method, but an exception occurs in addition to that. Check the
exception, and suppress it if it merely indicates the lack of a result set. (For example,
TQuery indicates this by an ENoResultSet exception.)

Using unidirectional result sets

When a query-type dataset returns a result set, it also receives a cursor, or pointer to
the first record in that result set. The record pointed to by the cursor is the currently
active record. The current record is the one whose field values are displayed in data-
aware components associated with the result set’s data source. Unless you are using
dbExpress, this cursor is bi-directional by default. A bi-directional cursor can
navigate both forward and backward through its records. Bi-directional cursor
support requires some additional processing overhead, and can slow some queries.

If you do not need to be able to navigate backward through a result set, TQuery and
TIBQuery let you improve query performance by requesting a unidirectional cursor
instead. To request a unidirectional cursor, set the UniDirectional property to true.

Set UniDirectional before preparing and executing a query. The following code
illustrates setting UniDirectional prior to preparing and executing a query:

if (!CustomerQuery->Prepared)
{

CustomerQuery->UniDirectional = true;
 CustomerQuery->Prepared = true;
}
CustomerQuery->Open(); // Returns a result set with a one-way cursor

Note Do not confuse the UniDirectional property with a unidirectional dataset.
Unidirectional datasets (TSQLDataSet, TSQLTable, TSQLQuery, and TSQLStoredProc)
use dbExpress, which only returns unidirectional cursors. In addition to restricting
the ability to navigate backwards, unidirectional datasets do not buffer records, and
so have additional limitations (such as the inability to use filters).

Using stored procedure-type datasets
How your application uses a stored procedure depends on how the stored procedure
was coded, whether and how it returns data, the specific database server used, or a
combination of these factors.

U n d e r s t a n d i n g d a t a s e t s 22-49

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

In general terms, to access a stored procedure on a server, an application must:

1 Place the appropriate dataset component in a data module or on a form, and set its
Name property to a unique value appropriate to your application.

2 Identify the database server that defines the stored procedure. Each stored
procedure-type dataset does this differently, but typically you specify a database
connection component:

• For TStoredProc, specify a TDatabase component or a BDE alias using the
DatabaseName property.

• For TADOStoredProc, specify a TADOConnection component using the
Connection property.

• For TSQLStoredProc, specify a TSQLConnection component using the
SQLConnection property.

• For TIBStoredProc, specify a TIBConnection component using the Database
property.

For information about using database connection components, see Chapter 21,
“Connecting to databases.”

3 Specify the stored procedure to execute. For most stored procedure-type datasets,
you do this by setting the StoredProcName property. The one exception is
TADOStoredProc, which has a ProcedureName property instead.

4 If the stored procedure returns a cursor to be used with visual data controls, add a
data source component to the data module, and set its DataSet property to the
stored procedure-type dataset. Connect data-aware components to the data source
using their DataSource and DataField properties.

5 Provide input parameter values for the stored procedure, if necessary. If the server
does not provide information about all stored procedure parameters, you may
need to provide additional input parameter information, such as parameter names
and data types. For information about working with stored procedure parameters,
see “Working with stored procedure parameters” on page 22-50.

6 Execute the stored procedure. For stored procedures that return a cursor, use the
Active property or the Open method. To execute stored procedures that do not
return any results or that only return output parameters, use the ExecProc method
at runtime. If you plan to execute the stored procedure more than once, you may
want to call Prepare to initialize the data access layer and bind parameter values
into the stored procedure. For information about preparing a query, see
“Executing stored procedures that don’t return a result set” on page 22-53.

7 Process any results. These results can be returned as result and output parameters,
or they can be returned as a result set that populates the stored procedure-type
dataset. Some stored procedures return multiple cursors. For details on how to
access the additional cursors, see “Fetching multiple result sets” on page 22-53.

22-50 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Working with stored procedure parameters

There are four types of parameters that can be associated with stored procedures:

• Input parameters, used to pass values to a stored procedure for processing.

• Output parameters, used by a stored procedure to pass return values to an
application.

• Input/output parameters, used to pass values to a stored procedure for processing,
and used by the stored procedure to pass return values to the application.

• A result parameter, used by some stored procedures to return an error or status
value to an application. A stored procedure can only return one result parameter.

Whether a stored procedure uses a particular type of parameter depends both on the
general language implementation of stored procedures on your database server and
on a specific instance of a stored procedure. For any server, individual stored
procedures may or may not use input parameters. On the other hand, some uses of
parameters are server-specific. For example, on MS-SQL Server and Sybase stored
procedures always return a result parameter, but the InterBase implementation of a
stored procedure never returns a result parameter.

Access to stored procedure parameters is provided by the Params property (in
TStoredProc, TSQLStoredProc, TIBStoredProc) or the Parameters property (in
TADOStoredProc). When you assign a value to the StoredProcName (or ProcedureName)
property, the dataset automatically generates objects for each parameter of the stored
procedure. For some datasets, if the stored procedure name is not specified until
runtime, objects for each parameter must be programmatically created at that time.
Not specifying the stored procedure and manually creating the TParam or TParameter
objects allows a single dataset to be used with any number of available stored
procedures.

Note Some stored procedures return a dataset in addition to output and result parameters.
Applications can display dataset records in data-aware controls, but must separately
process output and result parameters.

Setting up parameters at design time
You can specify stored procedure parameter values at design time using the
parameter collection editor. To display the parameter collection editor, click on the
ellipsis button for the Params or Parameters property in the Object Inspector.

Important You can assign values to input parameters by selecting them in the parameter
collection editor and using the Object Inspector to set the Value property. However,
do not change the names or data types for input parameters reported by the server.
Otherwise, when you execute the stored procedure an exception is raised.

Some servers do not report parameter names or data types. In these cases, you must
set up the parameters manually using the parameter collection editor. Right click and
choose Add to add parameters. For each parameter you add, you must fully describe
the parameter. Even if you do not need to add any parameters, you should check the
properties of individual parameter objects to ensure that they are correct.

U n d e r s t a n d i n g d a t a s e t s 22-51

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

If the dataset has a Params property (TParam objects), the following properties must
be correctly specified:

• The Name property indicates the name of the parameter as it is defined by the
stored procedure.

• The DataType property gives the data type for the parameter’s value. When using
TSQLStoredProc, some data types require additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The ParamType property indicates the type of the selected parameter. This can be
ptInput (for input parameters), ptOutput (for output parameters), ptInputOutput
(for input/output parameters) or ptResult (for result parameters).

• The Value property specifies a value for the selected parameter. You can never set
values for output and result parameters. These types of parameters have values
set by the execution of the stored procedure. For input and input/output
parameters, you can leave Value blank if your application supplies parameter
values at runtime.

If the dataset uses a Parameters property (TParameter objects), the following properties
must be correctly specified:

• The Name property indicates the name of the parameter as it is defined by the
stored procedure.

• The DataType property gives the data type for the parameter’s value. For some
data types, you must provide additional information:

• The NumericScale property indicates the number of decimal places for numeric
parameters.

• The Precision property indicates the total number of digits for numeric
parameters.

• The Size property indicates the number of characters in string parameters.

• The Direction property gives the type of the selected parameter. This can be
pdInput (for input parameters), pdOutput (for output parameters), pdInputOutput
(for input/output parameters) or pdReturnValue (for result parameters).

• The Attributes property controls the type of values the parameter will accept.
Attributes may be set to a combination of psSigned, psNullable, and psLong.

• The Value property specifies a value for the selected parameter. Do not set values
for output and result parameters. For input and input/output parameters, you can
leave Value blank if your application supplies parameter values at runtime.

22-52 D e v e l o p e r ’ s G u i d e

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Using parameters at runtime
With some datasets, if the name of the stored procedure is not specified until
runtime, no TParam objects are automatically created for parameters and they must
be created programmatically. This can be done by instantiating a new TParam object
or the TParams::AddParam method:

TParam *P1, *P2;
StoredProc1->StoredProcName = "GET_EMP_PROJ";
StoredProc1->Params->Clear();
P1 = new TParam(StoredProc1->Params, ptInput);
P2 = new TParam(StoredProc1->Params, ptOutput);
try
{

StoredProc1->Params->Items[0]->Name = "EMP_NO";
StoredProc1->Params->Items[1]->Name = "PROJ_ID";
StoredProc1->ParamByName("EMP_NO")->AsSmallInt = 52;
StoredProc1->ExecProc();
Edit1->Text = StoredProc1->ParamByName("PROJ_ID")->AsString;

}
__finally
{

delete P1;
delete P2;

}

Even if you do not need to add the individual parameter objects at runtime, you may
want to access individual parameter objects to assign values to input parameters and
to retrieve values from output parameters. You can use the dataset’s ParamByName
method to access individual parameters based on their names. For example, the
following code sets the value of an input/output parameter, executes the stored
procedure, and retrieves the returned value:

SQLDataSet1->ParamByName("IN_OUTVAR")->AsInteger = 103;
SQLDataSet1->ExecSQL();
int Result = SQLDataSet1->ParamByName("IN_OUTVAR")->AsInteger;

Preparing stored procedures

As with query-type datasets, stored procedure-type datasets must be prepared
before they execute the stored procedure. Preparing a stored procedure tells the data
access layer and the database server to allocate resources for the stored procedure
and to bind parameters. These operations can improve performance.

If you attempt to execute a stored procedure before preparing it, the dataset
automatically prepares it for you, and then unprepares it after it executes. If you plan
to execute a stored procedure a number of times, it is more efficient to explicitly
prepare it by setting the Prepared property to true.

MyProc->Prepared = true;

When you explicitly prepare the dataset, the resources allocated for executing the
stored procedure are not freed until you set Prepared to false.

U n d e r s t a n d i n g d a t a s e t s 22-53

U s i n g s t o r e d p r o c e d u r e - t y p e d a t a s e t s

Set the Prepared property to false if you want to ensure that the dataset is re-prepared
before it executes (for example, if you change the parameters when using Oracle
overloaded procedures).

Executing stored procedures that don’t return a result set

When a stored procedure returns a cursor, you execute it the same way you populate
any dataset with records: by setting Active to true or calling the Open method.

However, often stored procedures do not return any data, or only return results in
output parameters. You can execute a stored procedure that does not return a result
set by calling ExecProc. After executing the stored procedure, you can use the
ParamByName method to read the value of the result parameter or of any output
parameters:

MyStoredProcedure->ExecProc(); // Does not return a result set
Edit1->Text = MyStoredProcedure->ParamByName("OUTVAR")->AsString;

Note TADOStoredProc does not have a ParamByName method. To obtain output parameter
values when using ADO, access parameter objects using the Parameters property.

Tip If you are executing the procedure multiple times, it is a good idea to set the Prepared
property to true.

Fetching multiple result sets

Some stored procedures return multiple sets of records. The dataset only fetches the
first set when you open it. If you are using TSQLStoredProc or TADOStoredProc, you
can access the other sets of records by calling the NextRecordSet or NextRecordset
method:

TCustomSQLDataSet *DataSet2 = SQLStoredProc1->NextRecordSet();

In TSQLStoredProc, NextRecordSet returns a newly created TCustomSQLDataSet
component that provides access to the next set of records. In TADOStoredProc,
NextRecordset returns an interface that can be assigned to the RecordSet property of an
existing ADO dataset. For either class, the method returns the number of records in
the returned dataset as an output parameter.

The first time you call NextRecordSet or NextRecordset, it returns the second set of
records. Calling NextRecordSet or NextRecordset again returns a third dataset, and so
on, until there are no more sets of records. When there are no additional cursors,
NextRecordSet or NextRecordset returns NULL.

22-54 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-1

C h a p t e r

23
Chapter23Working with field components

This chapter describes the properties, events, and methods common to the TField
object and its descendants. Field components represent individual fields (columns) in
datasets. This chapter also describes how to use field components to control the
display and editing of data in your applications.

Field components are always associated with a dataset. You never use a TField object
directly in your applications. Instead, each field component in your application is a
TField descendant specific to the datatype of a column in a dataset. Field components
provide data-aware controls such as TDBEdit and TDBGrid access to the data in a
particular column of the associated dataset.

Generally speaking, a single field component represents the characteristics of a single
column, or field, in a dataset, such as its data type and size. It also represents the
field’s display characteristics, such as alignment, display format, and edit format. For
example, a TFloatField component has four properties that directly affect the
appearance of its data:

As you scroll from record to record in a dataset, a field component lets you view and
change the value for that field in the current record.

Field components have many properties in common with one another (such as
DisplayWidth and Alignment), and they have properties specific to their data types
(such as Precision for TFloatField). Each of these properties affect how data appears to
an application’s users on a form. Some properties, such as Precision, can also affect
what data values the user can enter in a control when modifying or entering data.

Table 23.1 TFloatField properties that affect data display

Property Purpose

Alignment Specifies whether data is displayed left-aligned, centered, or right-aligned.

DisplayWidth Specifies the number of digits to display in a control at one time.

DisplayFormat Specifies data formatting for display (such as how many decimal places to show).

EditFormat Specifies how to display a value during editing.

23-2 D e v e l o p e r ’ s G u i d e

D y n a m i c f i e l d c o m p o n e n t s

All field components for a dataset are either dynamic (automatically generated for
you based on the underlying structure of database tables), or persistent (generated
based on specific field names and properties you set in the Fields editor). Dynamic
and persistent fields have different strengths and are appropriate for different types
of applications. The following sections describe dynamic and persistent fields in
more detail and offer advice on choosing between them.

Dynamic field components
Dynamically generated field components are the default. In fact, all field components
for any dataset start out as dynamic fields the first time you place a dataset on a data
module, specify how that dataset fetches its data, and open it. A field component is
dynamic if it is created automatically based on the underlying physical characteristics
of the data represented by a dataset. Datasets generate one field component for each
column in the underlying data. The exact TField descendant created for each column
is determined by field type information received from the database or (for
TClientDataSet) from a provider component.

Dynamic fields are temporary. They exist only as long as a dataset is open. Each time
you reopen a dataset that uses dynamic fields, it rebuilds a completely new set of
dynamic field components based on the current structure of the data underlying the
dataset. If the columns in the underlying data change, then the next time you open a
dataset that uses dynamic field components, the automatically generated field
components are also changed to match.

Use dynamic fields in applications that must be flexible about data display and
editing. For example, to create a database browsing tool such as SQL explorer, you
must use dynamic fields because every database table has different numbers and
types of columns. You might also want to use dynamic fields in applications where
user interaction with data mostly takes place inside grid components and you know
that the datasets used by the application change frequently.

To use dynamic fields in an application:

1 Place datasets and data sources in a data module.

2 Associate the datasets with data. This involves using a connection component or
provider to connect to the source of the data and setting any properties that
specify what data the dataset represents.

3 Associate the data sources with the datasets.

4 Place data-aware controls in the application’s forms, include the data module’s
header in each form’s unit, and associate each data-aware control with a data
source in the module. In addition, associate a field with each data-aware control
that requires one. Note that because you are using dynamic field components,
there is no guarantee that any field name you specify will exist when the dataset is
opened.

5 Open the datasets.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-3

P e r s i s t e n t f i e l d c o m p o n e n t s

Aside from ease of use, dynamic fields can be limiting. Without writing code, you
cannot change the display and editing defaults for dynamic fields, you cannot safely
change the order in which dynamic fields are displayed, and you cannot prevent
access to any fields in the dataset. You cannot create additional fields for the dataset,
such as calculated fields or lookup fields, and you cannot override a dynamic field’s
default data type. To gain control and flexibility over fields in your database
applications, you need to invoke the Fields editor to create persistent field
components for your datasets.

Persistent field components
By default, dataset fields are dynamic. Their properties and availability are
automatically set and cannot be changed in any way. To gain control over a field’s
properties and events you must create persistent fields for the dataset. Persistent
fields let you

• Set or change the field’s display or edit characteristics at design time or runtime.

• Create new fields, such as lookup fields, calculated fields, and aggregated fields,
that base their values on existing fields in a dataset.

• Validate data entry.

• Remove field components from the list of persistent components to prevent your
application from accessing particular columns in an underlying database.

• Define new fields to replace existing fields, based on columns in the table or query
underlying a dataset.

At design time, you can—and should—use the Fields editor to create persistent lists
of the field components used by the datasets in your application. Persistent field
component lists are stored in your application, and do not change even if the
structure of a database underlying a dataset is changed. Once you create persistent
fields with the Fields editor, you can also create event handlers for them that respond
to changes in data values and that validate data entries.

Note When you create persistent fields for a dataset, only those fields you select are
available to your application at design time and runtime. At design time, you can
always use the Fields editor to add or remove persistent fields for a dataset.

All fields used by a single dataset are either persistent or dynamic. You cannot mix
field types in a single dataset. If you create persistent fields for a dataset, and then
want to revert to dynamic fields, you must remove all persistent fields from the
dataset. For more information about dynamic fields, see “Dynamic field
components” on page 23-2.

Note One of the primary uses of persistent fields is to gain control over the appearance and
display of data. You can also control the appearance of columns in data-aware grids.
To learn about controlling column appearance in grids, see “Creating a customized
grid” on page 19-16.

23-4 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Creating persistent fields

Persistent field components created with the Fields editor provide efficient, readable,
and type-safe programmatic access to underlying data. Using persistent field
components guarantees that each time your application runs, it always uses and
displays the same columns, in the same order even if the physical structure of the
underlying database has changed. Data-aware components and program code that
rely on specific fields always work as expected. If a column on which a persistent
field component is based is deleted or changed, C++Builder generates an exception
rather than running the application against a nonexistent column or mismatched
data.

To create persistent fields for a dataset:

1 Place a dataset in a data module.

2 Bind the dataset to its underlying data. This typically involves associating the
dataset with a connection component or provider and specifying any properties to
describe the data. For example, If you are using TADODataSet, you can set the
Connection property to a properly configured TADOConnection component and set
the CommandText property to a valid query.

3 Double-click the dataset component in the data module to invoke the Fields editor.
The Fields editor contains a title bar, navigator buttons, and a list box.

The title bar of the Fields editor displays both the name of the data module or form
containing the dataset, and the name of the dataset itself. For example, if you open
the Customers dataset in the CustomerData data module, the title bar displays
‘CustomerData->Customers,’ or as much of the name as fits.

Below the title bar is a set of navigation buttons that let you scroll one-by-one
through the records in an active dataset at design time, and to jump to the first or
last record. The navigation buttons are dimmed if the dataset is not active or if the
dataset is empty. If the dataset is unidirectional, the buttons for moving to the last
record and the previous record are always dimmed.

The list box displays the names of persistent field components for the dataset. The
first time you invoke the Fields editor for a new dataset, the list is empty because
the field components for the dataset are dynamic, not persistent. If you invoke the
Fields editor for a dataset that already has persistent field components, you see the
field component names in the list box.

4 Choose Add Fields from the Fields editor context menu.

5 Select the fields to make persistent in the Add Fields dialog box. By default, all
fields are selected when the dialog box opens. Any fields you select become
persistent fields.

The Add Fields dialog box closes, and the fields you selected appear in the Fields
editor list box. Fields in the Fields editor list box are persistent. If the dataset is active,
note, too, that the Next and (if the dataset is not unidirectional) Last navigation
buttons above the list box are enabled.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-5

P e r s i s t e n t f i e l d c o m p o n e n t s

From now on, each time you open the dataset, it no longer creates dynamic field
components for every column in the underlying database. Instead it only creates
persistent components for the fields you specified.

Each time you open the dataset, it verifies that each non-calculated persistent field
exists or can be created from data in the database. If it cannot, the dataset raises an
exception warning you that the field is not valid, and does not open the dataset.

Arranging persistent fields

The order in which persistent field components are listed in the Fields editor list box
is the default order in which the fields appear in a data-aware grid component. You
can change field order by dragging and dropping fields in the list box.

To change the order of fields:

1 Select the fields. You can select and order one or more fields at a time.

2 Drag the fields to a new location.

If you select a noncontiguous set of fields and drag them to a new location, they are
inserted as a contiguous block. Within the block, the order of fields does not change.

Alternatively, you can select the field, and use Ctrl+Up and Ctrl+Dn to change an
individual field’s order in the list.

Defining new persistent fields

Besides making existing dataset fields into persistent fields, you can also create
special persistent fields as additions to or replacements of the other persistent fields
in a dataset.

New persistent fields that you create are only for display purposes. The data they
contain at runtime are not retained either because they already exist elsewhere in the
database, or because they are temporary. The physical structure of the data
underlying the dataset is not changed in any way.

To create a new persistent field component, invoke the context menu for the Fields
editor and choose New field. The New Field dialog box appears.

The New Field dialog box contains three group boxes: Field properties, Field type,
and Lookup definition.

• The Field properties group box lets you enter general field component
information. Enter the field name in the Name edit box. The name you enter here
corresponds to the field component’s FieldName property. The New Field dialog
uses this name to build a component name in the Component edit box. The name
that appears in the Component edit box corresponds to the field component’s
Name property and is only provided for informational purposes (Name is the
identifier by which you refer to the field component in your source code). The
dialog discards anything you enter directly in the Component edit box.

23-6 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

• The Type combo box in the Field properties group lets you specify the field
component’s data type. You must supply a data type for any new field component
you create. For example, to display floating-point currency values in a field, select
Currency from the drop-down list. Use the Size edit box to specify the maximum
number of characters that can be displayed or entered in a string-based field, or
the size of Bytes and VarBytes fields. For all other data types, Size is meaningless.

• The Field type radio group lets you specify the type of new field component to
create. The default type is Data. If you choose Lookup, the Dataset and Source
Fields edit boxes in the Lookup definition group box are enabled. You can also
create Calculated fields, and if you are working with a client dataset, you can
create InternalCalc fields or Aggregate fields. The following table describes these
types of fields you can create:

The Lookup definition group box is only used to create lookup fields. This is described
more fully in “Defining a lookup field” on page 23-8.

Defining a data field
A data field replaces an existing field in a dataset. For example, for programmatic
reasons you might want to replace a TSmallIntField with a TIntegerField. Because you
cannot change a field’s data type directly, you must define a new field to replace it.

Important Even though you define a new field to replace an existing field, the field you define
must derive its data values from an existing column in a table underlying a dataset.

To create a replacement data field for a field in a table underlying a dataset, follow
these steps:

1 Remove the field from the list of persistent fields assigned for the dataset, and then
choose New Field from the context menu.

2 In the New Field dialog box, enter the name of an existing field in the database
table in the Name edit box. Do not enter a new field name. You are actually
specifying the name of the field from which your new field will derive its data.

3 Choose a new data type for the field from the Type combo box. The data type you
choose should be different from the data type of the field you are replacing. You
cannot replace a string field of one size with a string field of another size. Note that
while the data type should be different, it must be compatible with the actual data
type of the field in the underlying table.

Table 23.2 Special persistent field kinds

Field kind Purpose

Data Replaces an existing field (for example to change its data type)

Calculated Displays values calculated at runtime by a dataset’s OnCalcFields event handler.

Lookup Retrieve values from a specified dataset at runtime based on search criteria you
specify. (not supported by unidirectional datasets)

InternalCalc Displays values calculated at runtime by a client dataset and stored with its data.

Aggregate Displays a value summarizing the data in a set of records from a client dataset.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-7

P e r s i s t e n t f i e l d c o m p o n e n t s

4 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

5 Select Data in the Field type radio group if it is not already selected.

6 Choose OK. The New Field dialog box closes, the newly defined data field
replaces the existing field you specified in Step 1, and the component declaration
in the data module or form’s header is updated.

To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 23-10.

Defining a calculated field
A calculated field displays values calculated at runtime by a dataset’s OnCalcFields
event handler. For example, you might create a string field that displays
concatenated values from other fields.

To create a calculated field in the New Field dialog box:

1 Enter a name for the calculated field in the Name edit box. Do not enter the name
of an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Calculated or InternalCalc in the Field type radio group. InternalCalc is only
available if you are working with a client dataset. The significant difference
between these types of calculated fields is that the values calculated for an
InternalCalc field are stored and retrieved as part of the client dataset’s data.

5 Choose OK. The newly defined calculated field is automatically added to the end
of the list of persistent fields in the Field editor list box, and the component
declaration is automatically added to the form’s or data module’s header.

6 Place code that calculates values for the field in the OnCalcFields event handler for
the dataset. For more information about writing code to calculate field values, see
“Programming a calculated field” on page 23-7.

Note To edit the properties or events associated with the field component, select the
component name in the Field editor list box, then edit its properties or events with
the Object Inspector. For more information about editing field component properties
and events, see “Setting persistent field properties and events” on page 23-10.

Programming a calculated field
After you define a calculated field, you must write code to calculate its value.
Otherwise, it always has a null value. Code for a calculated field is placed in the
OnCalcFields event for its dataset.

To program a value for a calculated field:

1 Select the dataset component from the Object Inspector drop-down list.

23-8 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

2 Choose the Object Inspector Events page.

3 Double-click the OnCalcFields property to bring up or create a CalcFields procedure
for the dataset component.

4 Write the code that sets the values and other properties of the calculated field as
desired.

For example, suppose you have created a CityStateZip calculated field for the
Customers table on the CustomerData data module. CityStateZip should display a
company’s city, state, and zip code on a single line in a data-aware control.

To add code to the CalcFields procedure for the Customers table, select the Customers
table from the Object Inspector drop-down list, switch to the Events page, and
double-click the OnCalcFields property.

The TCustomerData::CustomersCalcFields procedure appears in the unit’s source code
window. Add the following code to the procedure to calculate the field:

CustomersCityStateZip->Value = CustomersCity->Value + AnsiString(“, “) +
CustomersState->Value + AnsiString(“ “) + CustomersZip->Value;

Note When writing the OnCalcFields event handler for an internally calculated field, you
can improve performance by checking the client dataset’s State property and only
recomputing the value when State is dsInternalCalc. See “Using internally calculated
fields in client datasets” on page 27-10 for details.

Defining a lookup field
A lookup field is a read-only field that displays values at runtime based on search
criteria you specify. In its simplest form, a lookup field is passed the name of an
existing field to search on, a field value to search for, and a different field in a lookup
dataset whose value it should display.

For example, consider a mail-order application that enables an operator to use a
lookup field to determine automatically the city and state that correspond to the zip
code a customer provides. The column to search on might be called ZipTable->Zip,
the value to search for is the customer’s zip code as entered in Order->CustZip, and
the values to return would be those for the ZipTable->City and ZipTable->State
columns of the record where the value of ZipTable->Zip matches the current value in
the Order->CustZip field.

Note Unidirectional datasets do not support lookup fields.

To create a lookup field in the New Field dialog box:

1 Enter a name for the lookup field in the Name edit box. Do not enter the name of
an existing field.

2 Choose a data type for the field from the Type combo box.

3 Enter the size of the field in the Size edit box, if appropriate. Size is only relevant
for fields of type TStringField, TBytesField, and TVarBytesField.

4 Select Lookup in the Field type radio group. Selecting Lookup enables the Dataset
and Key Fields combo boxes.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-9

P e r s i s t e n t f i e l d c o m p o n e n t s

5 Choose from the Dataset combo box drop-down list the dataset in which to look
up field values. The lookup dataset must be different from the dataset for the field
component itself, or a circular reference exception is raised at runtime. Specifying
a lookup dataset enables the Lookup Keys and Result Field combo boxes.

6 Choose from the Key Fields drop-down list a field in the current dataset for which
to match values. To match more than one field, enter field names directly instead
of choosing from the drop-down list. Separate multiple field names with
semicolons. If you are using more than one field, you must use persistent field
components.

7 Choose from the Lookup Keys drop-down list a field in the lookup dataset to
match against the Source Fields field you specified in step 6. If you specified more
than one key field, you must specify the same number of lookup keys. To specify
more than one field, enter field names directly, separating multiple field names
with semicolons.

8 Choose from the Result Field drop-down list a field in the lookup dataset to return
as the value of the lookup field you are creating.

When you design and run your application, lookup field values are determined
before calculated field values are calculated. You can base calculated fields on lookup
fields, but you cannot base lookup fields on calculated fields.

You can use the LookupCache property to hone the way lookup fields are determined.
LookupCache determines whether the values of a lookup field are cached in memory
when a dataset is first opened, or looked up dynamically every time the current
record in the dataset changes. Set LookupCache to true to cache the values of a lookup
field when the LookupDataSet is unlikely to change and the number of distinct lookup
values is small. Caching lookup values can speed performance, because the lookup
values for every set of LookupKeyFields values are preloaded when the DataSet is
opened. When the current record in the DataSet changes, the field object can locate its
Value in the cache, rather than accessing the LookupDataSet. This performance
improvement is especially dramatic if the LookupDataSet is on a network where
access is slow.

Tip You can use a lookup cache to provide lookup values programmatically rather than
from a secondary dataset. Be sure that the LookupDataSet property is NULL. Then,
use the LookupList property’s Add method to fill it with lookup values. Set the
LookupCache property to true. The field will use the supplied lookup list without
overwriting it with values from a lookup dataset.

If every record of DataSet has different values for KeyFields, the overhead of locating
values in the cache can be greater than any performance benefit provided by the
cache. The overhead of locating values in the cache increases with the number of
distinct values that can be taken by KeyFields.

If LookupDataSet is volatile, caching lookup values can lead to inaccurate results. Call
RefreshLookupList to update the values in the lookup cache. RefreshLookupList
regenerates the LookupList property, which contains the value of the LookupResultField
for every set of LookupKeyFields values.

When setting LookupCache at runtime, call RefreshLookupList to initialize the cache.

23-10 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Defining an aggregate field
An aggregate field displays values from a maintained aggregate in a client dataset.
An aggregate is a calculation that summarizes the data in a set of records. See “Using
maintained aggregates” on page 27-11 for details about maintained aggregates.

To create an aggregate field in the New Field dialog box:

1 Enter a name for the aggregate field in the Name edit box. Do not enter the name
of an existing field.

2 Choose aggregate data type for the field from the Type combo box.

3 Select Aggregate in the Field type radio group.

4 Choose OK. The newly defined aggregate field is automatically added to the client
dataset and its Aggregates property is automatically updated to include the
appropriate aggregate specification.

5 Place the calculation for the aggregate in the ExprText property of the newly
created aggregate field. For more information about defining an aggregate, see
“Specifying aggregates” on page 27-11.

Once a persistent TAggregateField is created, a TDBText control can be bound to the
aggregate field. The TDBText control will then display the value of the aggregate
field that is relevant to the current record of the underlying client data set.

Deleting persistent field components

Deleting a persistent field component is useful for accessing a subset of available
columns in a table, and for defining your own persistent fields to replace a column in
a table. To remove one or more persistent field components for a dataset:

1 Select the field(s) to remove in the Fields editor list box.

2 Press Del.

Note You can also delete selected fields by invoking the context menu and choosing
Delete.

Fields you remove are no longer available to the dataset and cannot be displayed by
data-aware controls. You can always recreate a persistent field component that you
delete by accident, but any changes previously made to its properties or events is
lost. For more information, see “Creating persistent fields” on page 23-4.

Note If you remove all persistent field components for a dataset, the dataset reverts to
using dynamic field components for every column in the underlying database table.

Setting persistent field properties and events

You can set properties and customize events for persistent field components at
design time. Properties control the way a field is displayed by a data-aware
component, for example, whether it can appear in a TDBGrid, or whether its value

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-11

P e r s i s t e n t f i e l d c o m p o n e n t s

can be modified. Events control what happens when data in a field is fetched,
changed, set, or validated.

To set the properties of a field component or write customized event handlers for it,
select the component in the Fields editor, or select it from the component list in the
Object Inspector.

Setting display and edit properties at design time
To edit the display properties of a selected field component, switch to the Properties
page on the Object Inspector window. The following table summarizes display
properties that can be edited.

Table 23.3 Field component properties

Property Purpose

Alignment Left justifies, right justifies, or centers a field contents within a data-aware
component.

ConstraintErrorMessage Specifies the text to display when edits clash with a constraint condition.

CustomConstraint Specifies a local constraint to apply to data during editing.

Currency Numeric fields only. true: displays monetary values.
false (default): does not display monetary values.

DisplayFormat Specifies the format of data displayed in a data-aware component.

DisplayLabel Specifies the column name for a field in a data-aware grid component.

DisplayWidth Specifies the width, in characters, of a grid column that display this field.

EditFormat Specifies the edit format of data in a data-aware component.

EditMask Limits data-entry in an editable field to specified types and ranges of
characters, and specifies any special, non-editable characters that appear
within the field (hyphens, parentheses, and so on).

FieldKind Specifies the type of field to create.

FieldName Specifies the actual name of a column in the table from which the field
derives its value and data type.

HasConstraints Indicates whether there are constraint conditions imposed on a field.

ImportedConstraint Specifies an SQL constraint imported from the Data Dictionary or an SQL
server.

Index Specifies the order of the field in a dataset.

LookupDataSet Specifies the table used to look up field values when Lookup is true.

LookupKeyFields Specifies the field(s) in the lookup dataset to match when doing a lookup.

LookupResultField Specifies the field in the lookup dataset from which to copy values into
this field.

MaxValue Numeric fields only. Specifies the maximum value a user can enter for the
field.

MinValue Numeric fields only. Specifies the minimum value a user can enter for the
field.

Name Specifies the component name of the field component within C++Builder.

Origin Specifies the name of the field as it appears in the underlying database.

Precision Numeric fields only. Specifies the number of significant digits.

23-12 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Not all properties are available for all field components. For example, a field
component of type TStringField does not have Currency, MaxValue, or DisplayFormat
properties, and a component of type TFloatField does not have a Size property.

While the purpose of most properties is straightforward, some properties, such as
Calculated, require additional programming steps to be useful. Others, such as
DisplayFormat, EditFormat, and EditMask, are interrelated; their settings must be
coordinated. For more information about using DisplayFormat, EditFormat, and
EditMask, see “Controlling and masking user input” on page 23-14.

Setting field component properties at runtime
You can use and manipulate the properties of field component at runtime. Access
persistent field components by name, where the name can be obtained by
concatenating the field name to the dataset name.

For example, the following code sets the ReadOnly property for the CityStateZip field
in the Customers table to true:

CustomersCityStateZip->ReadOnly = true;

And this statement changes field ordering by setting the Index property of the
CityStateZip field in the Customers table to 3:

CustomersCityStateZip->Index = 3;

Creating attribute sets for field components
When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), it is more convenient to set the properties for a
single field, then store those properties as an attribute set in the Data Dictionary.
Attribute sets stored in the data dictionary can be easily applied to other fields.

Note Attribute sets and the Data Dictionary are only available for BDE-enabled datasets.

ReadOnly true: Displays field values in data-aware controls, but prevents editing.
false (the default): Permits display and editing of field values.

Size Specifies the maximum number of characters that can be displayed or
entered in a string-based field, or the size, in bytes, of TBytesField and
TVarBytesField fields.

Tag Long integer bucket available for programmer use in every component as
needed.

Transliterate true (default): specifies that translation to and from the respective locales
will occur as data is transferred between a dataset and a database.
false: Locale translation does not occur.

Visible true (the default): Permits display of field in a data-aware grid.
false: Prevents display of field in a data-aware grid component.
User-defined components can make display decisions based on this
property.

Table 23.3 Field component properties (continued)

Property Purpose

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-13

P e r s i s t e n t f i e l d c o m p o n e n t s

To create an attribute set based on a field component in a dataset:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to set properties.

3 Set the desired properties for the field in the Object Inspector.

4 Right-click the Fields editor list box to invoke the context menu.

5 Choose Save Attributes to save the current field’s property settings as an attribute
set in the Data Dictionary.

The name for the attribute set defaults to the name of the current field. You can
specify a different name for the attribute set by choosing Save Attributes As instead
of Save Attributes from the context menu.

Once you have created a new attribute set and added it to the Data Dictionary, you
can then associate it with other persistent field components. Even if you later remove
the association, the attribute set remains defined in the Data Dictionary.

Note You can also create attribute sets directly from the SQL Explorer. When you create an
attribute set using SQL Explorer, it is added to the Data Dictionary, but not applied to
any fields. SQL Explorer lets you specify two additional attributes: a field type (such
as TFloatField, TStringField, and so on) and a data-aware control (such as TDBEdit,
TDBCheckBox, and so on) that are automatically placed on a form when a field based
on the attribute set is dragged to the form. For more information, see the online help
for the SQL Explorer.

Associating attribute sets with field components
When several fields in the datasets used by your application share common
formatting properties (such as Alignment, DisplayWidth, DisplayFormat, EditFormat,
MaxValue, MinValue, and so on), and you have saved those property settings as
attribute sets in the Data Dictionary, you can easily apply the attribute sets to fields
without having to recreate the settings manually for each field. In addition, if you
later change the attribute settings in the Data Dictionary, those changes are
automatically applied to every field associated with the set the next time field
components are added to the dataset.

To apply an attribute set to a field component:

1 Double-click the dataset to invoke the Fields editor.

2 Select the field for which to apply an attribute set.

3 Invoke the context menu and choose Associate Attributes.

4 Select or enter the attribute set to apply from the Associate Attributes dialog box. If
there is an attribute set in the Data Dictionary that has the same name as the
current field, that set name appears in the edit box.

Important If the attribute set in the Data Dictionary is changed at a later date, you must reapply
the attribute set to each field component that uses it. You can invoke the Fields editor
and multi-select field components within a dataset when reapplying attributes.

23-14 D e v e l o p e r ’ s G u i d e

P e r s i s t e n t f i e l d c o m p o n e n t s

Removing attribute associations
If you change your mind about associating an attribute set with a field, you can
remove the association by following these steps:

1 Invoke the Fields editor for the dataset containing the field.

2 Select the field or fields from which to remove the attribute association.

3 Invoke the context menu for the Fields editor and choose Unassociate Attributes.

Important Unassociating an attribute set does not change any field properties. A field retains
the settings it had when the attribute set was applied to it. To change these
properties, select the field in the Fields editor and set its properties in the Object
Inspector.

Controlling and masking user input
The EditMask property provides a way to control the type and range of values a user
can enter into a data-aware component associated with TStringField, TDateField,
TTimeField, and TDateTimeField, and TSQLTimeStampField components. You can use
existing masks or create your own. The easiest way to use and create edit masks is
with the Input Mask editor. You can, however, enter masks directly into the EditMask
field in the Object Inspector.

Note For TStringField components, the EditMask property is also its display format.

To invoke the Input Mask editor for a field component:

1 Select the component in the Fields editor or Object Inspector.

2 Click the Properties page in the Object Inspector.

3 Double-click the values column for the EditMask field in the Object Inspector, or
click the ellipsis button. The Input Mask editor opens.

The Input Mask edit box lets you create and edit a mask format. The Sample Masks
grid lets you select from predefined masks. If you select a sample mask, the mask
format appears in the Input Mask edit box where you can modify it or use it as is.
You can test the allowable user input for a mask in the Test Input edit box.

The Masks button enables you to load a custom set of masks—if you have created
one—into the Sample Masks grid for easy selection.

Using default formatting for numeric, date, and time fields
C++Builder provides built-in display and edit format routines and intelligent default
formatting for TFloatField, TCurrencyField, TBCDField, TFMTBCDField, TIntegerField,
TSmallIntField, TWordField, TDateField, TDateTimeField, and TTimeField, and
TSQLTimeStampField components. To use these routines, you need do nothing.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-15

P e r s i s t e n t f i e l d c o m p o n e n t s

Default formatting is performed by the following routines:

Only format properties appropriate to the data type of a field component are
available for a given component.

Default formatting conventions for date, time, currency, and numeric values are
based on the Regional Settings properties in the Control Panel. For example, using
the default settings for the United States, a TFloatField column with the Currency
property set to true sets the DisplayFormat property for the value 1234.56 to $1234.56,
while the EditFormat is 1234.56.

At design time or runtime, you can edit the DisplayFormat and EditFormat properties
of a field component to override the default display settings for that field. You can
also write OnGetText and OnSetText event handlers to do custom formatting for field
components at runtime.

Handling events
Like most components, field components have events associated with them. Methods
can be assigned as handlers for these events. By writing these handlers you can react
to the occurrence of events that affect data entered in fields through data-aware
controls and perform actions of your own design. The following table lists the events
associated with field components:

OnGetText and OnSetText events are primarily useful to programmers who want to
do custom formatting that goes beyond the built-in formatting functions. OnChange
is useful for performing application-specific tasks associated with data change, such
as enabling or disabling menus or visual controls. OnValidate is useful when you
want to control data-entry validation in your application before returning values to a
database server.

Table 23.4 Field component formatting routines

Routine Used by . . .

FormatFloat TFloatField, TCurrencyField

FormatDateTime TDateField, TTimeField, TDateTimeField,

SQLTimeStampToString TSQLTimeStampField

FormatCurr TCurrencyField, TBCDField

BcdToStrF TFMTBCDField

Table 23.5 Field component events

Event Purpose

OnChange Called when the value for a field changes.

OnGetText Called when the value for a field component is retrieved for display or editing.

OnSetText Called when the value for a field component is set.

OnValidate Called to validate the value for a field component whenever the value is
changed because of an edit or insert operation.

23-16 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i e l d c o m p o n e n t m e t h o d s a t r u n t i m e

To write an event handler for a field component:

1 Select the component.

2 Select the Events page in the Object Inspector.

3 Double-click the Value field for the event handler to display its source code
window.

4 Create or edit the handler code.

Working with field component methods at runtime
Field components methods available at runtime enable you to convert field values
from one data type to another, and enable you to set focus to the first data-aware
control in a form that is associated with a field component.

Controlling the focus of data-aware components associated with a field is important
when your application performs record-oriented data validation in a dataset event
handler (such as BeforePost). Validation may be performed on the fields in a record
whether or not its associated data-aware control has focus. Should validation fail for
a particular field in the record, you want the data-aware control containing the faulty
data to have focus so that the user can enter corrections.

You control focus for a field’s data-aware components with a field’s FocusControl
method. FocusControl sets focus to the first data-aware control in a form that is
associated with a field. An event handler should call a field’s FocusControl method
before validating the field. The following code illustrates how to call the FocusControl
method for the Company field in the Customers table:

CustomersCompany->FocusControl();

The following table lists some other field component methods and their uses. For a
complete list and detailed information about using each method, see the entries for
TField and its descendants in the online VCL Reference.

Table 23.6 Selected field component methods

Method Purpose

AssignValue Sets a field value to a specified value using an automatic conversion function
based on the field’s type.

Clear Clears the field and sets its value to NULL.

GetData Retrieves unformatted data from the field.

IsValidChar Determines if a character entered by a user in a data-aware control to set a
value is allowed for this field.

SetData Assigns unformatted data to this field.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-17

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

Displaying, converting, and accessing field values
Data-aware controls such as TDBEdit and TDBGrid automatically display the values
associated with field components. If editing is enabled for the dataset and the
controls, data-aware controls can also send new and changed values to the database.
In general, the built-in properties and methods of data-aware controls enable them to
connect to datasets, display values, and make updates without requiring extra
programming on your part. Use them whenever possible in your database
applications. For more information about data-aware control, see Chapter 19, “Using
data controls.”

Standard controls can also display and edit database values associated with field
components. Using standard controls, however, may require additional
programming on your part. For example, when using standard controls, your
application is responsible for tracking when to update controls because field values
change. If the dataset has a datasource component, you can use its events to help you
do this. In particular, the OnDataChange event lets you know when you may need to
update a control’s value and the OnStateChange event can help you determine when
to enable or disable controls. For more information on these events, see “Responding
to changes mediated by the data source” on page 19-4.

The following topics discuss how to work with field values so that you can display
them in standard controls.

Displaying field component values in standard controls

An application can access the value of a dataset column through the Value property
of a field component. For example, the following OnDataChange event handler
updates the text in a TEdit control because the value of the CustomersCompany field
may have changed:

void __fastcall TForm1::Table1DataChange(TObject *Sender, TField *Field)
{

Edit3->Text = CustomersCompany->Value;
}

This method works well for string values, but may require additional programming
to handle conversions for other data types. Fortunately, field components have built-
in properties for handling conversions.

Note You can also use Variants to access and set field values. For more information about
using variants to access and set field values, see “Accessing field values with the
default dataset property” on page 23-19.

Converting field values

Conversion properties attempt to convert one data type to another. For example, the
AsString property converts numeric and Boolean values to string representations.

23-18 D e v e l o p e r ’ s G u i d e

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

The following table lists field component conversion properties, and which
properties are recommended for field components by field-component class:

Note that some columns in the table refer to more than one conversion property
(such as AsFloat, AsCurrency, and AsBCD). This is because all field data types that
support one of those properties always support the others as well.

Note also that the AsVariant property can translate among all data types. For any
datatypes not listed above, AsVariant is also available (and is, in fact, the only option).
When in doubt, use AsVariant.

In some cases, conversions are not always possible. For example, AsDateTime can be
used to convert a string to a date, time, or datetime format only if the string value is
in a recognizable datetime format. A failed conversion attempt raises an exception.

In some other cases, conversion is possible, but the results of the conversion are not
always intuitive. For example, what does it mean to convert a TDateTimeField value
into a float format? AsFloat converts the date portion of the field to the number of

AsVariant AsString AsInteger

AsFloat
AsCurrency
AsBCD

AsDateTime
AsSQLTimeStamp AsBoolean

TStringField yes NA yes yes yes yes

TWideStringField yes yes yes yes yes yes

TIntegerField yes yes NA yes

TSmallIntField yes yes yes yes

TWordField yes yes yes yes

TLargeintField yes yes yes yes

TFloatField yes yes yes yes

TCurrencyField yes yes yes yes

TBCDField yes yes yes yes

TFMTBCDField yes yes yes yes

TDateTimeField yes yes yes yes

TDateField yes yes yes yes

TTimeField yes yes yes yes

TSQLTimeStampField yes yes yes yes

TBooleanField yes yes

TBytesField yes yes

TVarBytesField yes yes

TBlobField yes yes

TMemoField yes yes

TGraphicField yes yes

TVariantField NA yes yes yes yes yes

TAggregateField yes yes

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-19

D i s p l a y i n g , c o n v e r t i n g , a n d a c c e s s i n g f i e l d v a l u e s

days since 12/31/1899, and it converts the time portion of the field to a fraction of 24
hours. Table 23.7 lists permissible conversions that produce special results:

In other cases, conversions are not possible at all. In these cases, attempting a
conversion also raises an exception.

Conversion always occurs before an assignment is made. For example, the following
statement converts the value of CustomersCustNo to a string and assigns the string to
the text of an edit control:

Edit1->Text = CustomersCustNo->AsString;

Conversely, the next statement assigns the text of an edit control to the
CustomersCustNo field as an integer:

MyTableMyField->AsInteger = StrToInt(Edit1->Text);

Accessing field values with the default dataset property

The most general method for accessing a field’s value is to use Variants with the
FieldValues property. For example, the following statement puts the value of an edit
box into the CustNo field in the Customers table:

Customers->FieldValues[“CustNo”] = Edit2->Text;

Because the FieldValues property is of type Variant, it automatically converts other
datatypes into a Variant value.

For more information about Variants, see the online help.

Accessing field values with a dataset’s Fields property

You can access the value of a field with the Fields property of the dataset component
to which the field belongs. Fields maintains an indexed list of all the fields in the
dataset. Accessing field values with the Fields property is useful when you need to
iterate over a number of columns, or if your application works with tables that are
not available to you at design time.

To use the Fields property you must know the order of and data types of fields in the
dataset. You use an ordinal number to specify the field to access. The first field in a
dataset is numbered 0. Field values must be converted as appropriate using each

Table 23.7 Special conversion results

Conversion Result

String to Boolean Converts “True,” “False,” “Yes,” and “No” to Boolean. Other values raise
exceptions.

Float to Integer Rounds float value to nearest integer value.

DateTime or
SQLTimeStamp
to Float

Converts date to number of days since 12/31/1899, time to a fraction of 24
hours.

Boolean to String Converts any Boolean value to “True” or “False.”

23-20 D e v e l o p e r ’ s G u i d e

S e t t i n g a d e f a u l t v a l u e f o r a f i e l d

field component’s conversion properties. For more information about field
component conversion properties, see “Converting field values” on page 23-17.

For example, the following statement assigns the current value of the seventh column
(Country) in the Customers table to an edit control:

Edit1->Text = CustTable->Fields->Fields[6]->AsString;

Conversely, you can assign a value to a field by setting the Fields property of the
dataset to the desired field. For example:

Customers->Edit();
Customers->Insert();
Customers->Fields->Fields[6]->AsString = Edit1->Text;
Customers->Post();

Accessing field values with a dataset’s FieldByName method

You can also access the value of a field with a dataset’s FieldByName method. This
method is useful when you know the name of the field you want to access, but do not
have access to the underlying table at design time.

To use FieldByName, you must know the dataset and name of the field you want to
access. You pass the field’s name as an argument to the method. To access or change
the field’s value, convert the result with the appropriate field component conversion
property, such as AsString or AsInteger. For example, the following statement assigns
the value of the CustNo field in the Customers dataset to an edit control:

Edit2->Text = Customers->FieldByName(“CustNo”)->AsString;

Conversely, you can assign a value to a field:

Customers->Edit();
Customers->FieldByName(“CustNo”)->AsString = Edit2->Text;
Customers->Post();

Setting a default value for a field
You can specify how a default value for a field in a client dataset or a BDE-enabled
dataset should be calculated at runtime using the DefaultExpression property.
DefaultExpression can be any valid SQL value expression that does not refer to field
values. If the expression contains literals other than numeric values, they must
appear in quotes. For example, a default value of noon for a time field would be

‘12:00:00’

including the quotes around the literal value.

Note If the underlying database table defines a default value for the field, the default you
specify in DefaultExpression takes precedence. That is because DefaultExpression is
applied when the dataset posts the record containing the field, before the edited
record is applied to the database server.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-21

W o r k i n g w i t h c o n s t r a i n t s

Working with constraints
Field components in client datasets or BDE-enabled datasets can use SQL server
constraints. In addition, your applications can create and use custom constraints for
these datasets that are local to your application. All constraints are rules or
conditions that impose a limit on the scope or range of values that a field can store.

Creating a custom constraint

A custom constraint is not imported from the server like other constraints. It is a
constraint that you declare, implement, and enforce in your local application. As
such, custom constraints can be useful for offering a prevalidation enforcement of
data entry, but a custom constraint cannot be applied against data received from or
sent to a server application.

To create a custom constraint, set the CustomConstraint property to specify a
constraint condition, and set ConstraintErrorMessage to the message to display when a
user violates the constraint at runtime.

CustomConstraint is an SQL string that specifies any application-specific constraints
imposed on the field’s value. Set CustomConstraint to limit the values that the user
can enter into a field. CustomConstraint can be any valid SQL search expression such
as

x > 0 and x < 100

The name used to refer to the value of the field can be any string that is not a reserved
SQL keyword, as long as it is used consistently throughout the constraint expression.

Note Custom constraints are only available in BDE-enabled and client datasets.

Custom constraints are imposed in addition to any constraints to the field’s value
that come from the server. To see the constraints imposed by the server, read the
ImportedConstraint property.

Using server constraints

Most production SQL databases use constraints to impose conditions on the possible
values for a field. For example, a field may not permit NULL values, may require that
its value be unique for that column, or that its values be greater than 0 and less than
150. While you could replicate such conditions in your client applications, client
datasets and BDE-enabled datasets offer the ImportedConstraint property to
propagate a server’s constraints locally.

ImportedConstraint is a read-only property that specifies an SQL clause that limits
field values in some manner. For example:

Value > 0 and Value < 100

Do not change the value of ImportedConstraint, except to edit nonstandard or server-
specific SQL that has been imported as a comment because it cannot be interpreted
by the database engine.

23-22 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

To add additional constraints on the field value, use the CustomConstraint property.
Custom constraints are imposed in addition to the imported constraints. If the server
constraints change, the value of ImportedConstraint also changed but constraints
introduced in the CustomConstraint property persist.

Removing constraints from the ImportedConstraint property will not change the
validity of field values that violate those constraints. Removing constraints results in
the constraints being checked by the server instead of locally. When constraints are
checked locally, the error message supplied as the ConstraintErrorMessage property is
displayed when violations are found, instead of displaying an error message from
the server.

Using object fields
Object fields are fields that represent a composite of other, simpler datatypes. These
include ADT (Abstract Data Type) fields, Array fields, DataSet fields, and Reference
fields. All of these field types either contain or reference child fields or other data
sets.

ADT fields and array fields are fields that contain child fields. The child fields of an
ADT field can be any scalar or object type (that is, any other field type). These child
fields may differ in type from each other. An array field contains an array of child
fields, all of the same type.

Dataset and reference fields are fields that access other data sets. A dataset field
provides access to a nested (detail) dataset and a reference field stores a pointer
(reference) to another persistent object (ADT).

When you add fields with the Fields editor to a dataset that contains object fields,
persistent object fields of the correct type are automatically created for you. Adding
persistent object fields to a dataset automatically sets the dataset’s ObjectView
property to true, which instructs the dataset to store these fields hierarchically, rather
than flattening them out as if the constituent child fields were separate, independent
fields.

Table 23.8 Types of object field components

Component name Purpose

TADTField Represents an ADT (Abstract Data Type) field.

TArrayField Represents an array field.

TDataSetField Represents a field that contains a nested data set reference.

TReferenceField Represents a REF field, a pointer to an ADT.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-23

U s i n g o b j e c t f i e l d s

The following properties are common to all object fields and provide the
functionality to handle child fields and datasets.

Displaying ADT and array fields

Both ADT and array fields contain child fields that can be displayed through data-
aware controls.

Data-aware controls such as TDBEdit that represent a single field value display child
field values in an uneditable comma delimited string. In addition, if you set the
control’s DataField property to the child field instead of the object field itself, the child
field can be viewed an edited just like any other normal data field.

A TDBGrid control displays ADT and array field data differently, depending on the
value of the dataset’s ObjectView property. When ObjectView is false, each child field
appears in a single column. When ObjectView is true, an ADT or array field can be
expanded and collapsed by clicking on the arrow in the title bar of the column. When
the field is expanded, each child field appears in its own column and title bar, all
below the title bar of the ADT or array itself. When the ADT or array is collapsed,
only one column appears with an uneditable comma-delimited string containing the
child fields.

Working with ADT fields

ADTs are user-defined types created on the server, and are similar to structures. An
ADT can contain most scalar field types, array fields, reference fields, and nested
ADTs.

There are a variety of ways to access the data in ADT field types. These are illustrated
in the following examples, which assign a child field value to an edit box called
CityEdit, and use the following ADT structure,

Address
Street
City
State
Zip

Table 23.9 Common object field descendant properties

Property Purpose

Fields Contains the child fields belonging to the object field.

ObjectType Classifies the object field.

FieldCount Number of child fields belonging to the object field.

FieldValues Provides access to the values of the child fields.

23-24 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Using persistent field components
The easiest way to access ADT field values is to use persistent field components. For
the ADT structure above, the following persistent fields can be added to the Customer
table using the Fields editor:

CustomerAddress: TADTField;
CustomerAddrStreet: TStringField;
CustomerAddrCity: TStringField;
CustomerAddrState: TStringField;
CustomerAddrZip: TStringField;

Given these persistent fields, you can simply access the child fields of an ADT field
by name:

CityEdit->Text = CustomerAddrCity->AsString;

Although persistent fields are the easiest way to access ADT child fields, it is not
possible to use them if the structure of the dataset is not known at design time. When
accessing ADT child fields without using persistent fields, you must set the dataset’s
ObjectView property to true.

Using the dataset’s FieldByName method
You can access the children of an ADT field using the dataset’s FieldByName method
by qualifying the name of the child field with the ADT field’s name:

CityEdit->Text = Customer->FieldByName(“Address.City”)->AsString;

Using the dateset’s FieldValues property
You can also use qualified field names with a dataset’s FieldValues property:

CityEdit->Text = Customer->FieldValues["Address.City"];

Note Unlike other runtime methods for accessing ADT child field values, the FieldValues
property works even if the dataset’s ObjectView property is false.

Using the ADT field’s FieldValues property
You can access the value of a child field with the TADTField’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert fields of any
type. The index parameter is an integer value that specifies the offset of the field.

CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->FieldValues[1];

Using the ADT field’s Fields property
Each ADT field has a Fields property that is analogous to the Fields property of a
dataset. Like the Fields property of a dataset, you can use it to access child fields by
position:

CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->Fields->
Fields[1]->AsString;

or by name:

CityEdit->Text = ((TADTField*)Customer->FieldByName("Address"))->
Fields->FieldByName("City")->AsString;

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-25

U s i n g o b j e c t f i e l d s

Working with array fields

Array fields consist of a set of fields of the same type. The field types can be scalar
(for example, float, string), or non-scalar (an ADT), but an array field of arrays is not
permitted. The SparseArrays property of TDataSet determines whether a unique
TField object is created for each element of the array field.

There are a variety of ways to access the data in array field types. If you are not using
persistent fields, the dataset’s ObjectView property must be set to true before you can
access the elements of an array field.

Using persistent fields
You can map persistent fields to the individual array elements in an array field. For
example, consider an array field TelNos_Array, which is a six element array of strings.
The following persistent fields created for the Customer table component represent
the TelNos_Array field and its six elements:

CustomerTELNOS_ARRAY: TArrayField;
CustomerTELNOS_ARRAY0: TStringField;
CustomerTELNOS_ARRAY1: TStringField;
CustomerTELNOS_ARRAY2: TStringField;
CustomerTELNOS_ARRAY3: TStringField;
CustomerTELNOS_ARRAY4: TStringField;
CustomerTELNOS_ARRAY5: TStringField;

Given these persistent fields, the following code uses a persistent field to assign an
array element value to an edit box named TelEdit.

TelEdit->Text = CustomerTELNOS_ARRAY0->AsString;

Using the array field’s FieldValues property
You can access the value of a child field with the array field’s FieldValues property.
FieldValues accepts and returns a Variant, so it can handle and convert child fields of
any type. For example,

TelEdit->Text = ((TArrayField*)Customer->FieldByName("TelNos_Array"))->FieldValues[1];

Using the array field’s Fields property
TArrayField has a Fields property that you can use to access individual sub-fields. This
is illustrated below, where an array field (OrderDates) is used to populate a list box
with all non-null array elements:

for (int i = 0; i < OrderDates->Size; ++i)
if (!OrderDates->Fields->Fields[i]->IsNull)

OrderDateListBox->Items->Add(OrderDates->Fields->Fields[i]->AsString);

Working with dataset fields

Dataset fields provide access to data stored in a nested dataset. The NestedDataSet
property references the nested dataset. The data in the nested dataset is then accessed
through the field objects of the nested dataset.

23-26 D e v e l o p e r ’ s G u i d e

U s i n g o b j e c t f i e l d s

Displaying dataset fields
TDBGrid controls enable the display of data stored in data set fields. In a TDBGrid
control, a dataset field is indicated in each cell of a dataset column with the string
“(DataSet)”, and at runtime an ellipsis button also exists to the right. Clicking on the
ellipsis brings up a new form with a grid displaying the dataset associated with the
current record’s dataset field. This form can also be brought up programmatically
with the DB grid’s ShowPopupEditor method. For example, if the seventh column in
the grid represents a dataset field, the following code will display the dataset
associated with that field for the current record.

DBGrid1->ShowPopupEditor(DBGrid1->Columns->Items[7], -1, -1);

Accessing data in a nested dataset
A dataset field is not normally bound directly to a data aware control. Rather, since a
nested data set is just that, a data set, the means to get at its data is via a TDataSet
descendant. The type of dataset you use is determined by the parent dataset (the one
with the dataset field.) For example, a BDE-enabled dataset uses TNestedTable to
represent the data in its dataset fields, while client datasets use other client datasets.

To access the data in a dataset field,

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the values in that dataset field. It must be of a type
compatible with the parent dataset.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the nested dataset field for the current record has a value, the detail dataset
component will contain records with the nested data; otherwise, the detail dataset
will be empty.

Before inserting records into a nested dataset, you should be sure to post the
corresponding record in the master table, if it has just been inserted. If the inserted
record is not posted, it will be automatically posted before the nested dataset posts.

Working with reference fields

Reference fields store a pointer or reference to another ADT object. This ADT object is
a single record of another object table. Reference fields always refer to a single record
in a dataset (object table). The data in the referenced object is actually returned in a
nested dataset, but can also be accessed via the Fields property on the TReferenceField.

Displaying reference fields
In a TDBGrid control a reference field is designated in each cell of the dataset column,
with (Reference) and, at runtime, an ellipsis button to the right. At runtime, clicking
on the ellipsis brings up a new form with a grid displaying the object associated with
the current record’s reference field.

W o r k i n g w i t h f i e l d c o m p o n e n t s 23-27

U s i n g o b j e c t f i e l d s

This form can also be brought up programmatically with the DB grid’s
ShowPopupEditor method. For example, if the seventh column in the grid represents a
reference field, the following code will display the object associated with that field
for the current record.

DBGrid1->ShowPopupEditor(DBGrid1->Columns->Items[7], -1, -1);

Accessing data in a reference field
You can access the data in a reference field in the same way you access a nested
dataset:

1 Create a persistent TDataSetField object by invoking the Fields editor for the parent
dataset.

2 Create a dataset to represent the value of that dataset field.

3 Set that DataSetField property of the dataset created in step 2 to the persistent
dataset field you created in step 1.

If the reference is assigned, the reference dataset will contain a single record with the
referenced data. If the reference is null, the reference dataset will be empty.

You can also use the reference field’s Fields property to access the data in a reference
field. For example, the following line assigns data from the reference field
CustomerRefCity to an edit box called CityEdit:

CityEdit->Text = CustomerADDRESS_REF->NestedDataSet->Fields->Fields[1]->AsString;

When data in a reference field is edited, it is actually the referenced data that is
modified.

To assign a reference field, you need to first use a SELECT statement to select the
reference from the table, and then assign. For example:

AddressQuery->SQL->Text = "SELECT REF(A) FROM AddressTable A WHERE A.City = 'San
Francisco'";
AddressQuery->Open();
CustomerAddressRef->Assign(AddressQuery->Fields->Fields[0]);

23-28 D e v e l o p e r ’ s G u i d e

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-1

C h a p t e r

24
Chapter24Using the Borland Database Engine

The Borland Database Engine (BDE) is a data-access mechanism that can be shared
by several applications. The BDE defines a powerful library of API calls that can
create, restructure, fetch data from, update, and otherwise manipulate local and
remote database servers. The BDE provides a uniform interface to access a wide
variety of database servers, using drivers to connect to different databases.
Depending on your version of C++Builder, you can use the drivers for local
databases (Paradox, dBASE, FoxPro, and Access), SQL Links drivers for remote
database servers such as InterBase, Oracle, Sybase, Informix, Microsoft SQL server,
and DB2, and an ODBC adapter that lets you supply your own ODBC drivers.

When deploying BDE-based applications, you must include the BDE with your
application. While this increases the size of the application and the complexity of
deployment, the BDE can be shared with other BDE-based applications and provides
a broad range of support for database manipulation. Although you can use the BDE’s
API directly in your application, the components on the BDE page of the Component
palette wrap most of this functionality for you.

Note For information on the BDE API, see its online help file, BDE32.hlp, which is installed
in the directory where you install the Borland Database Engine.

BDE-based architecture
When using the BDE, your application uses a variation of the general database
architecture described in “Database architecture” on page 18-5. In addition to the
user interface elements, datasource, and datasets common to all C++Builder database
applications, A BDE-based application can include

• One or more database components to control transactions and to manage database
connections.

• One or more session components to isolate data access operations such as database
connections, and to manage groups of databases.

24-2 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

The relationships between the components in a BDE-based application are illustrated
in Figure 24.1:

Figure 24.1 Components in a BDE-based application

Using BDE-enabled datasets

BDE-enabled datasets use the Borland Database Engine (BDE) to access data. They
inherit the common dataset capabilities described in Chapter 22, “Understanding
datasets,” using the BDE to provide the implementation. In addition, all BDE
datasets add properties, events, and methods for

• Associating a dataset with database and session connections.
• Caching BLOBs.
• Obtaining a BDE handle.

There are three BDE-enabled datasets:

• TTable, a table type dataset that represents all of the rows and columns of a single
database table. See “Using table type datasets” on page 22-25 for a description of
features common to table type datasets. See “Using TTable” on page 24-4 for a
description of features unique to TTable.

• TQuery, a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type
datasets” on page 22-41 for a description of features common to query-type
datasets. See “Using TQuery” on page 24-8 for a description of features unique to
TQuery.

• TStoredProc, a stored procedure-type dataset that executes a stored procedure that
is defined on a database server. See “Using stored procedure-type datasets” on
page 22-48 for a description of features common to stored procedure-type
datasets. See “Using TStoredProc” on page 24-11 for a description of features
unique to TStoredProc.

Note In addition to the three types of BDE-enabled datasets, there is a BDE-based client
dataset (TBDEClientDataSet) that can be used for caching updates. For information on
caching updates, see “Using a client dataset to cache updates” on page 27-15.

user
interface
elements

data source

Borland
Database
Engine

Session

database

dataset

datasetdata source

Data ModuleForm

database

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-3

B D E - b a s e d a r c h i t e c t u r e

Associating a dataset with database and session connections
In order for a BDE-enabled dataset to fetch data from a database server it needs to
use both a database and a session.

• Databases represent connections to specific database servers. The database
identifies a BDE driver, a particular database server that uses that driver, and a set
of connection parameters for connecting to that database server. Each database is
represented by a TDatabase component. You can either associate your datasets
with a TDatabase component you add to a form or data module, or you can simply
identify the database server by name and let C++Builder generate an implicit
database component for you. Using an explicitly-created TDatabase component is
recommended for most applications, because the database component gives you
greater control over how the connection is established, including the login process,
and lets you create and use transactions.

To associate a BDE-enabled dataset with a database, use the DatabaseName
property. DatabaseName is a string that contains different information, depending
on whether you are using an explicit database component and, if not, the type of
database you are using:

• If you are using an explicit TDatabase component, DatabaseName is the value of
the DatabaseName property of the database component.

• If you are want to use an implicit database component and the database has a
BDE alias, you can specify a BDE alias as the value of DatabaseName. A BDE
alias represents a database plus configuration information for that database.
The configuration information associated with an alias differs by database type
(Oracle, Sybase, InterBase, Paradox, dBASE, and so on). Use the BDE
Administration tool or the SQL explorer to create and manage BDE aliases.

• If you want to use an implicit database component for a Paradox or dBASE
database, you can also use DatabaseName to simply specify the directory where
the database tables are located.

• A session provides global management for a group of database connections in an
application. When you add BDE-enabled datasets to your application, your
application automatically contains a session component, named Session. As you
add database and dataset components to the application, they are automatically
associated with this default session. It also controls access to password protected
Paradox files, and it specifies directory locations for sharing Paradox files over a
network. You can control database connections and access to Paradox files using
the properties, events, and methods of the session.

You can use the default session to control all database connections in your
application. Alternatively, you can add additional session components at design
time or create them dynamically at runtime to control a subset of database
connections in an application. To associate your dataset with an explicitly created
session component, use the SessionName property. If you do not use explicit
session components in your application, you do not have to provide a value for
this property. Whether you use the default session or explicitly specify a session
using the SessionName property, you can access the session associated with a
dataset by reading the DBSession property.

24-4 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Note If you use a session component, the SessionName property of a dataset must match the
SessionName property for the database component with which the dataset is
associated.

For more information about TDatabase and TSession, see “Connecting to databases
with TDatabase” on page 24-12 and “Managing database sessions” on page 24-16.

Caching BLOBs
BDE-enabled datasets all have a CacheBlobs property that controls whether BLOB
fields are cached locally by the BDE when an application reads BLOB records. By
default, CacheBlobs is true, meaning that the BDE caches a local copy of BLOB fields.
Caching BLOBs improves application performance by enabling the BDE to store local
copies of BLOBs instead of fetching them repeatedly from the database server as a
user scrolls through records.

In applications and environments where BLOBs are frequently updated or replaced,
and a fresh view of BLOB data is more important than application performance, you
can set CacheBlobs to false to ensure that your application always sees the latest
version of a BLOB field.

Obtaining a BDE handle
You can use BDE-enabled datasets without ever needing to make direct API calls to
the Borland Database Engine. The BDE-enabled datasets, in combination with
database and session components, encapsulate much of the BDE functionality.
However, if you need to make direct API calls to the BDE, you may need BDE
handles for resources managed by the BDE. Many BDE APIs require these handles as
parameters.

All BDE-enabled datasets include three read-only properties for accessing BDE
handles at runtime:

• Handle is a handle to the BDE cursor that accesses the records in the dataset.

• DBHandle is a handle to the database that contains the underlying tables or stored
procedure.

• DBLocale is a handle to the BDE language driver for the dataset. The locale controls
the sort order and character set used for string data.

These properties are automatically assigned to a dataset when it is connected to a
database server through the BDE. For more information about the BDE API, see the
online help file, BDE32.HLP.

Using TTable

TTable encapsulates the full structure of and data in an underlying database table. It
implements all of the basic functionality introduced by TDataSet, as well as all of the
special features typical of table type datasets. Before looking at the unique features
introduced by TTable, you should familiarize yourself with the common database
features described in “Understanding datasets,” including the section on table type
datasets that starts on page 22-25.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-5

B D E - b a s e d a r c h i t e c t u r e

Because TTable is a BDE-enabled dataset, it must be associated with a database and a
session. “Associating a dataset with database and session connections” on page 24-3
describes how you form these associations. Once the dataset is associated with a
database and session, you can bind it to a particular database table by setting the
TableName property and, if you are using a Paradox, dBASE, FoxPro, or comma-
delimited ASCII text table, the TableType property.

Note The table must be closed when you change its association to a database, session, or
database table, or when you set the TableType property. However, before you close
the table to change these properties, first post or discard any pending changes. If
cached updates are enabled, call the ApplyUpdates method to write the posted
changes to the database.

TTable components are unique in the support they offer for local database tables
(Paradox, dBASE, FoxPro, and comma-delimited ASCII text tables). The following
topics describe the special properties and methods that implement this support.

In addition, TTable components can take advantage of the BDE’s support for batch
operations (table level operations to append, update, delete, or copy entire groups of
records). This support is described in “Importing data from another table” on
page 24-7.

Specifying the table type for local tables
If an application accesses Paradox, dBASE, FoxPro, or comma-delimited ASCII text
tables, then the BDE uses the TableType property to determine the table’s type (its
expected structure). TableType is not used when TTable represents an SQL-based table
on a database server.

By default TableType is set to ttDefault. When TableType is ttDefault, the BDE
determines a table’s type from its filename extension. Table 24.1 summarizes the file
extensions recognized by the BDE and the assumptions it makes about a table’s type:

If your local Paradox, dBASE, and ASCII text tables use the file extensions as
described in Table 24.1, then you can leave TableType set to ttDefault. Otherwise, your
application must set TableType to indicate the correct table type. Table 24.2 indicates
the values you can assign to TableType:

Table 24.1 Table types recognized by the BDE based on file extension

Extension Table type

No file extension Paradox

.DB Paradox

.DBF dBASE

.TXT ASCII text

Table 24.2 TableType values

Value Table type

ttDefault Table type determined automatically by the BDE

ttParadox Paradox

24-6 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Controlling read/write access to local tables
Like any table type dataset, TTable lets you control read and write access by your
application using the ReadOnly property.

In addition, for Paradox, dBASE, and FoxPro tables, TTable can let you control read
and write access to tables by other applications. The Exclusive property controls
whether your application gains sole read/write access to a Paradox, dBASE, or
FoxPro table. To gain sole read/write access for these table types, set the table
component’s Exclusive property to true before opening the table. If you succeed in
opening a table for exclusive access, other applications cannot read data from or
write data to the table. Your request for exclusive access is not honored if the table is
already in use when you attempt to open it.

The following statements open a table for exclusive access:

CustomersTable->Exclusive = true; // Set request for exclusive lock
CustomersTable->Active = true; // Now open the table

Note You can attempt to set Exclusive on SQL tables, but some servers do not support
exclusive table-level locking. Others may grant an exclusive lock, but permit other
applications to read data from the table. For more information about exclusive
locking of database tables on your server, see your server documentation.

Specifying a dBASE index file
For most servers, you use the methods common to all table type datasets to specify
an index. These methods are described in “Sorting records with indexes” on
page 22-26.

For dBASE tables that use non-production index files or dBASE III PLUS-style
indexes (*.NDX), however, you must use the IndexFiles and IndexName properties
instead. Set the IndexFiles property to the name of the non-production index file or list
the .NDX files. Then, specify one index in the IndexName property to have it actively
sorting the dataset.

At design time, click the ellipsis button in the IndexFiles property value in the Object
Inspector to invoke the Index Files editor. To add one non-production index file or
.NDX file: click the Add button in the Index Files dialog and select the file from the
Open dialog. Repeat this process once for each non-production index file or .NDX
file. Click the OK button in the Index Files dialog after adding all desired indexes.

This same operation can be performed programmatically at runtime. To do this,
access the IndexFiles property using properties and methods of string lists. When
adding a new set of indexes, first call the Clear method of the table’s IndexFiles

ttDBase dBASE

ttFoxPro FoxPro

ttASCII Comma-delimited ASCII text

Table 24.2 TableType values (continued)

Value Table type

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-7

B D E - b a s e d a r c h i t e c t u r e

property to remove any existing entries. Call the Add method to add each non-
production index file or .NDX file:

Table2->IndexFiles->Clear();
Table2->IndexFiles->Add("Bystate.ndx");
Table2->IndexFiles->Add("Byzip.ndx");
Table2->IndexFiles->Add("Fullname.ndx");
Table2->IndexFiles->Add("St_name.ndx");

After adding any desired non-production or .NDX index files, the names of
individual indexes in the index file are available, and can be assigned to the
IndexName property. The index tags are also listed when using the GetIndexNames
method and when inspecting index definitions through the TIndexDef objects in the
IndexDefs property. Properly listed .NDX files are automatically updated as data is
added, changed, or deleted in the table (regardless of whether a given index is used
in the IndexName property).

In the example below, the IndexFiles for the AnimalsTable table component is set to the
non-production index file ANIMALS.MDX, and then its IndexName property is set to
the index tag called “NAME”:

AnimalsTable->IndexFiles->Add(“ANIMALS.MDX”);
AnimalsTable->IndexName = "NAME";

Once you have specified the index file, using non-production or .NDX indexes works
the same as any other index. Specifying an index name sorts the data in the table and
makes it available for indexed-based searches, ranges, and (for non-production
indexes) master-detail linking. See “Using table type datasets” on page 22-25 for
details on these uses of indexes.

There are two special considerations when using dBASE III PLUS-style .NDX indexes
with TTable components. The first is that .NDX files cannot be used as the basis for
master-detail links. The second is that when activating a .NDX index with the
IndexName property, you must include the .NDX extension in the property value as
part of the index name:

Table1->IndexName = "ByState.NDX";
TVarRec vr = ("NE");
Table1->FindKey(&vr, 0);

Renaming local tables
To rename a Paradox or dBASE table at design time, right-click the table component
and select Rename Table from the context menu.

To rename a Paradox or dBASE table at runtime, call the table’s RenameTable method.
For example, the following statement renames the Customer table to CustInfo:

Customer->RenameTable(“CustInfo”);

Importing data from another table
You can use a table component’s BatchMove method to import data from another
table. BatchMove can

• Copy records from another table into this table.

24-8 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

• Update records in this table that occur in another table.

• Append records from another table to the end of this table.

• Delete records in this table that occur in another table.

BatchMove takes two parameters: the name of the table from which to import data,
and a mode specification that determines which import operation to perform. Table
24.3 describes the possible settings for the mode specification:

For example, the following code updates all records in the current table with records
from the Customer table that have the same values for fields in the current index:

Table1->BatchMove(“CUSTOMER.DB”, batUpdate);

BatchMove returns the number of records it imports successfully.

Caution Importing records using the batCopy mode overwrites existing records. To preserve
existing records use batAppend instead.

BatchMove performs only some of the batch operations supported by the BDE.
Additional functions are available using the TBatchMove component. If you need to
move a large amount of data between or among tables, use TBatchMove instead of
calling a table’s BatchMove method. For information about using TBatchMove, see
“Using TBatchMove” on page 24-47.

Using TQuery

TQuery represents a single Data Definition Language (DDL) or Data Manipulation
Language (DML) statement (For example, a SELECT, INSERT, DELETE, UPDATE,
CREATE INDEX, or ALTER TABLE command). The language used in commands is
server-specific, but usually compliant with the SQL-92 standard for the SQL
language. TQuery implements all of the basic functionality introduced by TDataSet,
as well as all of the special features typical of query-type datasets. Before looking at
the unique features introduced by TQuery, you should familiarize yourself with the
common database features described in “Understanding datasets,” including the
section on query-type datasets that starts on page 22-41.

Because TQuery is a BDE-enabled dataset, it must usually be associated with a
database and a session. (The one exception is when you use the TQuery for a
heterogeneous query.) “Associating a dataset with database and session

Table 24.3 BatchMove import modes

Value Meaning

batAppend Append all records from the source table to the end of this table.

batAppendUpdate Append all records from the source table to the end of this table and update
existing records in this table with matching records from the source table.

batCopy Copy all records from the source table into this table.

batDelete Delete all records in this table that also appear in the source table.

batUpdate Update existing records in this table with matching records from the source
table.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-9

B D E - b a s e d a r c h i t e c t u r e

connections” on page 24-3 describes how you form these associations. You specify
the SQL statement for the query by setting the SQL property.

A TQuery component can access data in:

• Paradox or dBASE tables, using Local SQL, which is part of the BDE. Local SQL is
a subset of the SQL-92 specification. Most DML is supported and enough DDL
syntax to work with these types of tables. See the local SQL help,
LOCALSQL.HLP, for details on supported SQL syntax.

• Local InterBase Server databases, using the InterBase engine. For information on
InterBase’s SQL-92 standard SQL syntax support and extended syntax support,
see the InterBase Language Reference.

• Databases on remote database servers such as Oracle, Sybase, MS-SQL Server,
Informix, DB2, and InterBase. You must install the appropriate SQL Link driver
and client software (vendor-supplied) specific to the database server to access a
remote server. Any standard SQL syntax supported by these servers is allowed.
For information on SQL syntax, limitations, and extensions, see the documentation
for your particular server.

Creating heterogeneous queries
TQuery supports heterogeneous queries against more than one server or table type
(for example, data from an Oracle table and a Paradox table). When you execute a
heterogeneous query, the BDE parses and processes the query using Local SQL.
Because BDE uses Local SQL, extended, server-specific SQL syntax is not supported.

To perform a heterogeneous query, follow these steps:

1 Define separate BDE aliases for each database accessed in the query using the BDE
BDE Administration tool or the SQL explorer.

2 Leave the DatabaseName property of the TQuery blank; the names of the databases
used will be specified in the SQL statement.

3 In the SQL property, specify the SQL statement to execute. Precede each table
name in the statement with the BDE alias for the table’s database, enclosed in
colons. This whole reference is then enclosed in quotation marks.

4 Set any parameters for the query in the Params property.

5 Call Prepare to prepare the query for execution prior to executing it for the first
time.

6 Call Open or ExecSQL depending on the type of query you are executing.

For example, suppose you define an alias called Oracle1 for an Oracle database that
has a CUSTOMER table, and Sybase1 for a Sybase database that has an ORDERS
table. A simple query against these two tables would be:

SELECT Customer.CustNo, Orders.OrderNo
FROM ”:Oracle1:CUSTOMER”

JOIN ”:Sybase1:ORDERS”
ON (Customer.CustNo = Orders.CustNo)

WHERE (Customer.CustNo = 1503)

24-10 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

As an alternative to using a BDE alias to specify the database in a heterogeneous
query, you can use a TDatabase component. Configure the TDatabase as normal to
point to the database, set the TDatabase::DatabaseName to an arbitrary but unique
value, and then use that value in the SQL statement instead of a BDE alias name.

Obtaining an editable result set
To request a result set that users can edit in data-aware controls, set a query
component’s RequestLive property to true. Setting RequestLive to true does not
guarantee a live result set, but the BDE attempts to honor the request whenever
possible. There are some restrictions on live result set requests, depending on
whether the query uses the local SQL parser or a server’s SQL parser.

• Queries where table names are preceded by a BDE database alias (as in
heterogeneous queries) and queries executed against Paradox or dBASE are
parsed by the BDE using Local SQL. When queries use the local SQL parser, the
BDE offers expanded support for updatable, live result sets in both single table
and multi-table queries. When using Local SQL, a live result set for a query against
a single table or view is returned if the query does not contain any of the
following:

• DISTINCT in the SELECT clause
• Joins (inner, outer, or UNION)
• Aggregate functions with or without GROUP BY or HAVING clauses
• Base tables or views that are not updatable
• Subqueries
• ORDER BY clauses not based on an index

• Queries against a remote database server are parsed by the server. If the
RequestLive property is set to true, the SQL statement must abide by Local SQL
standards in addition to any server-imposed restrictions because the BDE needs to
use it for conveying data changes to the table. A live result set for a query against a
single table or view is returned if the query does not contain any of the following:

• A DISTINCT clause in the SELECT statement
• Aggregate functions, with or without GROUP BY or HAVING clauses
• References to more than one base table or updatable views (joins)
• Subqueries that reference the table in the FROM clause or other tables

If an application requests and receives a live result set, the CanModify property of the
query component is set to true. Even if the query returns a live result set, you may
not be able to update the result set directly if it contains linked fields or you switch
indexes before attempting an update. If these conditions exist, you should treat the
result set as a read-only result set, and update it accordingly.

If an application requests a live result set, but the SELECT statement syntax does not
allow it, the BDE returns either

• A read-only result set for queries made against Paradox or dBASE.
• An error code for SQL queries made against a remote server.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-11

B D E - b a s e d a r c h i t e c t u r e

Updating read-only result sets
Applications can update data returned in a read-only result set if they are using
cached updates.

If you are using a client dataset to cache updates, the client dataset or its associated
provider can automatically generate the SQL for applying updates unless the query
represents multiple tables. If the query represents multiple tables, you must indicate
how to apply the updates:

• If all updates are applied to a single database table, you can indicate the
underlying table to update in an OnGetTableName event handler.

• If you need more control over applying updates, you can associate the query with
an update object (TUpdateSQL). A provider automatically uses this update object
to apply updates:

1 Associate the update object with the query by setting the query’s UpdateObject
property to the TUpdateSQL object you are using.

2 Set the update object’s ModifySQL, InsertSQL, and DeleteSQL properties to SQL
statements that perform the appropriate updates for your query’s data.

If you are using the BDE to cache updates, you must use an update object.

Note For more information on using update objects, see “Using update objects to update a
dataset” on page 24-39.

Using TStoredProc

TStoredProc represents a stored procedure. It implements all of the basic functionality
introduced by TDataSet, as well as most of the special features typical of stored
procedure-type datasets. Before looking at the unique features introduced by
TStoredProc, you should familiarize yourself with the common database features
described in “Understanding datasets,” including the section on stored procedure-
type datasets that starts on page 22-48.

Because TStoredProc is a BDE-enabled dataset, it must be associated with a database
and a session. “Associating a dataset with database and session connections” on
page 24-3 describes how you form these associations. Once the dataset is associated
with a database and session, you can bind it to a particular stored procedure by
setting the StoredProcName property.

TStoredProc differs from other stored procedure-type datasets in the following ways:

• It gives you greater control over how to bind parameters.
• It provides support for Oracle overloaded stored procedures.

Binding parameters
When you prepare and execute a stored procedure, its input parameters are
automatically bound to parameters on the server.

TStoredProc lets you use the ParamBindMode property to specify how parameters
should be bound to the parameters on the server. By default ParamBindMode is set to

24-12 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

pbByName, meaning that parameters from the stored procedure component are
matched to those on the server by name. This is the easiest method of binding
parameters.

Some servers also support binding parameters by ordinal value, the order in which
the parameters appear in the stored procedure. In this case the order in which you
specify parameters in the parameter collection editor is significant. The first
parameter you specify is matched to the first input parameter on the server, the
second parameter is matched to the second input parameter on the server, and so on.
If your server supports parameter binding by ordinal value, you can set
ParamBindMode to pbByNumber.

Tip If you want to set ParamBindMode to pbByNumber, you need to specify the correct
parameter types in the correct order. You can view a server’s stored procedure source
code in the SQL Explorer to determine the correct order and type of parameters to
specify.

Working with Oracle overloaded stored procedures
Oracle servers allow overloading of stored procedures; overloaded procedures are
different procedures with the same name. The stored procedure component’s
Overload property enables an application to specify the procedure to execute.

If Overload is zero (the default), there is assumed to be no overloading. If Overload is
one (1), then the stored procedure component executes the first stored procedure it
finds on the Oracle server that has the overloaded name; if it is two (2), it executes the
second, and so on.

Note Overloaded stored procedures may take different input and output parameters. See
your Oracle server documentation for more information.

Connecting to databases with TDatabase

When a C++Builder application uses the Borland Database Engine (BDE) to connect
to a database, that connection is encapsulated by a TDatabase component. A database
component represents the connection to a single database in the context of a BDE
session.

TDatabase performs many of the same tasks as and shares many common properties,
methods, and events with other database connection components. These
commonalities are described in Chapter 21, “Connecting to databases.”

In addition to the common properties, methods, and events, TDatabase introduces
many BDE-specific features. These features are described in the following topics.

Associating a database component with a session
All database components must be associated with a BDE session. Use the
SessionName, establish this association. When you first create a database component
at design time, SessionName is set to “Default”, meaning that it is associated with the
default session component that is referenced by the global Session variable.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-13

B D E - b a s e d a r c h i t e c t u r e

Multi-threaded or reentrant BDE applications may require more than one session. If
you need to use multiple sessions, add TSession components for each session. Then,
associate your dataset with a session component by setting the SessionName property
to a session component’s SessionName property.

At runtime, you can access the session component with which the database is
associated by reading the Session property. If SessionName is blank or “Default”, then
the Session property references the same TSession instance referenced by the global
Session variable. Session enables applications to access the properties, methods, and
events of a database component’s parent session component without knowing the
session’s actual name.

For more information about BDE sessions, see “Managing database sessions” on
page 24-16.

If you are using an implicit database component, the session for that database
component is the one specified by the dataset’s SessionName property.

Understanding database and session component interactions
In general, session component properties provide global, default behaviors that
apply to all implicit database components created at runtime. For example, the
controlling session’s KeepConnections property determines whether a database
connection is maintained even if its associated datasets are closed (the default), or if
the connections are dropped when all its datasets are closed. Similarly, the default
OnPassword event for a session guarantees that when an application attempts to
attach to a database on a server that requires a password, it displays a standard
password prompt dialog box.

Session methods apply somewhat differently. TSession methods affect all database
components, regardless of whether they are explicitly created or instantiated
implicitly by a dataset. For example, the session method DropConnections closes all
datasets belonging to a session’s database components, and then drops all database
connections, even if the KeepConnection property for individual database components
is true.

Database component methods apply only to the datasets associated with a given
database component. For example, suppose the database component Database1 is
associated with the default session. Database1->CloseDataSets() closes only those
datasets associated with Database1. Open datasets belonging to other database
components within the default session remain open.

Identifying the database
AliasName and DriverName are mutually exclusive properties that identify the
database server to which the TDatabase component connects.

• AliasName specifies the name of an existing BDE alias to use for the database
component. The alias appears in subsequent drop-down lists for dataset
components so that you can link them to a particular database component. If you
specify AliasName for a database component, any value already assigned to
DriverName is cleared because a driver name is always part of a BDE alias.

24-14 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

You create and edit BDE aliases using the Database Explorer or the BDE
Administration utility. For more information about creating and maintaining BDE
aliases, see the online documentation for these utilities.

• DriverName is the name of a BDE driver. A driver name is one parameter in a BDE
alias, but you may specify a driver name instead of an alias when you create a
local BDE alias for a database component using the DatabaseName property. If you
specify DriverName, any value already assigned to AliasName is cleared to avoid
potential conflicts between the driver name you specify and the driver name that
is part of the BDE alias identified in AliasName.

DatabaseName lets you provide your own name for a database connection. The name
you supply is in addition to AliasName or DriverName, and is local to your
application. DatabaseName can be a BDE alias, or, for Paradox and dBASE files, a
fully-qualified path name. Like AliasName, DatabaseName appears in subsequent
drop-down lists for dataset components to let you link them to database components.

At design time, to specify a BDE alias, assign a BDE driver, or create a local BDE alias,
double-click a database component to invoke the Database Properties editor.

You can enter a DatabaseName in the Name edit box in the properties editor. You can
enter an existing BDE alias name in the Alias name combo box for the Alias property,
or you can choose from existing aliases in the drop-down list. The Driver name
combo box enables you to enter the name of an existing BDE driver for the
DriverName property, or you can choose from existing driver names in the drop-
down list.

Note The Database Properties editor also lets you view and set BDE connection
parameters, and set the states of the LoginPrompt and KeepConnection properties. For
information on connection parameters, see “Setting BDE alias parameters” below.
For information on LoginPrompt, see “Controlling server login” on page 21-4. For
information on KeepConnection see “Opening a connection using TDatabase” on
page 24-15.

Setting BDE alias parameters
At design time you can create or edit connection parameters in three ways:

• Use the Database Explorer or BDE Administration utility to create or modify BDE
aliases, including parameters. For more information about these utilities, see their
online Help files.

• Double-click the Params property in the Object Inspector to invoke the String List
editor.

• Double-click a database component in a data module or form to invoke the
Database Properties editor.

All of these methods edit the Params property for the database component. Params is
a string list containing the database connection parameters for the BDE alias
associated with a database component. Some typical connection parameters include
path statement, server name, schema caching size, language driver, and SQL query
mode.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-15

B D E - b a s e d a r c h i t e c t u r e

When you first invoke the Database Properties editor, the parameters for the BDE
alias are not visible. To see the current settings, click Defaults. The current
parameters are displayed in the Parameter overrides memo box. You can edit
existing entries or add new ones. To clear existing parameters, click Clear. Changes
you make take effect only when you click OK.

At runtime, an application can set alias parameters only by editing the Params
property directly. For more information about parameters specific to using SQL
Links drivers with the BDE, see your online SQL Links help file.

Opening a connection using TDatabase
As with all database connection components, to connect to a database using
TDatabase, you set the Connected property to true or call the Open method. This
process is described in “Connecting to a database server” on page 21-3. Once a
database connection is established the connection is maintained as long as there is at
least one active dataset. When there are no more active datasets, the connection is
dropped unless the database component’s KeepConnection property is true.

When you connect to a remote database server from an application, the application
uses the BDE and the Borland SQL Links driver to establish the connection. (The BDE
can also communicate with an ODBC driver that you supply.) You need to configure
the SQL Links or ODBC driver for your application prior to making the connection.
SQL Links and ODBC parameters are stored in the Params property of a database
component. For information about SQL Links parameters, see the online SQL Links
User’s Guide. To edit the Params property, see “Setting BDE alias parameters” on
page 24-14.

Working with network protocols
As part of configuring the appropriate SQL Links or ODBC driver, you may need to
specify the network protocol used by the server, such as SPX/IPX or TCP/IP,
depending on the driver’s configuration options. In most cases, network protocol
configuration is handled using a server’s client setup software. For ODBC it may also
be necessary to check the driver setup using the ODBC driver manager.

Establishing an initial connection between client and server can be problematic. The
following troubleshooting checklist should be helpful if you encounter difficulties:

• Is your server’s client-side connection properly configured?

• Are the DLLs for your connection and database drivers in the search path?

• If you are using TCP/IP:

• Is your TCP/IP communications software installed? Is the proper
WINSOCK.DLL installed?

• Is the server’s IP address registered in the client’s HOSTS file?

• Is the Domain Name Services (DNS) properly configured?

• Can you ping the server?

For more troubleshooting information, see the online SQL Links User’s Guide and
your server documentation.

24-16 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Using ODBC
An application can use ODBC data sources (for example, Btrieve). An ODBC driver
connection requires

• A vendor-supplied ODBC driver.

• The Microsoft ODBC Driver Manager.

• The BDE Administration utility.

To set up a BDE alias for an ODBC driver connection, use the BDE Administration
utility. For more information, see the BDE Administration utility’s online help file.

Using database components in data modules
You can safely place database components in data modules. If you put a data module
that contains a database component into the Object Repository, however, and you
want other users to be able to inherit from it, you must set the HandleShared property
of the database component to true to prevent global name space conflicts.

Managing database sessions

An BDE-based application’s database connections, drivers, cursors, queries, and so
on are maintained within the context of one or more BDE sessions. Sessions isolate a
set of database access operations, such as database connections, without the need to
start another instance of the application.

All BDE-based database applications automatically include a default session
component, named Session, that encapsulates the default BDE session. When
database components are added to the application, they are automatically associated
with the default session (note that its SessionName is “Default”). The default session
provides global control over all database components not associated with another
session, whether they are implicit (created by the session at runtime when you open a
dataset that is not associated with a database component you create) or persistent
(explicitly created by your application). The default session is not visible in your data
module or form at design time, but you can access its properties and methods in your
code at runtime.

To use the default session, you need write no code unless your application must

• Explicitly activate or deactivate a session, enabling or disabling the session’s
databases’ ability to open.

• Modify the properties of the session, such as specifying default properties for
implicitly generated database components.

• Execute a session’s methods, such as managing database connections (for example
opening and closing database connections in response to user actions).

• Respond to session events, such as when the application attempts to access a
password-protected Paradox or dBASE table.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-17

B D E - b a s e d a r c h i t e c t u r e

• Set Paradox directory locations such as the NetFileDir property to access Paradox
tables on a network and the PrivateDir property to a local hard drive to speed
performance.

• Manage the BDE aliases that describe possible database connection configurations
for databases and datasets that use the session.

Whether you add database components to an application at design time or create
them dynamically at runtime, they are automatically associated with the default
session unless you specifically assign them to a different session. If you open a
dataset that is not associated with a database component, C++Builder automatically

• Creates a database component for it at runtime.

• Associates the database component with the default session.

• Initializes some of the database component’s key properties based on the default
session’s properties. Among the most important of these properties is
KeepConnections, which determines when database connections are maintained or
dropped by an application.

The default session provides a widely applicable set of defaults that can be used as is
by most applications. You need only associate a database component with an
explicitly named session if the component performs a simultaneous query against a
database already opened by the default session. In this case, each concurrent query
must run under its own session. Multi-threaded database applications also require
multiple sessions, where each thread has its own session.

Applications can create additional session components as needed. BDE-based
database applications automatically include a session list component, named
Sessions, that you can use to manage all of your session components. For more
information about managing multiple sessions see, “Managing multiple sessions” on
page 24-28.

You can safely place session components in data modules. If you put a data module
that contains one or more session components into the Object Repository, however,
make sure to set the AutoSessionName property to true to avoid namespace conflicts
when users inherit from it.

Activating a session
Active is a Boolean property that determines if database and dataset components
associated with a session are open. You can use this property to read the current state
of a session’s database and dataset connections, or to change it. If Active is false (the
default), all databases and datasets associated with the session are closed. If true,
databases and datasets are open.

A session is activated when it is first created, and subsequently, whenever its Active
property is changed to true from false (for example, when a database or dataset is
associated with a session is opened and there are currently no other open databases or
datasets). Setting Active to true triggers a session’s OnStartup event, registers the
paradox directory locations with the BDE, and registers the ConfigMode property,
which determines what BDE aliases are available within the session. You can write
an OnStartup event handler to initialize the NetFileDir, PrivateDir, and ConfigMode

24-18 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

properties before they are registered with the BDE, or to perform other specific
session start-up activities. For information about the NetFileDir and PrivateDir
properties, see “Specifying Paradox directory locations” on page 24-23. For
information about ConfigMode, see “Working with BDE aliases” on page 24-24.

Once a session is active, you can open its database connections by calling the
OpenDatabase method.

For session components you place in a data module or form, setting Active to false
when there are open databases or datasets closes them. At runtime, closing databases
and datasets may trigger events associated with them.

Note You cannot set Active to false for the default session at design time. While you can
close the default session at runtime, it is not recommended.

You can also use a session’s Open and Close methods to activate or deactivate sessions
other than the default session at runtime. For example, the following single line of
code closes all open databases and datasets for a session:

Session1->Close();

This code sets Session1’s Active property to false. When a session’s Active property is
false, any subsequent attempt by the application to open a database or dataset resets
Active to true and calls the session’s OnStartup event handler if it exists. You can also
explicitly code session reactivation at runtime. The following code reactivates
Session1:

Session1->Open();

Note If a session is active you can also open and close individual database connections. For
more information, see “Closing database connections” on page 24-19.

Specifying default database connection behavior
KeepConnections provides the default value for the KeepConnection property of
implicit database components created at runtime. KeepConnection specifies what
happens to a database connection established for a database component when all its
datasets are closed. If true (the default), a constant, or persistent, database connection
is maintained even if no dataset is active. If false, a database connection is dropped as
soon as all its datasets are closed.

Note Connection persistence for a database component you explicitly place in a data
module or form is controlled by that database component’s KeepConnection property.
If set differently, KeepConnection for a database component always overrides the
KeepConnections property of the session. For more information about controlling
individual database connections within a session, see “Managing database
connections” on page 24-19.

KeepConnections should be set to true for applications that frequently open and close
all datasets associated with a database on a remote server. This setting reduces
network traffic and speeds data access because it means that a connection need only
be opened and closed once during the lifetime of the session. Otherwise, every time
the application closes or reestablishes a connection, it incurs the overhead of
attaching and detaching the database.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-19

B D E - b a s e d a r c h i t e c t u r e

Note Even when KeepConnections is true for a session, you can close and free inactive
database connections for all implicit database components by calling the
DropConnections method. For more information about DropConnections, see
“Dropping inactive database connections” on page 24-20.

Managing database connections
You can use a session component to manage the database connections within it. The
session component includes properties and methods you can use to

• Open database connections.
• Close database connections.
• Close and free all inactive temporary database connections.
• Locate specific database connections.
• Iterate through all open database connections.

Opening database connections
To open a database connection within a session, call the OpenDatabase method.
OpenDatabase takes one parameter, the name of the database to open. This name is a
BDE alias or the name of a database component. For Paradox or dBASE, the name can
also be a fully qualified path name. For example, the following statement uses the
default session and attempts to open a database connection for the database pointed
to by the BCDEMOS alias:

TDatabase *BCDemosDatabase = Session->OpenDatabase("BCDEMOS");

OpenDatabase actives the session if it is not already active, and then checks if the
specified database name matches the DatabaseName property of any database
components for the session. If the name does not match an existing database
component, OpenDatabase creates a temporary database component using the
specified name. Finally, OpenDatabase calls the Open method of the database
component to connect to the server. Each call to OpenDatabase increments a reference
count for the database by 1. As long as this reference count remains greater than 0,
the database is open.

Closing database connections
To close an individual database connection, call the CloseDatabase method. When you
call CloseDatabase, the reference count for the database, which is incremented when
you call OpenDatabase, is decremented by 1. When the reference count for a database
is 0, the database is closed. CloseDatabase takes one parameter, the database to close. If
you opened the database using the OpenDatabase method, this parameter can be set to
the return value of OpenDatabase.

Session->CloseDatabase(BCDemosDatabase);

If the specified database name is associated with a temporary (implicit) database
component, and the session’s KeepConnections property is false, the database
component is freed, effectively closing the connection.

Note If KeepConnections is false temporary database components are closed and freed
automatically when the last dataset associated with the database component is
closed. An application can always call CloseDatabase prior to that time to force

24-20 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

closure. To free temporary database components when KeepConnections is true, call
the database component’s Close method, and then call the session’s DropConnections
method.

Note Calling CloseDatabase for a persistent database component does not actually close the
connection. To close the connection, call the database component’s Close method
directly.

There are two ways to close all database connections within the session:

• Set the Active property for the session to false.
• Call the Close method for the session.

When you set Active to false, C++Builder automatically calls the Close method. Close
disconnects from all active databases by freeing temporary database components and
calling each persistent database component’s Close method. Finally, Close sets the
session’s BDE handle to NULL.

Dropping inactive database connections
If the KeepConnections property for a session is true (the default), then database
connections for temporary database components are maintained even if all the
datasets used by the component are closed. You can eliminate these connections and
free all inactive temporary database components for a session by calling the
DropConnections method. For example, the following code frees all inactive,
temporary database components for the default session:

Session->DropConnections();

Temporary database components for which one or more datasets are active are not
dropped or freed by this call. To free these components, call Close.

Searching for a database connection
Use a session’s FindDatabase method to determine whether a specified database
component is already associated with a session. FindDatabase takes one parameter,
the name of the database to search for. This name is a BDE alias or database
component name. For Paradox or dBASE, it can also be a fully-qualified path name.

FindDatabase returns the database component if it finds a match. Otherwise it returns
NULL.

The following code searches the default session for a database component using the
BCDEMOS alias, and if it is not found, creates one and opens it:

TDatabase *DB = Session->FindDatabase("BCDEMOS");
if (!DB) // Database does not exist for session so

DB = Session->OpenDatabase("BCDEMOS"); // create and open it
if (DB && DB->Connected)
{

if (!DB->InTransaction)
{

DB->StartTransaction();
ƒ

}
}

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-21

B D E - b a s e d a r c h i t e c t u r e

Iterating through a session’s database components
You can use two session component properties, Databases and DatabaseCount, to cycle
through all the active database components associated with a session.

Databases is an array of all currently active database components associated with a
session. DatabaseCount is the number of databases in that array. As connections are
opened or closed during a session’s life-span, the values of Databases and
DatabaseCount change. For example, if a session’s KeepConnections property is false
and all database components are created as needed at runtime, each time a unique
database is opened, DatabaseCount increases by one. Each time a unique database is
closed, DatabaseCount decreases by one. If DatabaseCount is zero, there are no
currently active database components for the session.

The following example code sets the KeepConnection property of each active database
in the default session to true:

if (Session->DatabaseCount > 0)
for (int MaxDbCount = 0; MaxDbCount < Session->DatabaseCount; MaxDbCount++)

Session->Databases[MaxDbCount]->KeepConnection = true;

Working with password-protected Paradox and dBASE tables
A session component can store passwords for password-protected Paradox and
dBASE tables. Once you add a password to the session, your application can open
tables protected by that password. Once you remove the password from the session,
your application can’t open tables that use the password until you add it again.

Using the AddPassword method
The AddPassword method provides an optional way for an application to provide a
password for a session prior to opening an encrypted Paradox or dBASE table that
requires a password for access. If you do not add the password to the session, when
your application attempts to open a password-protected table, a dialog box prompts
the user for a password.

AddPassword takes one parameter, a string containing the password to use. You can
call AddPassword as many times as necessary to add passwords (one at a time) to
access tables protected with different passwords.

AnsiString PassWrd;
PassWrd = InputBox(”Enter password”, ”Password:”, ””);
Session->AddPassword(PassWrd);
try
{

Table1->Open();
}
catch(...)
{

ShowMessage(”Could not open table!”);
Application->Terminate();

}

Note Use of the InputBox function, above, is for demonstration purposes. In a real-world
application, use password entry facilities that mask the password as it is entered,
such as the PasswordDialog function or a custom form.

24-22 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

The Add button of the PasswordDialog function dialog has the same effect as the
AddPassword method.

if (PasswordDlg(Session))
Table1->Open();

else
ShowMessage(”No password given, could not open table!”);

Using the RemovePassword and RemoveAllPasswords methods
RemovePassword deletes a previously added password from memory.
RemovePassword takes one parameter, a string containing the password to delete.

Session->RemovePassword("secret");

RemoveAllPasswords deletes all previously added passwords from memory.

Session->RemoveAllPasswords();

Using the GetPassword method and OnPassword event
The OnPassword event allows you to control how your application supplies
passwords for Paradox and dBASE tables when they are required. Provide a handler
for the OnPassword event if you want to override the default password handling
behavior. If you do not provide a handler, C++Builder presents a default dialog for
entering a password and no special behavior is provided—the table open attempt
either succeeds or an exception is thrown.

If you provide a handler for the OnPassword event, do two things in the event
handler: call the AddPassword method and set the event handler’s Continue parameter
to true. The AddPassword method passes a string to the session to be used as a
password for the table. The Continue parameter indicates to C++Builder that no
further password prompting need be done for this table open attempt. The default
value for Continue is false, and so requires explicitly setting it to true. If Continue is
false after the event handler has finished executing, an OnPassword event fires
again—even if a valid password has been passed using AddPassword. If Continue is
true after execution of the event handler and the string passed with AddPassword is
not the valid password, the table open attempt fails and an exception is thrown.

OnPassword can be triggered by two circumstances. The first is an attempt to open a
password-protected table (dBASE or Paradox) when a valid password has not
already been supplied to the session. (If a valid password for that table has already
been supplied, the OnPassword event does not occur.)

The other circumstance is a call to the GetPassword method. GetPassword either
generates an OnPassword event, or, if the session does not have an OnPassword event
handler, displays a default password dialog. It returns true if the OnPassword event
handler or default dialog added a password to the session, and false if no entry at all
was made.

In the following example, the Password method is designated as the OnPassword event
handler for the default session by assigning it to the global Session object’s
OnPassword property.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-23

B D E - b a s e d a r c h i t e c t u r e

void __fastcall TForm1::FormCreate(TObject *Sender)
{

Session->OnPassword = Password;
}

In the Password method, the InputBox function prompts the user for a password. The
AddPassword method then programmatically supplies the password entered in the
dialog to the session.

void __fastcall TForm1::Password(TObject *Sender, bool &Continue)
{

AnsiString PassWrd = InputBox("Enter password", "Password:", "");
Session->AddPassword(PassWrd);
Continue = (PassWrd > "");

}

The OnPassword event (and thus the Password event handler) is triggered by an
attempt to open a password-protected table, as demonstrated below. Even though
the user is prompted for a password in the handler for the OnPassword event, the
table open attempt can still fail if they enter an invalid password or something else
goes wrong.

void __fastcall TForm1::OpenTableBtnClick(TObject *Sender)
{

try
{

// this line triggers the OnPassword event
Table1->Open();

}
// exception if cannot open table
catch(...)
{

ShowMessage("Could not open table!");
Application->Terminate();

}
}

Specifying Paradox directory locations
Two session component properties, NetFileDir and PrivateDir, are specific to
applications that work with Paradox tables.

NetFileDir specifies the directory that contains the Paradox network control file,
PDOXUSRS.NET. This file governs sharing of Paradox tables on network drives. All
applications that need to share Paradox tables must specify the same directory for the
network control file (typically a directory on a network file server). C++Builder
derives a value for NetFileDir from the Borland Database Engine (BDE) configuration
file for a given database alias. If you set NetFileDir yourself, the value you supply
overrides the BDE configuration setting, so be sure to validate the new value.

At design time, you can specify a value for NetFileDir in the Object Inspector. You can
also set or change NetFileDir in code at runtime. The following code sets NetFileDir
for the default session to the location of the directory from which your application
runs:

Session->NetFileDir = ExtractFilePath(ParamStr(0));

24-24 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Note NetFileDir can only be changed when an application does not have any open Paradox
files. If you change NetFileDir at runtime, verify that it points to a valid network
directory that is shared by your network users.

PrivateDir specifies the directory for storing temporary table processing files, such as
those generated by the BDE to handle local SQL statements. If no value is specified
for the PrivateDir property, the BDE automatically uses the current directory at the
time it is initialized. If your application runs directly from a network file server, you
can improve application performance at runtime by setting PrivateDir to a user’s local
hard drive before opening the database.

Note Do not set PrivateDir at design time and then open the session in the IDE. Doing so
generates a Directory is busy error when running your application from the IDE.

The following code changes the setting of the default session’s PrivateDir property to
a user’s C:\TEMP directory:

Session->PrivateDir = "C:\\TEMP";

Important Do not set PrivateDir to a root directory on a drive. Always specify a subdirectory.

Working with BDE aliases
Each database component associated with a session has a BDE alias (although
optionally a fully-qualified path name may be substituted for an alias when accessing
Paradox and dBASE tables). A session can create, modify, and delete aliases during
its lifetime.

The AddAlias method creates a new BDE alias for an SQL database server. AddAlias
takes three parameters: a string containing a name for the alias, a string that specifies
the SQL Links driver to use, and a string list populated with parameters for the alias.
For example, the following statements use AddAlias to add a new alias for accessing
an InterBase server to the default session:

TStringList *AliasParams = new TStringList();
try
{

AliasParams->Add("OPEN MODE=READ");
AliasParams->Add("USER NAME=TOMSTOPPARD");
AliasParams->Add("SERVER NAME=ANIMALS:/CATS/PEDIGREE.GDB");
Session->AddAlias("CATS", "INTRBASE", AliasParams);
ƒ

}
catch (...)
{

delete AliasParams;
throw;

}
delete AliasParams;

AddStandardAlias creates a new BDE alias for Paradox, dBASE, or ASCII tables.
AddStandardAlias takes three string parameters: the name for the alias, the fully-
qualified path to the Paradox or dBASE table to access, and the name of the default
driver to use when attempting to open a table that does not have an extension. For

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-25

B D E - b a s e d a r c h i t e c t u r e

example, the following statement uses AddStandardAlias to create a new alias for
accessing a Paradox table:

Session->AddStandardAlias("MYBCDEMOS", "C:\\TESTING\\DEMOS\\", "Paradox");

When you add an alias to a session, the BDE stores a copy of the alias in memory,
where it is only available to this session and any other sessions with cfmPersistent
included in the ConfigMode property. ConfigMode is a set that describes which types
of aliases can be used by the databases in the session. The default setting is cmAll,
which translates into the set [cfmVirtual, cfmPersistent, cfmSession]. If ConfigMode is
cmAll, a session can see all aliases created within the session (cfmSession), all aliases in
the BDE configuration file on a user’s system (cfmPersistent), and all aliases that the
BDE maintains in memory (cfmVirtual). You can change ConfigMode to restrict what
BDE aliases the databases in a session can use. For example, setting ConfigMode to
cfmSession restricts a session’s view of aliases to those created within the session. All
other aliases in the BDE configuration file and in memory are not available.

To make a newly created alias available to all sessions and to other applications, use
the session’s SaveConfigFile method. SaveConfigFile writes aliases in memory to the
BDE configuration file where they can be read and used by other BDE-enabled
applications.

After you create an alias, you can make changes to its parameters by calling
ModifyAlias. ModifyAlias takes two parameters: the name of the alias to modify and a
string list containing the parameters to change and their values. For example, the
following statements use ModifyAlias to change the OPEN MODE parameter for the
CATS alias to READ/WRITE in the default session:

TStringList *List = new TStringList();
List->Clear();
List->Add("OPEN MODE=READ/WRITE");
Session->ModifyAlias("CATS", List);
delete List;

To delete an alias previously created in a session, call the DeleteAlias method.
DeleteAlias takes one parameter, the name of the alias to delete. DeleteAlias makes an
alias unavailable to the session.

Note DeleteAlias does not remove an alias from the BDE configuration file if the alias was
written to the file by a previous call to SaveConfigFile. To remove the alias from the
configuration file after calling DeleteAlias, call SaveConfigFile again.

Session components provide five methods for retrieving information about a BDE
aliases, including parameter information and driver information. They are:

• GetAliasNames, to list the aliases to which a session has access.
• GetAliasParams, to list the parameters for a specified alias.
• GetAliasDriverName, to return the name of the BDE driver used by the alias.
• GetDriverNames, to return a list of all BDE drivers available to the session.
• GetDriverParams, to return driver parameters for a specified driver.

For more information about using a session’s informational methods, see “Retrieving
information about a session” below. For more information about BDE aliases and the
SQL Links drivers with which they work, see the BDE online help, BDE32.HLP.

24-26 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

Retrieving information about a session
You can retrieve information about a session and its database components by using a
session’s informational methods. For example, one method retrieves the names of all
aliases known to the session, and another method retrieves the names of tables
associated with a specific database component used by the session. Table 24.4
summarizes the informational methods to a session component:

Except for GetAliasDriverName, these methods return a set of values into a string list
declared and maintained by your application. (GetAliasDriverName returns a single
string, the name of the current BDE driver for a particular database component used
by the session.)

For example, the following code retrieves the names of all database components and
aliases known to the default session:

TStringList *List = new TStringList();
try
{

Session->GetDatabaseNames(List);
ƒ

}
catch (...)
{
 delete List;
 throw;
}
delete List;

Creating additional sessions
You can create sessions to supplement the default session. At design time, you can
place additional sessions on a data module (or form), set their properties in the
Object Inspector, write event handlers for them, and write code that calls their

Table 24.4 Database-related informational methods for session components

Method Purpose

GetAliasDriverName Retrieves the BDE driver for a specified alias of a database.

GetAliasNames Retrieves the list of BDE aliases for a database.

GetAliasParams Retrieves the list of parameters for a specified BDE alias of a database.

GetConfigParams Retrieves configuration information from the BDE configuration file.

GetDatabaseNames Retrieves the list of BDE aliases and the names of any TDatabase
components currently in use.

GetDriverNames Retrieves the names of all currently installed BDE drivers.

GetDriverParams Retrieves the list of parameters for a specified BDE driver.

GetStoredProcNames Retrieves the names of all stored procedures for a specified database.

GetTableNames Retrieves the names of all tables matching a specified pattern for a
specified database.

GetFieldNames Retrieves the names of all fields in a specified table in a specified
database.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-27

B D E - b a s e d a r c h i t e c t u r e

methods. You can also create sessions, set their properties, and call their methods at
runtime.

Note Creating additional sessions is optional unless an application runs concurrent queries
against a database or the application is multi-threaded.

To enable dynamic creation of a session component at runtime, follow these steps:

1 Declare a TSession variable.

2 Instantiate a new session using the new operator.This operator calls the TSession
constructor to create and initialize a new session. The constructor sets up an empty
list of database components for the session, sets the KeepConnections property to
true, and adds the session to the list of sessions maintained by the application’s
session list component.

3 Set the SessionName property for the new session to a unique name. This property
is used to associate database components with the session. For more information
about the SessionName property, see “Naming a session” on page 24-27.

4 Activate the session and optionally adjust its properties.

You can also create and open sessions using the OpenSession method of TSessionList.
Using OpenSession is safer than using the new operator, because OpenSession only
creates a session if it does not already exist. For information about OpenSession, see
“Managing multiple sessions” on page 24-28.

The following code creates a new session component, assigns it a name, and opens
the session for database operations that follow (not shown here). After use, it is
destroyed with a call to the Free method.

Note Never delete the default session.

TSession *SecondSession = new TSession(Form1);
try
{

SecondSession->SessionName = "SecondSession";
SecondSession->KeepConnections = false;
SecondSession->Open();
ƒ

}
__finally
{

delete SecondSession;
};

Naming a session
A session’s SessionName property is used to name the session so that you can
associate databases and datasets with it. For the default session, SessionName is
“Default,” For each additional session component you create, you must set its
SessionName property to a unique value.

Database and dataset components have SessionName properties that correspond to
the SessionName property of a session component. If you leave the SessionName
property blank for a database or dataset component it is automatically associated

24-28 D e v e l o p e r ’ s G u i d e

B D E - b a s e d a r c h i t e c t u r e

with the default session. You can also set SessionName for a database or dataset
component to a name that corresponds to the SessionName of a session component
you create.

The following code uses the OpenSession method of the default TSessionList
component, Sessions, to open a new session component, sets its SessionName to
“InterBaseSession,” activate the session, and associate an existing database
component Database1 with that session:

TSession *IBSession = Sessions->OpenSession("InterBaseSession");
Database1->SessionName = "InterBaseSession";

Managing multiple sessions
If you create a single application that uses multiple threads to perform database
operations, you must create one additional session for each thread. The BDE page on
the Component palette contains a session component that you can place in a data
module or on a form at design time.

Important When you place a session component, you must also set its SessionName property to a
unique value so that it does not conflict with the default session’s SessionName
property.

Placing a session component at design time presupposes that the number of threads
(and therefore sessions) required by the application at runtime is static. More likely,
however, is that an application needs to create sessions dynamically. To create
sessions dynamically, call the OpenSession method of the global Sessions object at
runtime.

OpenSession requires a single parameter, a name for the session that is unique across
all session names for the application. The following code dynamically creates and
activates a new session with a uniquely generated name:

Sessions->OpenSession("RunTimeSession" + IntToStr(Sessions->Count + 1));

This statement generates a unique name for a new session by retrieving the current
number of sessions, and adding one to that value. Note that if you dynamically create
and destroy sessions at runtime, this example code will not work as expected.
Nevertheless, this example illustrates how to use the properties and methods of
Sessions to manage multiple sessions.

Sessions is a variable of type TSessionList that is automatically instantiated for BDE-
based database applications. You use the properties and methods of Sessions to keep
track of multiple sessions in a multi-threaded database application. Table 24.5
summarizes the properties and methods of the TSessionList component:

Table 24.5 TSessionList properties and methods

Property or Method Purpose

Count Returns the number of sessions, both active and inactive, in the session list.

FindSession Searches for a session with a specified name and returns a pointer to it, or
NULL if there is no session with the specified name. If passed a blank
session name, FindSession returns a pointer to the default session, Session.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-29

U s i n g t r a n s a c t i o n s w i t h t h e B D E

As an example of using Sessions properties and methods in a multi-threaded
application, consider what happens when you want to open a database connection.
To determine if a connection already exists, use the Sessions property to walk through
each session in the sessions list, starting with the default session. For each session
component, examine its Databases property to see if the database in question is open.
If you discover that another thread is already using the desired database, examine
the next session in the list.

If an existing thread is not using the database, then you can open the connection
within that session.

If, on the other hand, all existing threads are using the database, you must open a
new session in which to open another database connection.

If you are replicating a data module that contains a session in a multi-threaded
application, where each thread contains its own copy of the data module, you can use
the AutoSessionName property to make sure that all datasets in the data module use
the correct session. Setting AutoSessionName to true causes the session to generate its
own unique name dynamically when it is created at runtime. It then assigns this
name to every dataset in the data module, overriding any explicitly set session
names. This ensures that each thread has its own session, and each dataset uses the
session in its own data module.

Using transactions with the BDE
By default, the BDE provides implicit transaction control for your applications. When
an application is under implicit transaction control, a separate transaction is used for
each record in a dataset that is written to the underlying database. Implicit
transactions guarantee both a minimum of record update conflicts and a consistent
view of the database. On the other hand, because each row of data written to a
database takes place in its own transaction, implicit transaction control can lead to
excessive network traffic and slower application performance. Also, implicit
transaction control will not protect logical operations that span more than one record.

If you explicitly control transactions, you can choose the most effective times to start,
commit, and roll back your transactions. When you develop applications in a multi-
user environment, particularly when your applications run against a remote SQL
server, you should control transactions explicitly.

GetSessionNames Populates a string list with the names of all currently instantiated session
components. This procedure always adds at least one string, “Default” for
the default session.

List Returns the session component for a specified session name. If there is no
session with the specified name, an exception is raised.

OpenSession Creates and activates a new session or reactivates an existing session for a
specified session name.

Sessions Accesses the session list by ordinal value.

Table 24.5 TSessionList properties and methods (continued)

Property or Method Purpose

24-30 D e v e l o p e r ’ s G u i d e

U s i n g t r a n s a c t i o n s w i t h t h e B D E

There are two mutually exclusive ways to control transactions explicitly in a BDE-
based database application:

• Use the database component to control transactions. The main advantage to using
the methods and properties of a database component is that it provides a clean,
portable application that is not dependent on a particular database or server. This
type of transaction control is supported by all database connection components,
and described in “Managing transactions” on page 21-6

• Use passthrough SQL in a query component to pass SQL statements directly to
remote SQL or ODBC servers. The main advantage to passthrough SQL is that you
can use the advanced transaction management capabilities of a particular database
server, such as schema caching. To understand the advantages of your server’s
transaction management model, see your database server documentation. For
more information about using passthrough SQL, see “Using passthrough SQL”
below.

When working with local databases, you can only use the database component to
create explicit transactions (local databases do not support passthrough SQL).
However, there are limitations to using local transactions. For more information on
using local transactions, see “Using local transactions” on page 24-31.

Note You can minimize the number of transactions you need by caching updates. For
more information about cached updates, see “Using a client dataset to cache
updates” and “Using the BDE to cache updates” on page 24-31.

Using passthrough SQL

With passthrough SQL, you use a TQuery, TStoredProc, or TUpdateSQL component to
send an SQL transaction control statement directly to a remote database server. The
BDE does not process the SQL statement. Using passthrough SQL enables you to take
direct advantage of the transaction controls offered by your server, especially when
those controls are non-standard.

To use passthrough SQL to control a transaction, you must

• Install the proper SQL Links drivers. If you chose the “Typical” installation when
installing C++Builder, all SQL Links drivers are already properly installed.

• Configure your network protocol. See your network administrator for more
information.

• Have access to a database on a remote server.

• Set SQLPASSTHRU MODE to NOT SHARED using the SQL Explorer.
SQLPASSTHRU MODE specifies whether the BDE and passthrough SQL
statements can share the same database connections. In most cases,
SQLPASSTHRU MODE is set to SHARED AUTOCOMMIT. However, you can’t
share database connections when using transaction control statements. For more
information about SQLPASSTHRU modes, see the help file for the BDE
Administration utility.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-31

U s i n g t h e B D E t o c a c h e u p d a t e s

Note When SQLPASSTHRU MODE is NOT SHARED, you must use separate database
components for datasets that pass SQL transaction statements to the server and
datasets that do not.

Using local transactions

The BDE supports local transactions against Paradox, dBASE, Access, and FoxPro
tables. From a coding perspective, there is no difference to you between a local
transaction and a transaction against a remote database server.

Note When using transactions with local Paradox, dBASE, Access, and FoxPro tables, set
TransIsolation to tiDirtyRead instead of using the default value of tiReadCommitted. A
BDE error is returned if TransIsolation is set to anything but tiDirtyRead for local
tables.

When a transaction is started against a local table, updates performed against the
table are logged. Each log record contains the old record buffer for a record. When a
transaction is active, records that are updated are locked until the transaction is
committed or rolled back. On rollback, old record buffers are applied against
updated records to restore them to their pre-update states.

Local transactions are more limited than transactions against SQL servers or ODBC
drivers. In particular, the following limitations apply to local transactions:

• Automatic crash recovery is not provided.

• Data definition statements are not supported.

• Transactions cannot be run against temporary tables.

• TransIsolation level must only be set to tiDirtyRead.

• For Paradox, local transactions can only be performed on tables with valid
indexes. Data cannot be rolled back on Paradox tables that do not have indexes.

• Only a limited number of records can be locked and modified. With Paradox
tables, you are limited to 255 records. With dBASE the limit is 100.

• Transactions cannot be run against the BDE ASCII driver.

• Closing a cursor on a table during a transaction rolls back the transaction unless:

• Several tables are open.
• The cursor is closed on a table to which no changes were made.

Using the BDE to cache updates
The recommended approach for caching updates is to use a client dataset
(TBDEClientDataSet) or to connect the BDE-dataset to a client dataset using a dataset
provider. The advantages of using a client dataset are discussed in “Using a client
dataset to cache updates” on page 27-15.

For simple cases, however, you may choose to use the BDE to cache updates instead.
BDE-enabled datasets and TDatabase components provide built-in properties,

24-32 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

methods, and events for handling cached updates. Most of these correspond directly
to the properties, methods, and events that you use with client datasets and dataset
providers when using a client dataset to cache updates. The following table lists these
properties, events, and methods and the corresponding properties, methods and
events on TBDEClientDataSet:

For an overview of the cached update process, see “Overview of using cached
updates” on page 27-16.

Note Even if you are using a client dataset to cache updates, you may want to read the
section about update objects on page 24-39. You can use update objects in the
BeforeUpdateRecord event handler of TBDEClientDataSet or TDataSetProvider to apply
updates from stored procedures or multi-table queries.

Table 24.6 Properties, methods, and events for cached updates

On BDE-enabled datasets
(or TDatabase) On TBDEClientDataSet Purpose

CachedUpdates Not needed for client
datasets, which always
cache updates.

Determines whether cached updates are
in effect for the dataset.

UpdateObject Use a BeforeUpdateRecord
event handler, or, if using
TClientDataSet, use the
UpdateObject property on
the BDE-enabled source
dataset.

Specifies the update object for updating
read-only datasets.

UpdatesPending ChangeCount Indicates whether the local cache
contains updated records that need to be
applied to the database.

UpdateRecordTypes StatusFilter Indicates the kind of updated records to
make visible when applying cached
updates.

UpdateStatus UpdateStatus Indicates if a record is unchanged,
modified, inserted, or deleted.

OnUpdateError OnReconcileError An event for handling update errors on
a record-by-record basis.

OnUpdateRecord BeforeUpdateRecord An event for processing updates on a
record-by-record basis.

ApplyUpdates
ApplyUpdates (database)

ApplyUpdates Applies records in the local cache to the
database.

CancelUpdates CancelUpdates Removes all pending updates from the
local cache without applying them.

CommitUpdates Reconcile Clears the update cache following
successful application of updates.

FetchAll GetNextPacket
(and PacketRecords)

Copies database records to the local
cache for editing and updating.

RevertRecord RevertRecord Undoes updates to the current record if
updates are not yet applied.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-33

U s i n g t h e B D E t o c a c h e u p d a t e s

Enabling BDE-based cached updates

To use the BDE for cached updates, the BDE-enabled dataset must indicate that it
should cache updates. This is specified by setting the CachedUpdates property to true.
When you enable cached updates, a copy of all records is cached in local memory.
Users view and edit this local copy of data. Changes, insertions, and deletions are
also cached in memory. They accumulate in memory until the application applies
those changes to the database server. If changed records are successfully applied to
the database, the record of those changes are freed in the cache.

The dataset caches all updates until you set CachedUpdates to false. Applying cached
updates does not disable further cached updates; it only writes the current set of
changes to the database and clears them from memory. Canceling the updates by
calling CancelUpdates removes all the changes currently in the cache, but does not
stop the dataset from caching any subsequent changes.

Note If you disable cached updates by setting CachedUpdates to false, any pending changes
that you have not yet applied are discarded without notification. To prevent losing
changes, test the UpdatesPending property before disabling cached updates.

Applying BDE-based cached updates

Applying updates is a two-phase process that should occur in the context of a
database component’s transaction so that your application can recover gracefully
from errors. For information about transaction handling with database components,
see “Managing transactions” on page 21-6.

When applying updates under database transaction control, the following events
take place:

1 A database transaction starts.

2 Cached updates are written to the database (phase 1). If you provide it, an
OnUpdateRecord event is triggered once for each record written to the database. If
an error occurs when a record is applied to the database, the OnUpdateError event
is triggered if you provide one.

3 The transaction is committed if writes are successful or rolled back if they are not:

If the database write is successful:

• Database changes are committed, ending the database transaction.
• Cached updates are committed, clearing the internal cache buffer (phase 2).

If the database write is unsuccessful:

• Database changes are rolled back, ending the database transaction.
• Cached updates are not committed, remaining intact in the internal cache.

For information about creating and using an OnUpdateRecord event handler, see
“Creating an OnUpdateRecord event handler” on page 24-35. For information about
handling update errors that occur when applying cached updates, see “Handling
cached update errors” on page 24-37.

24-34 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

Note Applying cached updates is particularly tricky when you are working with multiple
datasets linked in a master/detail relationship because the order in which you apply
updates to each dataset is significant. Usually, you must update master tables before
detail tables, except when handling deleted records, where this order must be
reversed. Because of this difficulty, it is strongly recommended that you use client
datasets when caching updates in a master/detail form. Client datasets automatically
handle all ordering issues with master/detail relationships.

There are two ways to apply BDE-based updates:

• You can apply updates using a database component by calling its ApplyUpdates
method. This method is the simplest approach, because the database handles all
details of managing a transaction for the update process and of clearing the
dataset’s cache when updating is complete.

• You can apply updates for a single dataset by calling the dataset’s ApplyUpdates
and CommitUpdates methods. When applying updates at the dataset level you
must explicitly code the transaction that wraps the update process as well as
explicitly call CommitUpdates to commit updates from the cache.

Important To apply updates from a stored procedure or an SQL query that does not return a
live result set, you must use TUpdateSQL to specify how to perform updates. For
updates to joins (queries involving two or more tables), you must provide one
TUpdateSQL object for each table involved, and you must use the OnUpdateRecord
event handler to invoke these objects to perform the updates. See “Using update
objects to update a dataset” on page 24-39 for details.

Applying cached updates using a database
To apply cached updates to one or more datasets in the context of a database
connection, call the database component’s ApplyUpdates method. The following code
applies updates to the CustomersQuery dataset in response to a button click event:

void __fastcall TForm1::ApplyButtonClick(TObject *Sender)
{

// for local databases such as Paradox, dBASE, and FoxPro
// set TransIsolation to DirtyRead
if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)

Database1->TransIsolation = tiDirtyRead;
Database1->ApplyUpdates(&CustomersQuery,0);

}

The above sequence writes cached updates to the database in the context of an
automatically-generated transaction. If successful, it commits the transaction and
then commits the cached updates. If unsuccessful, it rolls back the transaction and
leaves the update cache unchanged. In this latter case, you should handle cached
update errors through a dataset’s OnUpdateError event. For more information about
handling update errors, see “Handling cached update errors” on page 24-37.

The main advantage to calling a database component’s ApplyUpdates method is that
you can update any number of dataset components that are associated with the
database. The two arguments to the ApplyUpdates method for a database are an array
of TDBDataSet, and the index of the last dataset in the array. To apply updates for

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-35

U s i n g t h e B D E t o c a c h e u p d a t e s

more than one dataset, create a local array of pointers to the datasets. For example,
the following code applies updates for two queries:

TDBDataSet* ds[] = {CustomerQuery, OrdersQuery};
if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)

Database1->TransIsolation = tiDirtyRead;
Database1->ApplyUpdates(ds,1);

Applying cached updates with dataset component methods
You can apply updates for individual BDE-enabled datasets directly using the
dataset’s ApplyUpdates and CommitUpdates methods. Each of these methods
encapsulate one phase of the update process:

1 ApplyUpdates writes cached changes to a database (phase 1).

2 CommitUpdates clears the internal cache when the database write is successful
(phase 2).

The following code illustrates how you apply updates within a transaction for the
CustomerQuery dataset:

void __fastcall TForm1::ApplyButtonClick(TObject *Sender)
{

Database1->StartTransaction();
try
{

if (!Database1->IsSQLBased && Database1->TransIsolation != tiDirtyRead)
Database1->TransIsolation = tiDirtyRead;

CustomerQuery->ApplyUpdates(); // try to write the updates to the database
Database1->Commit(); // on success, commit the changes

}
catch (...)
{

Database1->Rollback(); // on failure, undo any changes
throw; // throw the exception again to prevent a call to CommitUpdates

}
CustomerQuery->CommitUpdates(); // on success, clear the internal cache

}

If an exception is raised during the ApplyUpdates call, the database transaction is
rolled back. Rolling back the transaction ensures that the underlying database table is
not changed. The throw statement inside the try...catch block rethrows the exception,
thereby preventing the call to CommitUpdates. Because CommitUpdates is not called,
the internal cache of updates is not cleared so that you can handle error conditions
and possibly retry the update.

Creating an OnUpdateRecord event handler
When a BDE-enabled dataset applies its cached updates, it iterates through the
changes recorded in its cache, attempting to apply them to the corresponding records
in the base table. As the update for each changed, deleted, or newly inserted record is
about to be applied, the dataset component’s OnUpdateRecord event fires.

Providing a handler for the OnUpdateRecord event allows you to perform actions just
before the current record’s update is actually applied. Such actions can include

24-36 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

special data validation, updating other tables, special parameter substitution, or
executing multiple update objects. A handler for the OnUpdateRecord event affords
you greater control over the update process.

Here is the skeleton code for an OnUpdateRecord event handler:

void __fastcall TForm1::DataSetUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
// Perform updates here...

}

The DataSet parameter specifies the cached dataset with updates.

The UpdateKind parameter indicates the type of update that needs to be performed
for the current record. Values for UpdateKind are ukModify, ukInsert, and ukDelete. If
you are using an update object, you need to pass this parameter to the update object
when applying the update. You may also need to inspect this parameter if your
handler performs any special processing based on the kind of update.

The UpdateAction parameter indicates whether you applied the update. Values for
UpdateAction are uaFail (the default), uaAbort, uaSkip, uaRetry, uaApplied. If your event
handler successfully applies the update, change this parameter to uaApplied before
exiting. If you decide not to update the current record, change the value to uaSkip to
preserve unapplied changes in the cache. If you do not change the value for
UpdateAction, the entire update operation for the dataset is aborted and an exception
is raised. You can suppress the error message (raising a silent exception) by changing
UpdateAction to uaAbort.

In addition to these parameters, you will typically want to make use of the OldValue
and NewValue properties for the field component associated with the current record.
OldValue gives the original field value that was fetched from the database. It can be
useful in locating the database record to update. NewValue is the edited value in the
update you are trying to apply.

Important An OnUpdateRecord event handler, like an OnUpdateError or OnCalcFields event
handler, should never call any methods that change the current record in a dataset.

The following example illustrates how to use these parameters and properties. It uses
a TTable component named UpdateTable to apply updates. In practice, it is easier to
use an update object, but using a table illustrates the possibilities more clearly.

void __fastcall TForm1::EmpAuditUpdateRecord(TDataSet *DataSet,
TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
if (UpdateKind == ukInsert)
{

TVarRec values[2];
for (int i = 0; i < 2; i++)

values[i] = DataSet->Fields->Fields[i]->NewValue;
UpdateTable->AppendRecord(values, 1);

}
else
{

TLocateOptions lo;
lo.Clear();

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-37

U s i n g t h e B D E t o c a c h e u p d a t e s

if (UpdateTable->Locate("KeyField", DataSet->Fields->Fields[0]->OldValue, lo))
switch (UpdateKind)
{
case ukModify:

UpdateTable->Edit();
UpdateTable->Fields->Fields[1]->Value = DataSet->Fields->Fields[1]->Value;
UpdateTable->Post();
break;

case ukDelete:
UpdateTable->Delete();
break;

}
}
UpdateAction = uaApplied;

}

Handling cached update errors
The Borland Database Engine (BDE) specifically checks for user update conflicts and
other conditions when attempting to apply updates, and reports any errors. The
dataset component’s OnUpdateError event enables you to catch and respond to
errors. You should create a handler for this event if you use cached updates. If you do
not, and an error occurs, the entire update operation fails.

Here is the skeleton code for an OnUpdateError event handler:

void __fastcall TForm1::DataSetUpdateError(TDataSet *DataSet,
EDatabaseError *E, TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
// Respond to errors here...

}

DataSet references the dataset to which updates are applied. You can use this dataset
to access new and old values during error handling. The original values for fields in
each record are stored in a read-only TField property called OldValue. Changed
values are stored in the analogous TField property NewValue. These values provide
the only way to inspect and change update values in the event handler.

Warning Do not call any dataset methods that change the current record (such as Next and
Prior). Doing so causes the event handler to enter an endless loop.

The E parameter is usually of type EDBEngineError. From this exception type, you
can extract an error message that you can display to users in your error handler. For
example, the following code could be used to display the error message in the
caption of a dialog box:

ErrorLabel->Caption = E->Message;

This parameter is also useful for determining the actual cause of the update error.
You can extract specific error codes from EDBEngineError, and take appropriate
action based on it.

The UpdateKind parameter describes the type of update that generated the error.
Unless your error handler takes special actions based on the type of update being
carried out, your code probably will not make use of this parameter.

24-38 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

The following table lists possible values for UpdateKind:

UpdateAction tells the BDE how to proceed with the update process when your event
handler exits. When your update error handler is first called, the value for this
parameter is always set to uaFail. Based on the error condition for the record that
caused the error and what you do to correct it, you typically set UpdateAction to a
different value before exiting the handler:

• If your error handler can correct the error condition that caused the handler to be
invoked, set UpdateAction to the appropriate action to take on exit. For error
conditions you correct, set UpdateAction to uaRetry to apply the update for the
record again.

• When set to uaSkip, the update for the row that caused the error is skipped, and the
update for the record remains in the cache after all other updates are completed.

• Both uaFail and uaAbort cause the entire update operation to end. uaFail raises an
exception and displays an error message. uaAbort raises a silent exception (does
not display an error message).

The following code shows an OnUpdateError event handler that checks to see if the
update error is related to a key violation, and if it is, it sets the UpdateAction
parameter to uaSkip:

// include BDE.hpp in your unit file for this example

void __fastcall TForm1::DataSetUpdateError(TDataSet *DataSet,
EDatabaseError *E, TUpdateKind UpdateKind, TUpdateAction &UpdateAction)

{
UpdateAction = uaFail // initialize to fail the update
if (E->ClassNameIs("EDBEngineError"))
{

EDBEngineError *pDBE = (EDBEngineError *)E;
if (pDBE->Errors[pDBE->ErrorCount - 1]->ErrorCode == DBIERR_KEYVIOL)

UpdateAction = uaSkip; // Key violation, just skip this record
}

}

Note If an error occurs during the application of cached updates, an exception is thrown
and an error message displayed. Unless the ApplyUpdates is called from within a
try...catch construct, an error message to the user displayed from inside your
OnUpdateError event handler may cause your application to display the same error
message twice. To prevent error message duplication, set UpdateAction to uaAbort to
turn off the system-generated error message display.

Table 24.7 UpdateKind values

Value Meaning

ukModify Editing an existing record caused an error.

ukInsert Inserting a new record caused an error.

ukDelete Deleting an existing record caused an error.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-39

U s i n g t h e B D E t o c a c h e u p d a t e s

Using update objects to update a dataset

When the BDE-enabled dataset represents a stored procedure or a query that is not
“live”, it is not possible to apply updates directly from the dataset. Such datasets may
also cause a problem when you use a client dataset to cache updates. Whether you
are using the BDE or a client dataset to cache updates, you can handle these problem
datasets by using an update object:

1 If you are using a client dataset, use an external provider component with
TClientDataSet rather than TBDEClientDataSet. This is so you can set the
UpdateObject property of the BDE-enabled source dataset (step 3).

2 Add a TUpdateSQL component to the same data module as the BDE-enabled
dataset.

3 Set the BDE-enabled dataset component’s UpdateObject property to the
TUpdateSQL component in the data module.

4 Specify the SQL statements needed to perform updates using the update object’s
ModifySQL, InsertSQL, and DeleteSQL properties. You can use the Update SQL
editor to help you compose these statements.

5 Close the dataset.

6 Set the dataset component’s CachedUpdates property to true or link the dataset to
the client dataset using a dataset provider.

7 Reopen the dataset.

Note Sometimes, you need to use multiple update objects. For example, when updating a
multi-table join or a stored procedure that represents data from multiple datasets,
you must provide one TUpdateSQL object for each table you want to update. When
using multiple update objects, you can’t simply associate the update object with the
dataset by setting the UpdateObject property. Instead, you must manually call the
update object from an OnUpdateRecord event handler (when using the BDE to cache
updates) or a BeforeUpdateRecord event handler (when using a client dataset).

The update object actually encapsulates three TQuery components. Each of these
query components perform a single update task. One query component provides an
SQL UPDATE statement for modifying existing records; a second query component
provides an INSERT statement to add new records to a table; and a third component
provides a DELETE statement to remove records from a table.

When you place an update component in a data module, you do not see the query
components it encapsulates. They are created by the update component at runtime
based on three update properties for which you supply SQL statements:

• ModifySQL specifies the UPDATE statement.
• InsertSQL specifies the INSERT statement.
• DeleteSQL specifies the DELETE statement.

At runtime, when the update component is used to apply updates, it:

1 Selects an SQL statement to execute based on whether the current record is
modified, inserted, or deleted.

24-40 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

2 Provides parameter values to the SQL statement.

3 Prepares and executes the SQL statement to perform the specified update.

Creating SQL statements for update components
To update a record in an associated dataset, an update object uses one of three SQL
statements. Each update object can only update a single table, so the object’s update
statements must each reference the same base table.

The three SQL statements delete, insert, and modify records cached for update. You
must provide these statements as update object’s DeleteSQL, InsertSQL, and
ModifySQL properties. You can provide these values at design time or at runtime. For
example, the following code specifies a value for the DeleteSQL property at runtime:

UpdateSQL->DeleteSQL->Clear();
UpdateSQL->DeleteSQL->Add(”DELETE FROM Inventory I”);
UpdateSQL->DeleteSQL->Add(”WHERE (I.ItemNo = :OLD_ItemNo)”);

At design time, you can use the Update SQL editor to help you compose the SQL
statements that apply updates.

Update objects provide automatic parameter binding for parameters that reference
the dataset’s original and updated field values. Typically, therefore, you insert
parameters with specially formatted names when you compose the SQL statements.
For information on using these parameters, see “Understanding parameter
substitution in update SQL statements” on page 24-41.

Using the Update SQL editor
To create the SQL statements for an update component,

1 Using the Object Inspector, select the name of the update object from the drop-
down list for the dataset’s UpdateObject property. This step ensures that the
Update SQL editor you invoke in the next step can determine suitable default
values to use for SQL generation options.

2 Right-click the update object and select UpdateSQL Editor from the context menu.
This displays the Update SQL editor. The editor creates SQL statements for the
update object’s ModifySQL, InsertSQL, and DeleteSQL properties based on the
underlying data set and on the values you supply to it.

The Update SQL editor has two pages. The Options page is visible when you first
invoke the editor. Use the Table Name combo box to select the table to update. When
you specify a table name, the Key Fields and Update Fields list boxes are populated
with available columns.

The Update Fields list box indicates which columns should be updated. When you
first specify a table, all columns in the Update Fields list box are selected for
inclusion. You can multi-select fields as desired.

The Key Fields list box is used to specify the columns to use as keys during the
update. For Paradox, dBASE, and FoxPro the columns you specify here must
correspond to an existing index, but this is not a requirement for remote SQL
databases. Instead of setting Key Fields you can click the Primary Keys button to
choose key fields for the update based on the table’s primary index. Click Dataset

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-41

U s i n g t h e B D E t o c a c h e u p d a t e s

Defaults to return the selection lists to the original state: all fields selected as keys and
all selected for update.

Check the Quote Field Names check box if your server requires quotation marks
around field names.

After you specify a table, select key columns, and select update columns, click
Generate SQL to generate the preliminary SQL statements to associate with the
update component’s ModifySQL, InsertSQL, and DeleteSQL properties. In most cases
you will want or need to fine tune the automatically generated SQL statements.

To view and modify the generated SQL statements, select the SQL page. If you have
generated SQL statements, then when you select this page, the statement for the
ModifySQL property is already displayed in the SQL Text memo box. You can edit the
statement in the box as desired.

Important Keep in mind that generated SQL statements are starting points for creating update
statements. You may need to modify these statements to make them execute
correctly. For example, when working with data that contains NULL values, you
need to modify the WHERE clause to read

WHERE field IS NULL

rather then using the generated field variable. Test each of the statements directly
yourself before accepting them.

Use the Statement Type radio buttons to switch among generated SQL statements
and edit them as desired.

To accept the statements and associate them with the update component’s SQL
properties, click OK.

Understanding parameter substitution in update SQL statements
Update SQL statements use a special form of parameter substitution that enables you
to substitute old or new field values in record updates. When the Update SQL editor
generates its statements, it determines which field values to use. When you write the
update SQL, you specify the field values to use.

When the parameter name matches a column name in the table, the new value in the
field in the cached update for the record is automatically used as the value for the
parameter. When the parameter name matches a column name prefixed by the string
“OLD_”, then the old value for the field will be used. For example, in the update SQL
statement below, the parameter :LastName is automatically filled with the new field
value in the cached update for the inserted record.

INSERT INTO Names
(LastName, FirstName, Address, City, State, Zip)
VALUES (:LastName, :FirstName, :Address, :City, :State, :Zip)

New field values are typically used in the InsertSQL and ModifySQL statements. In an
update for a modified record, the new field value from the update cache is used by
the UPDATE statement to replace the old field value in the base table updated.

In the case of a deleted record, there are no new values, so the DeleteSQL property
uses the “:OLD_FieldName” syntax. Old field values are also normally used in the

24-42 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

WHERE clause of the SQL statement for a modified or deletion update to determine
which record to update or delete.

In the WHERE clause of an UPDATE or DELETE update SQL statement, supply at
least the minimal number of parameters to uniquely identify the record in the base
table that is updated with the cached data. For instance, in a list of customers, using
just a customer’s last name may not be sufficient to uniquely identify the correct
record in the base table; there may be a number of records with “Smith” as the last
name. But by using parameters for last name, first name, and phone number could be
a distinctive enough combination. Even better would be a unique field value like a
customer number.

Note If you create SQL statements that contain parameters that do not refer the edited or
original field values, the update object does not know how to bind their values. You
can, however, do this manually, using the update object’s Query property. See “Using
an update component’s Query property” on page 24-46 for details.

Composing update SQL statements
At design time, you can use the Update SQL editor to write the SQL statements for
the DeleteSQL, InsertSQL, and ModifySQL properties. If you do not use the Update
SQL editor, or if you want to modify the generated statements, you should keep in
mind the following guidelines when writing statements to delete, insert, and modify
records in the base table.

The DeleteSQL property should contain only an SQL statement with the DELETE
command. The base table to be updated must be named in the FROM clause. So that
the SQL statement only deletes the record in the base table that corresponds to the
record deleted in the update cache, use a WHERE clause. In the WHERE clause, use a
parameter for one or more fields to uniquely identify the record in the base table that
corresponds to the cached update record. If the parameters are named the same as
the field and prefixed with “OLD_”, the parameters are automatically given the
values from the corresponding field from the cached update record. If the parameter
are named in any other manner, you must supply the parameter values.

DELETE FROM Inventory I
WHERE (I.ItemNo = :OLD_ItemNo)

Some table types might not be able to find the record in the base table when fields
used to identify the record contain NULL values. In these cases, the delete update
fails for those records. To accommodate this, add a condition for those fields that
might contain NULLs using the IS NULL predicate (in addition to a condition for a
non-NULL value). For example, when a FirstName field may contain a NULL value:

DELETE FROM Names
WHERE (LastName = :OLD_LastName) AND

((FirstName = :OLD_FirstName) OR (FirstName IS NULL))

The InsertSQL statement should contain only an SQL statement with the INSERT
command. The base table to be updated must be named in the INTO clause. In the
VALUES clause, supply a comma-separated list of parameters. If the parameters are
named the same as the field, the parameters are automatically given the value from
the cached update record. If the parameter are named in any other manner, you must
supply the parameter values. The list of parameters supplies the values for fields in

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-43

U s i n g t h e B D E t o c a c h e u p d a t e s

the newly inserted record. There must be as many value parameters as there are
fields listed in the statement.

INSERT INTO Inventory
(ItemNo, Amount)
VALUES (:ItemNo, 0)

The ModifySQL statement should contain only an SQL statement with the UPDATE
command. The base table to be updated must be named in the FROM clause. Include
one or more value assignments in the SET clause. If values in the SET clause
assignments are parameters named the same as fields, the parameters are
automatically given values from the fields of the same name in the updated record in
the cache. You can assign additional field values using other parameters, as long as
the parameters are not named the same as any fields and you manually supply the
values. As with the DeleteSQL statement, supply a WHERE clause to uniquely
identify the record in the base table to be updated using parameters named the same
as the fields and prefixed with “OLD_”. In the update statement below, the
parameter :ItemNo is automatically given a value and :Price is not.

UPDATE Inventory I
SET I.ItemNo = :ItemNo, Amount = :Price
WHERE (I.ItemNo = :OLD_ItemNo)

Considering the above update SQL, take an example case where the application end-
user modifies an existing record. The original value for the ItemNo field is 999. In a
grid connected to the cached dataset, the end-user changes the ItemNo field value to
123 and Amount to 20. When the ApplyUpdates method is invoked, this SQL
statement affects all records in the base table where the ItemNo field is 999, using the
old field value in the parameter :OLD_ItemNo. In those records, it changes the
ItemNo field value to 123 (using the parameter :ItemNo, the value coming from the
grid) and Amount to 20.

Using multiple update objects
When more than one base table referenced in the update dataset needs to be updated,
you need to use multiple update objects: one for each base table updated. Because the
dataset component’s UpdateObject only allows one update object to be associated
with the dataset, you must associate each update object with a dataset by setting its
DataSet property to the name of the dataset.

Tip When using multiple update objects, you can use TBDEClientDataSet instead of
TClientDataSet with an external provider. This is because you do not need to set the
source dataset’s UpdateObject property.

The DataSet property for update objects is not available at design time in the Object
Inspector. You can only set this property at runtime.

UpdateSQL1->DataSet = Query1;

The update object uses this dataset to obtain original and updated field values for
parameter substitution and, if it is a BDE-enabled dataset, to identify the session and
database to use when applying the updates. So that parameter substitution will work
correctly, the update object’s DataSet property must be the dataset that contains the
updated field values. When using the BDE-enabled dataset to cache updates, this is

24-44 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

the BDE-enabled dataset itself. When using a client dataset, this is a client dataset that
is provided as a parameter to the BeforeUpdateRecord event handler.

When the update object has not been assigned to the dataset’s UpdateObject property,
its SQL statements are not automatically executed when you call ApplyUpdates. To
update records, you must manually call the update object from an OnUpdateRecord
event handler (when using the BDE to cache updates) or a BeforeUpdateRecord event
handler (when using a client dataset). In the event handler, the minimum actions you
need to take are

• If you are using a client dataset to cache updates, you must be sure that the
updates object’s DatabaseName and SessionName properties are set to the
DatabaseName and SessionName properties of the source dataset.

• The event handler must call the update object’s ExecSQL or Apply method. This
invokes the update object for each record that requires updating. For more
information about executing update statements, see “Executing the SQL
statements” below.

• Set the event handler’s UpdateAction parameter to uaApplied (OnUpdateRecord) or
the Applied parameter to true (BeforeUpdateRecord).

You may optionally perform data validation, data modification, or other operations
that depend on each record’s update.

Warning If you call an update object’s ExecSQL or Apply method in an OnUpdateRecord event
handler, be sure that you do not set the dataset’s UpdateObject property to that
update object. Otherwise, this will result in a second attempt to apply each record’s
update.

Executing the SQL statements
When you use multiple update objects, you do not associate the update objects with a
dataset by setting its UpdateObject property. As a result, the appropriate statements
are not automatically executed when you apply updates. Instead, you must explicitly
invoke the update object in code.

There are two ways to invoke the update object. Which way you choose depends on
whether the SQL statement uses parameters to represent field values:

• If the SQL statement to execute uses parameters, call the Apply method.

• If the SQL statement to execute does not use parameters, it is more efficient to call
the ExecSQL method.

Note If the SQL statement uses parameters other than the built-in types (for the original
and updated field values), you must manually supply parameter values instead of
relying on the parameter substitution provided by the Apply method. See “Using an
update component’s Query property” on page 24-46 for information on manually
providing parameter values.

For information about the default parameter substitution for parameters in an update
object’s SQL statements, see “Understanding parameter substitution in update SQL
statements” on page 24-41.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-45

U s i n g t h e B D E t o c a c h e u p d a t e s

Calling the Apply method
The Apply method for an update component manually applies updates for the
current record. There are two steps involved in this process:

1 Initial and edited field values for the record are bound to parameters in the
appropriate SQL statement.

2 The SQL statement is executed.

Call the Apply method to apply the update for the current record in the update cache.
The Apply method is most often called from within a handler for the dataset’s
OnUpdateRecord event or from a provider’s BeforeUpdateRecord event handler.

Warning If you use the dataset’s UpdateObject property to associate dataset and update object,
Apply is called automatically. In that case, do not call Apply in an OnUpdateRecord
event handler as this will result in a second attempt to apply the current record’s
update.

OnUpdateRecord event handlers indicate the type of update that needs to be applied
with an UpdateKind parameter of type TUpdateKind. You must pass this parameter to
the Apply method to indicate which update SQL statement to use. The following code
illustrates this using a BeforeUpdateRecord event handler:

void __fastcall TForm1::BDEClientDataSet1BeforeUpdateRecord(TObject *Sender,
TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)

{
UpdateSQL1->DataSet = DeltaDS;
TDBDataSet *pSrcDS = dynamic_cast<TDBDataSet *>(SourceDS);
UpdateSQL1->DatabaseName = pSrcDS->DatabaseName;
UpdateSQL1->SessionName = pSrcDS->SessionName;
UpdateSQL1->Apply(UpdateKind);
Applied = true;

}

Calling the ExecSQL method
The ExecSQL method for an update component manually applies updates for the
current record. Unlike the Apply method, ExecSQL does not bind parameters in the
SQL statement before executing it. The ExecSQL method is most often called from
within a handler for the OnUpdateRecord event (when using the BDE) or the
BeforeUpdateRecord event (when using a client dataset).

Because ExecSQL does not bind parameter values, it is used primarily when the
update object’s SQL statements do not include parameters. You can use Apply
instead, even when there are no parameters, but ExecSQL is more efficient because it
does not check for parameters.

If the SQL statements include parameters, you can still call ExecSQL, but only after
explicitly binding parameters. If you are using the BDE to cache updates, you can
explicitly bind parameters by setting the update object’s DataSet property and then
calling its SetParams method. When using a client dataset to cache updates, you must
supply parameters to the underlying query object maintained by TUpdateSQL. For
information on how to do this, see “Using an update component’s Query property”
on page 24-46.

24-46 D e v e l o p e r ’ s G u i d e

U s i n g t h e B D E t o c a c h e u p d a t e s

Warning If you use the dataset’s UpdateObject property to associate dataset and update object,
ExecSQL is called automatically. In that case, do not call ExecSQL in an
OnUpdateRecord or BeforeUpdateRecord event handler as this will result in a second
attempt to apply the current record’s update.

OnUpdateRecord and BeforeUpdateRecord event handlers indicate the type of update
that needs to be applied with an UpdateKind parameter of type TUpdateKind. You
must pass this parameter to the ExecSQL method to indicate which update SQL
statement to use. The following code illustrates this using a BeforeUpdateRecord event
handler:

void __fastcall TForm1::BDEClientDataSet1BeforeUpdateRecord(TObject *Sender,
TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)

{
TDBDataSet *pSrcDS = dynamic_cast<TDBDataSet *>(SourceDS);
UpdateSQL1->DatabaseName = pSrcDS->DatabaseName;
UpdateSQL1->SessionName = pSrcDS->SessionName;
UpdateSQL1->ExecSQL(UpdateKind);
Applied = true;

}

If an exception is raised during the execution of the update program, execution
continues in the OnUpdateError event, if it is defined.

Using an update component’s Query property
The Query property of an update component provides access to the query
components that implement its DeleteSQL, InsertSQL, and ModifySQL statements. In
most applications, there is no need to access these query components directly: you
can use the DeleteSQL, InsertSQL, and ModifySQL properties to specify the statements
these queries execute, and execute them by calling the update object’s Apply or
ExecSQL method. There are times, however, when you may need to directly
manipulate the query component. In particular, the Query property is useful when
you want to supply your own values for parameters in the SQL statements rather
than relying on the update object’s automatic parameter binding to old and new field
values.

Note The Query property is only accessible at runtime.

The Query property is indexed on a TUpdateKind value:

• Using an index of ukModify accesses the query that updates existing records.
• Using an index of ukInsert accesses the query that inserts new records.
• Using an index of ukDelete accesses the query that deletes records.

The following shows how to use the Query property to supply parameter values that
can’t be bound automatically:

void __fastcall TForm1::BDEClientDataSet1BeforeUpdateRecord(TObject *Sender,
TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)

{
UpdateSQL1->DataSet = DeltaDS; // required for the automatic parameter substitution
TQuery *pQuery = UpdateSQL1->Query[UpdateKind]; // access the query
// make sure the query has the correct DatabaseName and SessionName
TDBDataSet *pSrcDS = dynamic_cast<TDBDataSet *>(SourceDS);
pQuery->DatabaseName = pSrcDS->DatabaseName;

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-47

U s i n g T B a t c h M o v e

pQuery->SessionName = pSrcDS->SessionName;
// now substitute values for custom parameters
pQuery->ParamByName("TimeOfLastUpdate")->Value = Now();
UpdateSQL1->Apply(UpdateKind); // now do automatic substitution and execute
Applied = true;

}

Using TBatchMove
TBatchMove encapsulates Borland Database Engine (BDE) features that let you to
duplicate a dataset, append records from one dataset to another, update records in
one dataset with records from another dataset, and delete records from one dataset
that match records in another dataset. TBatchMove is most often used to:

• Download data from a server to a local data source for analysis or other
operations.

• Move a desktop database into tables on a remote server as part of an upsizing
operation.

A batch move component can create tables on the destination that correspond to the
source tables, automatically mapping the column names and data types as
appropriate.

Creating a batch move component

To create a batch move component:

1 Place a table or query component for the dataset from which you want to import
records (called the Source dataset) on a form or in a data module.

2 Place the dataset to which to move records (called the Destination dataset) on the
form or data module.

3 Place a TBatchMove component from the BDE page of the Component palette in
the data module or form, and set its Name property to a unique value appropriate
to your application.

4 Set the Source property of the batch move component to the name of the table from
which to copy, append, or update records. You can select tables from the drop-
down list of available dataset components.

5 Set the Destination property to the dataset to create, append to, or update. You can
select a destination table from the drop-down list of available dataset components.

• If you are appending, updating, or deleting, Destination must represent an
existing database table.

• If you are copying a table and Destination represents an existing table, executing
the batch move overwrites all of the current data in the destination table.

24-48 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

• If you are creating an entirely new table by copying an existing table, the
resulting table has the name specified in the Name property of the table
component to which you are copying. The resulting table type will be of a
structure appropriate to the server specified by the DatabaseName property.

6 Set the Mode property to indicate the type of operation to perform. Valid
operations are batAppend (the default), batUpdate, batAppendUpdate, batCopy, and
batDelete. For information about these modes, see “Specifying a batch move mode”
on page 24-48.

7 Optionally set the Transliterate property. If Transliterate is true (the default),
character data is translated from the Source dataset’s character set to the
Destination dataset’s character set as necessary.

8 Optionally set column mappings using the Mappings property. You need not set
this property if you want batch move to match columns based on their position in
the source and destination tables. For more information about mapping columns,
see “Mapping data types” on page 24-49.

9 Optionally specify the ChangedTableName, KeyViolTableName, and
ProblemTableName properties. Batch move stores problem records it encounters
during the batch operation in the table specified by ProblemTableName. If you are
updating a Paradox table through a batch move, key violations can be reported in
the table you specify in KeyViolTableName. ChangedTableName lists all records that
changed in the destination table as a result of the batch move operation. If you do
not specify these properties, these error tables are not created or used. For more
information about handling batch move errors, see “Handling batch move errors”
on page 24-51.

Specifying a batch move mode

The Mode property specifies the operation a batch move component performs:

Appending records
To append data, the destination dataset must represent an existing table. During the
append operation, the BDE converts data to appropriate data types and sizes for the
destination dataset if necessary. If a conversion is not possible, an exception is
thrown and the data is not appended.

Table 24.8 Batch move modes

Property Purpose

batAppend Append records to the destination table.

batUpdate Update records in the destination table with matching records from the
source table. Updating is based on the current index of the destination table.

batAppendUpdate If a matching record exists in the destination table, update it. Otherwise,
append records to the destination table.

batCopy Create the destination table based on the structure of the source table. If the
destination table already exists, it is dropped and recreated.

batDelete Delete records in the destination table that match records in the source table.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-49

U s i n g T B a t c h M o v e

Updating records
To update data, the destination dataset must represent an existing table and must
have an index defined that enables records to be matched. If the primary index fields
are used for matching, records with index fields in the destination dataset that match
index fields records in the source dataset are overwritten with the source data.
During the update operation, the BDE converts data to appropriate data types and
sizes for the destination dataset if necessary.

Appending and updating records
To append and update data the destination dataset must represent an existing table
and must have an index defined that enables records to be matched. If the primary
index fields are used for matching, records with index fields in the destination
dataset that match index fields records in the source dataset are overwritten with the
source data. Otherwise, data from the source dataset is appended to the destination
dataset. During append and update operations, the BDE converts data to appropriate
data types and sizes for the destination dataset, if necessary.

Copying datasets
To copy a source dataset, the destination dataset should not represent an exist table.
If it does, the batch move operation overwrites the existing table with a copy of the
source dataset.

If the source and destination datasets are maintained by different types of database
engines, for example, Paradox and InterBase, the BDE creates a destination dataset
with a structure as close as possible to that of the source dataset and automatically
performs data type and size conversions as necessary.

Note TBatchMove does not copy metadata structures such as indexes, constraints, and
stored procedures. You must recreate these metadata objects on your database server
or through the SQL Explorer as appropriate.

Deleting records
To delete data in the destination dataset, it must represent an existing table and must
have an index defined that enables records to be matched. If the primary index fields
are used for matching, records with index fields in the destination dataset that match
index fields records in the source dataset are deleted in the destination table.

Mapping data types

In batAppend mode, a batch move component creates the destination table based on
the column data types of the source table. Columns and types are matched based on
their position in the source and destination tables. That is, the first column in the
source is matched with the first column in the destination, and so on.

To override the default column mappings, use the Mappings property. Mappings is a
list of column mappings (one per line). This listing can take one of two forms. To map
a column in the source table to a column of the same name in the destination table,
you can use a simple listing that specifies the column name to match. For example,

24-50 D e v e l o p e r ’ s G u i d e

U s i n g T B a t c h M o v e

the following mapping specifies that a column named ColName in the source table
should be mapped to a column of the same name in the destination table:

ColName

To map a column named SourceColName in the source table to a column named
DestColName in the destination table, the syntax is as follows:

DestColName = SourceColName

If source and destination column data types are not the same, a batch move operation
attempts a “best fit”. It trims character data types, if necessary, and attempts to
perform a limited amount of conversion, if possible. For example, mapping a
CHAR(10) column to a CHAR(5) column will result in trimming the last five
characters from the source column.

As an example of conversion, if a source column of character data type is mapped to
a destination of integer type, the batch move operation converts a character value of
‘5’ to the corresponding integer value. Values that cannot be converted generate
errors. For more information about errors, see “Handling batch move errors” on
page 24-51.

When moving data between different table types, a batch move component translates
data types as appropriate based on the dataset’s server types. See the BDE online
help file for the latest tables of mappings among server types.

Note To batch move data to an SQL server database, you must have that database server
and a version of C++Builder with the appropriate SQL Link installed, or you can use
ODBC if you have the proper third party ODBC drivers installed.

Executing a batch move

Use the Execute method to execute a previously prepared batch operation at runtime.
For example, if BatchMoveAdd is the name of a batch move component, the following
statement executes it:

BatchMoveAdd->Execute();

You can also execute a batch move at design time by right clicking the mouse on a
batch move component and choosing Execute from the context menu.

The MovedCount property keeps track of the number of records that are moved when
a batch move executes.

The RecordCount property specifies the maximum number of records to move. If
RecordCount is zero, all records are moved, beginning with the first record in the
source dataset. If RecordCount is a positive number, a maximum of RecordCount
records are moved, beginning with the current record in the source dataset. If
RecordCount is greater than the number of records between the current record in the
source dataset and its last record, the batch move terminates when the end of the
source dataset is reached. You can examine MoveCount to determine how many
records were actually transferred.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-51

T h e D a t a D i c t i o n a r y

Handling batch move errors

There are two types of errors that can occur in a batch move operation: data type
conversion errors and integrity violations. TBatchMove has a number of properties
that report on and control error handling.

The AbortOnProblem property specifies whether to abort the operation when a data
type conversion error occurs. If AbortOnProblem is true, the batch move operation is
canceled when an error occurs. If false, the operation continues. You can examine the
table you specify in the ProblemTableName to determine which records caused
problems.

The AbortOnKeyViol property indicates whether to abort the operation when a
Paradox key violation occurs.

The ProblemCount property indicates the number of records that could not be
handled in the destination table without a loss of data. If AbortOnProblem is true, this
number is one, since the operation is aborted when an error occurs.

The following properties enable a batch move component to create additional tables
that document the batch move operation:

• ChangedTableName, if specified, creates a local Paradox table containing all records
in the destination table that changed as a result of an update or delete operation.

• KeyViolTableName, if specified, creates a local Paradox table containing all records
from the source table that caused a key violation when working with a Paradox
table. If AbortOnKeyViol is true, this table will contain at most one entry since the
operation is aborted on the first problem encountered.

• ProblemTableName, if specified, creates a local Paradox table containing all records
that could not be posted in the destination table due to data type conversion
errors. For example, the table could contain records from the source table whose
data had to be trimmed to fit in the destination table. If AbortOnProblem is true,
there is at most one record in this table since the operation is aborted on the first
problem encountered.

Note If ProblemTableName is not specified, the data in the record is trimmed and placed in
the destination table.

The Data Dictionary
When you use the BDE to access your data, your application has access to the Data
Dictionary. The Data Dictionary provides a customizable storage area, independent
of your applications, where you can create extended field attribute sets that describe
the content and appearance of data.

For example, if you frequently develop financial applications, you may create a
number of specialized field attribute sets describing different display formats for
currency. When you create datasets for your application at design time, rather than
using the Object Inspector to set the currency fields in each dataset by hand, you can
associate those fields with an extended field attribute set in the data dictionary. Using

24-52 D e v e l o p e r ’ s G u i d e

T h e D a t a D i c t i o n a r y

the data dictionary ensures a consistent data appearance within and across the
applications you create.

In a client/server environment, the Data Dictionary can reside on a remote server for
additional sharing of information.

To learn how to create extended field attribute sets from the Fields editor at design
time, and how to associate them with fields throughout the datasets in your
application, see “Creating attribute sets for field components” on page 23-12. To
learn more about creating a data dictionary and extended field attributes with the
SQL and Database Explorers, see their respective online help files.

A programming interface to the Data Dictionary is available in the drintf header file
(located in the include\VCL directory). This interface supplies the following
methods:

Table 24.9 Data Dictionary interface

Routine Use

DictionaryActive Indicates if the data dictionary is active.

DictionaryDeactivate Deactivates the data dictionary.

IsNullID Indicates whether a given ID is a null ID

FindDatabaseID Returns the ID for a database given its alias.

FindTableID Returns the ID for a table in a specified database.

FindFieldID Returns the ID for a field in a specified table.

FindAttrID Returns the ID for a named attribute set.

GetAttrName Returns the name an attribute set given its ID.

GetAttrNames Executes a callback for each attribute set in the dictionary.

GetAttrID Returns the ID of the attribute set for a specified field.

NewAttr Creates a new attribute set from a field component.

UpdateAttr Updates an attribute set to match the properties of a field.

CreateField Creates a field component based on stored attributes.

UpdateField Changes the properties of a field to match a specified attribute set.

AssociateAttr Associates an attribute set with a given field ID.

UnassociateAttr Removes an attribute set association for a field ID.

GetControlClass Returns the control class for a specified attribute ID.

QualifyTableName Returns a fully qualified table name (qualified by user name).

QualifyTableNameByName Returns a fully qualified table name (qualified by user name).

HasConstraints Indicates whether the dataset has constraints in the dictionary.

UpdateConstraints Updates the imported constraints of a dataset.

UpdateDataset Updates a dataset to the current settings and constraints in the
dictionary.

U s i n g t h e B o r l a n d D a t a b a s e E n g i n e 24-53

T o o l s f o r w o r k i n g w i t h t h e B D E

Tools for working with the BDE
One advantage of using the BDE as a data access mechanism is the wealth of
supporting utilities that ship with C++Builder. These utilities include:

• SQL Explorer and Database Explorer: C++Builder ships with one of these two
applications, depending on which version you have purchased. Both Explorers
enable you to

• Examine existing database tables and structures. The SQL Explorer lets you
examine and query remote SQL databases.

• Populate tables with data

• Create extended field attribute sets in the Data Dictionary or associate them
with fields in your application.

• Create and manage BDE aliases.

SQL Explorer lets you do the following as well:

• Create SQL objects such as stored procedures on remote database servers.

• View the reconstructed text of SQL objects on remote database servers.

• Run SQL scripts.

• SQL Monitor: SQL Monitor lets you watch all of the communication that passes
between the remote database server and the BDE. You can filter the messages you
want to watch, limiting them to only the categories of interest. SQL Monitor is
most useful when debugging your application.

• BDE Administration utility: The BDE Administration utility lets you add new
database drivers, configure the defaults for existing drivers, and create new BDE
aliases.

• Database Desktop: If you are using Paradox or dBASE tables, Database Desktop
lets you view and edit their data, create new tables, and restructure existing tables.
Using Database Desktop affords you more control than using the methods of a
TTable component (for example, it allows you to specify validity checks and
language drivers). It provides the only mechanism for restructuring Paradox and
dBASE tables other than making direct calls the BDE’s API.

24-54 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h A D O c o m p o n e n t s 25-1

C h a p t e r

25
Chapter25Working with ADO components

The dbGo components provide data access through the ADO framework. ADO,
(Microsoft ActiveX Data Objects) is a set of COM objects that access data through an
OLE DB provider. The dbGo components encapsulate these ADO objects in the
C++Builder database architecture.

The ADO layer of an ADO-based application consists of Microsoft ADO 2.1, an OLE
DB provider or ODBC driver for the data store access, client software for the specific
database system used (in the case of SQL databases), a database back-end system
accessible to the application (for SQL database systems), and a database. All of these
must be accessible to the ADO-based application for it to be fully functional.

The ADO objects that figure most prominently are the Connection, Command, and
Recordset objects. These ADO objects are wrapped by the TADOConnection,
TADOCommand, and ADO dataset components. The ADO framework includes other
“helper” objects, like the Field and Properties objects, but these are typically not used
directly in dbGoapplications and are not wrapped by dedicated components.

This chapter presents the dbGo components and discusses the unique features they
add to the common C++Builder database architecture. Before reading about the
features peculiar to the dbGo components, you should familiarize yourself with the
common features of database connection components and datasets described in
Chapter 21, “Connecting to databases” and Chapter 22, “Understanding datasets.”

Overview of ADO components
The ADO page of the component palette hosts the dbGo components. These
components let you connect to an ADO data store, execute commands, and retrieve
data from tables in databases using the ADO framework. They require ADO 2.1 (or
higher) to be installed on the host computer. Additionally, client software for the
target database system (such as Microsoft SQL Server) must be installed, as well as an
OLE DB driver or ODBC driver specific to the particular database system.

25-2 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Most dbGo components have direct counterparts in the components available for
other data access mechanisms: a database connection component (TADOConnection)
and various types of datasets. In addition, dbGo includes TADOCommand, a simple
component that is not a dataset but which represents an SQL command to be
executed on the ADO data store.

The following table lists the ADO components.

Connecting to ADO data stores
dbGo applications use Microsoft ActiveX Data Objects (ADO) 2.1 to interact with an
OLE DB provider that connects to a data store and accesses its data. One of the items
a data store can represent is a database. An ADO-based application requires that
ADO 2.1 be installed on the client computer. ADO and OLE DB is supplied by
Microsoft and installed with Windows.

An ADO provider represents one of a number of types of access, from native OLE DB
drivers to ODBC drivers. These drivers must be installed on the client computer. OLE
DB drivers for various database systems are supplied by the database vendor or by a
third-party. If the application uses an SQL database, such as Microsoft SQL Server or
Oracle, the client software for that database system must also be installed on the
client computer. Client software is supplied by the database vendor and installed
from the database systems CD (or disk).

To connect your application with the data store, use an ADO connection component
(TADOConnection). Configure the ADO connection component to use one of the

Table 25.1 ADO components

Component Use

TADOConnection A database connection component that establishes a connection with an
ADO data store; multiple ADO dataset and command components can
share this connection to execute commands, retrieve data, and operate
on metadata.

TADODataSet The primary dataset for retrieving and operating on data; TADODataSet
can retrieve data from a single or multiple tables; can connect directly to
a data store or use a TADOConnection component.

TADOTable A table-type dataset for retrieving and operating on a recordset
produced by a single database table; TADOTable can connect directly to
a data store or use a TADOConnection component.

TADOQuery A query-type dataset for retrieving and operating on a recordset
produced by a valid SQL statement; TADOQuery can also execute data
definition language (DDL) SQL statements. It can connect directly to a
data store or use a TADOConnection component

TADOStoredProc A stored procedure-type dataset for executing stored procedures;
TADOStoredProc executes stored procedures that may or may not
retrieve data. It can connect directly to a data store or use a
TADOConnection component.

TADOCommand A simple component for executing commands (SQL statements that do
not return result sets); TADOCommand can be used with a supporting
dataset component, or retrieve a dataset from a table; It can connect
directly to a data store or use a TADOConnection component.

W o r k i n g w i t h A D O c o m p o n e n t s 25-3

C o n n e c t i n g t o A D O d a t a s t o r e s

available ADO providers. Although TADOConnection is not strictly required, because
ADO command and dataset components can establish connections directly using
their ConnectionString property, you can use TADOConnection to share a single
connection among several ADO components. This can reduce resource consumption,
and allows you to create transactions that span multiple datasets.

Like other database connection components, TADOConnection provides support for

• Controlling connections
• Controlling server login
• Managing transactions
• Working with associated datasets
• Sending commands to the server
• Obtaining metadata

In addition to these features that are common to all database connection components,
TADOConnection provides its own support for

• A wide range of options you can use to fine-tune the connection.
• The ability to list the command objects that use the connection.
• Additional events when performing common tasks.

Connecting to a data store using TADOConnection

One or more ADO dataset and command components can share a single connection
to a data store by using TADOConnection. To do so, associated dataset and command
components with the connection component through their Connection properties. At
design-time, select the desired connection component from the drop-down list for the
Connection property in the Object Inspector. At runtime, assign the reference to the
Connection property. For example, the following line associates a TADODataSet
component with a TADOConnection component.

ADODataSet1->Connection = ADOConnection1;

The connection component represents an ADO connection object. Before you can use
the connection object to establish a connection, you must identify the data store to
which you want to connect. Typically, you provide information using the
ConnectionString property. ConnectionString is a semicolon delimited string that lists
one or more named connection parameters. These parameters identify the data store
by specifying either the name of a file that contains the connection information or the
name of an ADO provider and a reference identifying the data store. Use the
following, predefined parameter names to supply this information:

Parameter Description

Provider The name of a local ADO provider to use for the connection.

Data Source The name of the data store.

File name The name of a file containing connection information.

Remote Provider The name of an ADO provider that resides on a remote machine.

Remote Server The name of the remote server when using a remote provider.

25-4 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Thus, a typical value of ConnectionString has the form

Provider=MSDASQL.1;Data Source=MQIS

Note The connection parameters in ConnectionString do not need to include the Provider or
Remote Provider parameter if you specify an ADO provider using the Provider
property. Similarly, you do not need to specify the Data Source parameter if you use
the DefaultDatabase property.

In addition, to the parameters listed above, ConnectionString can include any
connection parameters peculiar to the specific ADO provider you are using. These
additional connection parameters can include user ID and password if you want to
hardcode the login information.

At design-time, you can use the Connection String Editor to build a connection string
by selecting connection elements (like the provider and server) from lists. Click the
ellipsis button for the ConnectionString property in the Object Inspector to launch the
Connection String Editor, which is an ActiveX property editor supplied by ADO.

Once you have specified the ConnectionString property (and, optionally, the Provider
property), you can use the ADO connection component to connect to or disconnect
from the ADO data store, although you may first want to use other properties to fine-
tune the connection. When connecting to or disconnecting from the data store,
TADOConnection lets you respond to a few additional events beyond those common
to all database connection components. These additional events are described in
“Events when establishing a connection” on page 25-7 and “Events when
disconnecting” on page 25-7.

Note If you do not explicitly activate the connection by setting the connection component’s
Connected property to true, it automatically establishes the connection when the first
dataset component is opened or the first time you use an ADO command component
to execute a command.

Accessing the connection object
Use the ConnectionObject property of TADOConnection to access the underlying ADO
connection object. Using this reference it is possible to access properties and call
methods of the underlying ADO Connection object.

Using the underlying ADO Connection object requires a good working knowledge of
ADO objects in general and the ADO Connection object in particular. It is not
recommended that you use the Connection object unless you are familiar with
Connection object operations. Consult the Microsoft Data Access SDK help for
specific information on using ADO Connection objects.

Fine-tuning a connection

One advantage of using TADOConnection for establishing the connection to a data
store instead of simply supplying a connection string for your ADO command and
dataset components, is that it provides a greater degree of control over the conditions
and attributes of the connection.

W o r k i n g w i t h A D O c o m p o n e n t s 25-5

C o n n e c t i n g t o A D O d a t a s t o r e s

Forcing asynchronous connections
Use the ConnectOptions property to force the connection to be asynchronous.
Asynchronous connections allow your application to continue processing without
waiting for the connection to be completely opened.

By default, ConnectionOptions is set to coConnectUnspecified which allows the server to
decide the best type of connection. To explicitly make the connection asynchronous,
set ConnectOptions to coAsyncConnect.

The example routines below enable and disable asynchronous connections in the
specified connection component:

void __fastcall TForm1::AsyncConnectButtonClick(TObject *Sender)
{

ADOConnection1->Close();
ADOConnection1->ConnectOptions = coAsyncConnect;
ADOConnection1->Open();

}

void __fastcall TForm1::ServerChoiceConnectButtonClick(TObject *Sender)
{

ADOConnection1->Close();
ADOConnection1->ConnectOptions = coConnectUnspecified;
ADOConnection1->Open();

}

Controlling time-outs
You can control the amount of time that can elapse before attempted commands and
connections are considered failed and are aborted using the ConnectionTimeout and
CommandTimeout properties.

ConnectionTimeout specifies the amount of time, in seconds, before an attempt to
connect to the data store times out. If the connection does not successfully compile
prior to expiration of the time specified in ConnectionTimeout, the connection attempt
is canceled:

ADOConnection1->ConnectionTimeout = 10; // seconds
ADOConnection1->Open();

CommandTimeout specifies the amount of time, in seconds, before an attempted
command times out. If a command initiated by a call to the Execute method does not
successfully complete prior to expiration of the time specified in CommandTimeout,
the command is canceled and ADO generates an exception:

ADOConnection1->ConnectionTimeout = 10;
ADOConnection1->Execute(”DROP TABLE Employee1997”, cmdText, TExecuteOptions());

Indicating the types of operations the connection supports
ADO connections are established using a specific mode, similar to the mode you use
when opening a file. The connection mode determines the permissions available to
the connection, and hence the types of operations (such as reading and writing) that
can be performed using that connection.

25-6 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o A D O d a t a s t o r e s

Use the Mode property to indicate the connection mode. The possible values are listed
in Table 25.2:

The possible values for Mode correspond to the ConnectModeEnum values of the Mode
property on the underlying ADO connection object. See the Microsoft Data Access
SDK help for more information on these values.

Specifying whether the connection automatically initiates transactions
Use the Attributes property to control the connection component’s use of retaining
commits and retaining aborts. When the connection component uses retaining
commits, then every time your application commits a transaction, a new transaction
is automatically started. When the connection component uses retaining aborts, then
every time your application rolls back a transaction, a new transaction is
automatically started.

Attributes is a set that can contain one, both, or neither of the constants
xaCommitRetaining and xaAbortRetaining. When Attributes contains
xaCommitRetaining, the connection uses retaining commits. When Attributes contains
xaAbortRetaining, it uses retaining aborts.

Check whether either retaining commits or retaining aborts is enabled using the Set
Contains method. Enable retaining commits or aborts by adding the appropriate
value to the attributes property; disable them by subtracting the value. The example
routines below respectively enable and disable retaining commits in an ADO
connection component.

void __fastcall TForm1::RetainingCommitsOnButtonClick(TObject *Sender)
{

ADOConnection1->Close()
if (!ADOConnection1->Attributes.Contains(xaCommitRetaining))

ADOConnection1->Attributes = TXactAttributes() << xaCommitRetaining;
ADOConnection1->Open()

}

void __fastcall TForm1::RetainingCommitsOffButtonClick(TObject *Sender)
{

ADOConnection1->Close()
if (ADOConnection1->Attributes.Contains(xaCommitRetaining))

ADOConnection1->Attributes = TXactAttributes() >> xaCommitRetaining;
ADOConnection1->Open()

}

Table 25.2 ADO connection modes

Connect Mode Meaning

cmUnknown Permissions are not yet set for the connection or cannot be determined.

cmRead Read-only permissions are available to the connection.

cmWrite Write-only permissions are available to the connection.

cmReadWrite Read/write permissions are available to the connection.

cmShareDenyRead Prevents others from opening connections with read permissions.

cmShareDenyWrite Prevents others from opening connection with write permissions.

cmShareExclusive Prevents others from opening connection.

cmShareDenyNone Prevents others from opening connection with any permissions.

W o r k i n g w i t h A D O c o m p o n e n t s 25-7

C o n n e c t i n g t o A D O d a t a s t o r e s

Accessing the connection’s commands

Like other database connection components, you can access the datasets associated with
the connection using the DataSets and DataSetCount properties. However, dbGo also
includes TADOCommand objects, which are not datasets, but which maintain a similar
relationship to the connection component.

You can use the Commands and CommandCount properties of TADOConnection to access
the associated ADO command objects in the same way you use the DataSets and
DataSetCount properties to access the associated datasets. Unlike DataSets and
DataSetCount, which only list active datasets, Commands and CommandCount provide
references to all TADOCommand components associated with the connection
component.

Commands is a zero-based array of references to ADO command components.
CommandCount provides a total count of all of the commands listed in Commands.
You can use these properties together to iterate through all the commands that use a
connection component, as illustrated in the following code:

for (int i = 0; i < ADOConnection2->CommandCount; i++)
ADOConnection2->Commands[i]->Execute();

ADO connection events

In addition to the usual events that occur for all database connection components,
TADOConnection generates a number of additional events that occur during normal
usage.

Events when establishing a connection
In addition to the BeforeConnect and AfterConnect events that are common to all
database connection components, TADOConnection also generates an OnWillConnect
and OnConnectComplete event when establishing a connection. These events occur
after the BeforeConnect event.

• OnWillConnect occurs before the ADO provider establishes a connection. It lets
you make last minute changes to the connection string, provide a user name and
password if you are handling your own login support, force an asynchronous
connection, or even cancel the connection before it is opened.

• OnConnectComplete occurs after the connection is opened. Because
TADOConnection can represent asynchronous connections, you should use
OnConnectComplete, which occurs after the connection is opened or has failed due
to an error condition, instead of the AfterConnect event, which occurs after the
connection component instructs the ADO provider to open a connection, but not
necessarily after the connection is opened.

Events when disconnecting
In addition to the BeforeDisconnect and AfterDisconnect events common to all database
connection components, TADOConnection also generates an OnDisconnect event after

25-8 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

closing a connection. OnDisconnect occurs after the connection is closed but before
any associated datasets are closed and before the AfterDisconnect event.

Events when managing transactions
The ADO connection component provides a number of events for detecting when
transaction-related processes have been completed. These events indicate when a
transaction process initiated by a BeginTrans, CommitTrans, and RollbackTrans method
has been successfully completed at the data store.

• The OnBeginTransComplete event occurs when the data store has successfully
started a transaction after a call to the BeginTrans method.

• The OnCommitTransComplete event occurs after a transaction is successfully
committed due to a call to CommitTrans.

• The OnRollbackTransComplete event occurs after a transaction is successfully
aborted due to a call to RollbackTrans.

Other events
ADO connection components introduce two additional events you can use to
respond to notifications from the underlying ADO connection object:

• The OnExecuteComplete event occurs after the connection component executes a
command on the data store (for example, after calling the Execute method).
OnExecuteComplete indicates whether the execution was successful.

• The OnInfoMessage event occurs when the underlying connection object provides
detailed information after an operation is completed. The OnInfoMessage event
handler receives the interface to an ADO Error object that contains the detailed
information and a status code indicating whether the operation was successful.

Using ADO datasets
ADO dataset components encapsulate the ADO Recordset object. They inherit the
common dataset capabilities described in Chapter 22, “Understanding datasets,”
using ADO to provide the implementation. In order to use an ADO dataset, you must
familiarize yourself with these common features.

In addition to the common dataset features, all ADO datasets add properties, events,
and methods for

• Connecting to an ADO datastore.
• Accessing the underlying Recordset object.
• Filtering records based on bookmarks.
• Fetching records asynchronously.
• Performing batch updates (caching updates).
• Using files on disk to store data.

W o r k i n g w i t h A D O c o m p o n e n t s 25-9

U s i n g A D O d a t a s e t s

There are four ADO datasets:

• TADOTable, a table-type dataset that represents all of the rows and columns of a
single database table. See “Using table type datasets” on page 22-25 for
information on using TADOTable and other table-type datasets.

• TADOQuery, a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type
datasets” on page 22-41 for information on using TADOQuery and other query-
type datasets.

• TADOStoredProc, a stored procedure-type dataset that executes a stored procedure
defined on a database server. See “Using stored procedure-type datasets” on
page 22-48 for information on using TADOStoredProc and other stored procedure-
type datasets.

• TADODataSet, a general-purpose dataset that includes the capabilities of the other
three types. See “Using TADODataSet” on page 25-15 for a description of features
unique to TADODataSet.

Note When using ADO to access database information, you do not need to use a dataset
such as TADOQuery to represent SQL commands that do not return a cursor. Instead,
you can use TADOCommand, a simple component that is not a dataset. For details on
TADOCommand, see “Using Command objects” on page 25-16.

Connecting an ADO dataset to a data store
ADO datasets can connect to an ADO data store either collectively or individually.

When connecting datasets collectively, set the Connection property of each dataset to
a TADOConnection component. Each dataset then uses the ADO connection
component’s connection.

ADODataSet1->Connection = ADOConnection1;
ADODataSet2->Connection = ADOConnection1;
...

Among the advantages of connecting datasets collectively are:

• The datasets share the connection object’s attributes.
• Only one connection need be set up: that of the TADOConnection.
• The datasets can participate in transactions.

For more information on using TADOConnection see “Connecting to ADO data
stores” on page 25-2.

When connecting datasets individually, set the ConnectionString property of each
dataset. Each dataset that uses ConnectionString establishes its own connection to the
data store, independent of any other dataset connection in the application.

The ConnectionString property of ADO datasets works the same way as the
ConnectionString property of TADOConnection: it is a set of semicolon-delimited
connection parameters such as the following:

ADODataSet1->ConnectionString = "Provider=YourProvider;Password=SecretWord;";
ADODataSet1->ConnectionString += "User ID=JaneDoe;SERVER=PURGATORY";
ADODataSet1->ConnectionString += "UID=JaneDoe;PWD=SecretWord;"
ADODataSet1->ConnectionString += "Initial Catalog=Employee";

25-10 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

At design time you can use the Connection String Editor to help you build the
connection string. For more information about connection strings, see “Connecting to
a data store using TADOConnection” on page 25-3.

Working with record sets
The Recordset property provides direct access to the ADO recordset object underlying
the dataset component. Using this object, it is possible to access properties and call
methods of the recordset object from an application. Use of Recordset to directly
access the underlying ADO recordset object requires a good working knowledge of
ADO objects in general and the ADO recordset object in specific. Using the recordset
object directly is not recommended unless you are familiar with recordset object
operations. Consult the Microsoft Data Access SDK help for specific information on
using ADO recordset objects.

The RecordsetState property indicates the current state of the underlying recordset
object. RecordsetState corresponds to the State property of the ADO recordset object.
The value of RecordsetState is either stOpen, stExecuting, or stFetching. (TObjectState,
the type of the RecordsetState property, defines other values, but only stOpen,
stExecuting, and stFetching pertain to recordsets.) A value of stOpen indicates that the
recordset is currently idle. A value of stExecuting indicates that it is executing a
command. A value of stFetching indicates that it is fetching rows from the associated
table (or tables).

Use RecordsetState values to perform actions dependent on the current state of the
dataset. For example, a routine that updates data might check the RecordsetState
property to see whether the dataset is active and not in the process of other activities
such as connecting or fetching data.

Filtering records based on bookmarks
ADO datasets support the common dataset feature of using bookmarks to mark and
return to specific records. Also like other datasets, ADO datasets let you use filters to
limit the available records in the dataset. ADO datasets provide an additional feature
that combines these two common dataset features: the ability to filter on a set of
records identified by bookmarks.

To filter on a set of bookmarks,

1 Use the Bookmark method to mark the records you want to include in the filtered
dataset.

2 Call the FilterOnBookmarks method to filter the dataset so that only the
bookmarked records appear.

This process is illustrated below:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
 TBookmarkStr BM1;
 TBookmarkStr BM2;
 BM1 = ADODataSet1->Bookmark;

BMList->Add(BM1);
 ADODataSet1->MoveBy(3);

W o r k i n g w i t h A D O c o m p o n e n t s 25-11

U s i n g A D O d a t a s e t s

 BM2 = ADODataSet1->Bookmark;
BMList->Add(BM2);
ADODataSet1->FilterOnBookmarks(ARRAYOFCONST((BM1,BM2)));

}

Note that the example above also adds the bookmarks to a list object named BMList.
This is necessary so that the application can later free the bookmarks when they are
no longer needed.

For details on using bookmarks, see “Marking and returning to records” on
page 22-9. For details on other types of filters, see “Displaying and editing a subset of
data using filters” on page 22-12.

Fetching records asynchronously
Unlike other datasets, ADO datasets can fetch their data asynchronously. This allows
your application to continue performing other tasks while the dataset populates itself
with data from the data store.

To control whether the dataset fetches data asynchronously, if it fetches data at all,
use the ExecuteOptions property. ExecuteOptions governs how the dataset fetches its
records when you call Open or set Active to true. If the dataset represents a query or
stored procedure that does not return any records, ExecuteOptions governs how the
query or stored procedure is executed when you call ExecSQL or ExecProc.

ExecuteOptions is a set that includes zero or more of the following values:

Using batch updates
One approach for caching updates is to connect the ADO dataset to a client dataset
using a dataset provider. This approach is discussed in “Using a client dataset to
cache updates” on page 27-15.

Table 25.3 Execution options for ADO datasets

Execute Option Meaning

eoAsyncExecute The command or data fetch operation is executed asynchronously.

eoAsyncFetch The dataset first fetches the number of records specified by the
CacheSize property synchronously, then fetches any remaining rows
asynchronously.

eoAsyncFetchNonBlocking Asynchronous data fetches or command execution do not block the
current thread of execution.

eoExecuteNoRecords A command or stored procedure that does not return data. If any
rows are retrieved, they are discarded and not returned.

25-12 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

However, ADO dataset components provide their own support for cached updates,
which they call batch updates. The following table lists the correspondences between
caching updates using a client dataset and using the batch updates features:

Using the batch updates features of ADO dataset components is a matter of:

• Opening the dataset in batch update mode
• Inspecting the update status of individual rows
• Filtering multiple rows based on update status
• Applying the batch updates to base tables
• Canceling batch updates

Opening the dataset in batch update mode
To open an ADO dataset in batch update mode, it must meet these criteria:

1 The component’s CursorType property must be ctKeySet (the default property
value) or ctStatic.

2 The LockType property must be ltBatchOptimistic.
3 The command must be a SELECT query.

Before activating the dataset component, set the CursorType and LockType properties
as indicated above. Assign a SELECT statement to the component’s CommandText
property (for TADODataSet) or the SQL property (for TADOQuery). For
TADOStoredProc components, set the ProcedureName to the name of a stored
procedure that returns a result set. These properties can be set at design-time through
the Object Inspector or programmatically at runtime. The example below shows the
preparation of a TADODataSet component for batch update mode.

ADODataSet1->CursorLocation = clUseClient;
ADODataSet1->CursorType = ctStatic;
ADODataSet1->LockType = ltBatchOptimistic;

Table 25.4 Comparison of ADO and client dataset cached updates

ADO dataset TClientDataSet Description

LockType Not used: client datasets
always cache updates

Specifies whether the dataset is opened in batch
update mode.

CursorType Not used: client datasets
always work with an in-
memory snapshot of data

Specifies how isolated the ADO dataset is from
changes on the server.

RecordStatus UpdateStatus Indicates what update, if any, has occurred on the
current row. RecordStatus provides more
information than UpdateStatus.

FilterGroup StatusFilter Specifies which type of records are available.
FilterGroup provides a wider variety of
information.

UpdateBatch ApplyUpdates Applies the cached updates back to the database
server. Unlike ApplyUpdates, UpdateBatch lets you
limit the types of updates to be applied.

CancelBatch CancelUpdates Discards pending updates, reverting to the
original values. Unlike CancelUpdates, CancelBatch
lets you limit the types of updates to be canceled.

W o r k i n g w i t h A D O c o m p o n e n t s 25-13

U s i n g A D O d a t a s e t s

ADODataSet1->CommandType = cmdText;
ADODataSet1->CommandText = "SELECT * FROM Employee";

After a dataset has been opened in batch update mode, all changes to the data are
cached rather than applied directly to the base tables.

Inspecting the update status of individual rows
Determine the update status of a given row by making it current and then inspecting
the RecordStatus property of the ADO data component. RecordStatus reflects the
update status of the current row and only that row.

switch (ADOQuery->RecordStatus)
{

case rsUnmodified:
StatusBar1->Panels->Items[0]->Text = "Unchanged record";
break;

case rsModified:
StatusBar1->Panels->Items[0]->Text = "Changed record";
break;

case rsDeleted:
StatusBar1->Panels->Items[0]->Text = "Deleted record";
break;

case rsNew:
StatusBar1->Panels->Items[0]->Text = "New record";
break;

}

Filtering multiple rows based on update status
Filter a recordset to show only those rows that belong to a group of rows with the
same update status using the FilterGroup property. Set FilterGroup to the TFilterGroup
constant that represents the update status of rows to display. A value of fgNone (the
default value for this property) specifies that no filtering is applied and all rows are
visible regardless of update status (except rows marked for deletion). The example
below causes only pending batch update rows to be visible.

FilterGroup = fgPendingRecords;
Filtered = true;

Note For the FilterGroup property to have an effect, the ADO dataset component’s Filtered
property must be set to true.

Applying the batch updates to base tables
Apply pending data changes that have not yet been applied or canceled by calling
the UpdateBatch method. Rows that have been changed and are applied have their
changes put into the base tables on which the recordset is based. A cached row
marked for deletion causes the corresponding base table row to be deleted. A record
insertion (exists in the cache but not the base table) is added to the base table.
Modified rows cause the columns in the corresponding rows in the base tables to be
changed to the new column values in the cache.

25-14 D e v e l o p e r ’ s G u i d e

U s i n g A D O d a t a s e t s

UpdateBatch takes one parameter, a TAffectRecords value. If any value except arAll is
passed, only a subset of the pending changes are applied. The example below applies
only the currently active row to be applied:

ADODataSet1->UpdateBatch(arCurrent);

Canceling batch updates
Cancel pending data changes that have not yet been canceled or applied by calling
the CancelBatch method. When you cancel pending batch updates, field values on
rows that have been changed revert to the values that existed prior to the last call to
CancelBatch or UpdateBatch, if either has been called, or prior to the current pending
batch of changes.

CancelBatch takes one parameter, a TAffectRecords value. If any value except arAll is
passed, only a subset of the pending changes are canceled. The example below
cancels all pending changes:

ADODataSet1->CancelBatch(arAll);

Loading data from and saving data to files
The data retrieved via an ADO dataset component can be saved to a file for later
retrieval on the same or a different computer. The data is saved in one of two
proprietary formats: ADTG or XML. These two file formats are the only formats
supported by ADO. However, both formats are not necessarily supported in all
versions of ADO. Consult the ADO documentation for the version you are using to
determine what save file formats are supported.

Save the data to a file using the SaveToFile method. SaveToFile takes two parameters,
the name of the file to which data is saved, and the format (ADTG or XML) in which
to save the data. Indicate the format for the saved file by setting the Format parameter
to pfADTG or pfXML. If the file specified by the FileName parameter already exists,
SaveToFile throws an EOleException.

Retrieve the data from file using the LoadFromFile method. LoadFromFile takes a single
parameter, the name of the file to load. If the specified file does not exist,
LoadFromFile throws an EOleException exception. On calling the LoadFromFile method,
the dataset component is automatically activated.

In the example below, the first procedure saves the dataset retrieved by the
TADODataSet component ADODataSet1 to a file. The target file is an ADTG file
named SaveFile, saved to a local drive. The second procedure loads this saved file
into the TADODataSet component ADODataSet2.

void __fastcall TForm1::SaveBtnClick(TObject *Sender)
{

if (FileExists("c:\\SaveFile"))
{

DeleteFile("c:\\SaveFile");
Statusbar1->Panels->Items[0]->Text = "Save file deleted!";

}
ADODataSet1->SaveToFile("c:\\SaveFile");

}

void __fastcall TForm1::LoadBtnClick(TObject *Sender)

W o r k i n g w i t h A D O c o m p o n e n t s 25-15

U s i n g A D O d a t a s e t s

{
if (FileExists("c:\\SaveFile"))

ADODataSet1->LoadFromFile("c:\\SaveFile");
else

Statusbar1->Panels->Items[0]->Text = "Save file does not exist!";
}

The datasets that save and load the data need not be on the same form as above, in
the same application, or even on the same computer. This allows for the briefcase-
style transfer of data from one computer to another.

Using TADODataSet

TADODataSet is a general-purpose dataset for working with data from an ADO data
store. Unlike the other ADO dataset components, TADODataSet is not a table-type,
query-type, or stored procedure-type dataset. Instead, it can function as any of these
types:

• Like a table-type dataset, TADODataSet lets you represent all of the rows and
columns of a single database table. To use it in this way, set the CommandType
property to cmdTable and the CommandText property to the name of the table.
TADODataSet supports table-type tasks such as

• Assigning indexes to sort records or form the basis of record-based searches. In
addition to the standard index properties and methods described in “Sorting
records with indexes” on page 22-26, TADODataSet lets you sort using
temporary indexes by setting the Sort property. Indexed-based searches
performed using the Seek method use the current index.

• Emptying the dataset. The DeleteRecords method provides greater control than
related methods in other table-type datasets, because it lets you specify what
records to delete.

The table-type tasks supported by TADODataSet are available even when you are
not using a CommandType of cmdTable.

• Like a query-type dataset, TADODataSet lets you specify a single SQL command
that is executed when you open the dataset. To use it in this way, set the
CommandType property to cmdText and the CommandText property to the SQL
command you want to execute. At design time, you can double-click on the
CommandText property in the Object Inspector to use the Command Text editor for
help in constructing the SQL command. TADODataSet supports query-type tasks
such as

• Using parameters in the query text. See “Using parameters in queries” on
page 22-43 for details on query parameters.

• Setting up master/detail relationships using parameters. See “Establishing
master/detail relationships using parameters” on page 22-46 for details on how
to do this.

• Preparing the query in advance to improve performance by setting the Prepared
property to true.

25-16 D e v e l o p e r ’ s G u i d e

U s i n g C o m m a n d o b j e c t s

• Like a stored procedure-type dataset, TADODataSet lets you specify a stored
procedure that is executed when you open the dataset. To use it in this way, set the
CommandType property to cmdStoredProc and the CommandText property to the
name of the stored procedure. TADODataSet supports stored procedure-type tasks
such as

• Working with stored procedure parameters. See “Working with stored
procedure parameters” on page 22-50 for details on stored procedure
parameters.

• Fetching multiple result sets. See “Fetching multiple result sets” on page 22-53
for details on how to do this.

• Preparing the stored procedure in advance to improve performance by setting
the Prepared property to true.

In addition, TADODataSet lets you work with data stored in files by setting the
CommandType property to cmdFile and the CommandText property to the file name.

Before you set the CommandText and CommandType properties, you should link the
TADODataSet to a data store by setting the Connection or ConnectionString property.
This process is described in “Connecting an ADO dataset to a data store” on
page 25-9. As an alternative, you can use an RDS DataSpace object to connect the
TADODataSet to an ADO-based application server. To use an RDS DataSpace object,
set the RDSConnection property to a TRDSConnection object.

Using Command objects
In the ADO environment, commands are textual representations of provider-specific
action requests. Typically, they are Data Definition Language (DDL) and Data
Manipulation Language (DML) SQL statements. The language used in commands is
provider-specific, but usually compliant with the SQL-92 standard for the SQL
language.

Although you can always execute commands using TADOQuery, you may not want
the overhead of using a dataset component, especially if the command does not
return a result set. As an alternative, you can use the TADOCommand component,
which is a lighter-weight object designed to execute commands, one command at a
time. TADOCommand is intended primarily for executing those commands that do
not return result sets, such as Data Definition Language (DDL) SQL statements.
Through an overloaded version of its Execute method, however, it is capable of
returning a result set that can be assigned to the RecordSet property of an ADO
dataset component.

In general, working with TADOCommand is very similar to working with
TADODataSet, except that you can’t use the standard dataset methods to fetch data,
navigate records, edit data, and so on. TADOCommand objects connect to a data store
in the same way as ADO datasets. See “Connecting an ADO dataset to a data store”
on page 25-9 for details.

The following topics provide details on how to specify and execute commands using
TADOCommand.

W o r k i n g w i t h A D O c o m p o n e n t s 25-17

U s i n g C o m m a n d o b j e c t s

Specifying the command

Specify commands for a TADOCommand component using the CommandText
property. Like TADODataSet, TADOCommand lets you specify the command in
different ways, depending on the CommandType property. Possible values for
CommandType include: cmdText (used if the command is an SQL statement), cmdTable
(if it is a table name), and cmdStoredProc (if the command is the name of a stored
procedure). At design-time, select the appropriate command type from the list in the
Object Inspector. At runtime, assign a value of type TCommandType to the
CommandType property.

ADOCommand1->CommandText = "AddEmployee";
ADOCommand1->CommandType = cmdStoredProc;
...

If no specific type is specified, the server is left to decide as best it can based on the
command in CommandText.

CommandText can contain the text of an SQL query that includes parameters or the
name of a stored procedure that uses parameters. You must then supply parameter
values, which are bound to the parameters before executing the command. See
“Handling command parameters” on page 25-18 for details.

Using the Execute method

Before TADOCommand can execute its command, it must have a valid connection to a
data store. This is established just as with an ADO dataset. See “Connecting an ADO
dataset to a data store” on page 25-9 for details.

To execute the command, call the Execute method. Execute is an overloaded method
that lets you choose the most appropriate way to execute the command.

For commands that do not require any parameters and for which you do not need to
know how many records were affected, call Execute without any parameters:

ADOCommand1->CommandText = "UpdateInventory";
ADOCommand1->CommandType = cmdStoredProc;
ADOCommand1->Execute();

Other versions of Execute let you provide parameter values using a Variant array,
and to obtain the number of records affected by the command.

For information on executing commands that return a result set, see “Retrieving
result sets with commands” on page 25-18.

Canceling commands

If you are executing the command asynchronously, then after calling Execute you can
abort the execution by calling the Cancel method:

void __fastcall TDataForm::ExecuteButtonClick(TObject *Sender)
{

ADOCommand1->Execute();

25-18 D e v e l o p e r ’ s G u i d e

U s i n g C o m m a n d o b j e c t s

}

void __fastcall TDataForm::CancelButtonClick(TObject *Sender)
{

ADOCommand1->Cancel();
}

The Cancel method only has an effect if there is a command pending and it was
executed asynchronously (eoAsynchExecute is in the ExecuteOptions parameter of the
Execute method). A command is said to be pending if the Execute method has been
called but the command has not yet been completed or timed out.

A command times out if it is not completed or canceled before the number of seconds
specified in the CommandTimeout property expire. By default, commands time out
after 30 seconds.

Retrieving result sets with commands

Unlike TADOQuery components, which use different methods to execute depending
on whether they return a result set, TADOCommand always uses the Execute
command to execute the command, regardless of whether it returns a result set.
When the command returns a result set, Execute returns an interface to the ADO
_RecordSet interface.

The most convenient way to work with this interface is to assign it to the RecordSet
property of an ADO dataset.

For example, the following code uses TADOCommand (ADOCommand1) to execute a
SELECT query, which returns a result set. This result set is then assigned to the
RecordSet property of a TADODataSet component (ADODataSet1).

ADOCommand1->CommandText = "SELECT Company, State ";
ADOCommand1->CommandText += "FROM customer ";
ADOCommand1->CommandText += "WHERE State = :StateParam";
ADOCommand1->CommandType = cmdText;
ADOCommand1->Parameters->ParamByName("StateParam")->Value = "HI";
ADOCommand1->Recordset = ADOCommand1->Execute();

As soon as the result set is assigned to the ADO dataset’s Recordset property, the
dataset is automatically activated and the data is available.

Handling command parameters

There are two ways in which a TADOCommand object may use parameters:

• The CommandText property can specify a query that includes parameters. Working
with parameterized queries in TADOCommand works like using a parameterized
query in an ADO dataset. See “Using parameters in queries” on page 22-43 for
details on parameterized queries.

W o r k i n g w i t h A D O c o m p o n e n t s 25-19

U s i n g C o m m a n d o b j e c t s

• The CommandText property can specify a stored procedure that uses parameters.
Stored procedure parameters work much the same using TADOCommand as with
an ADO dataset. See “Working with stored procedure parameters” on page 22-50
for details on stored procedure parameters.

There are two ways to supply parameter values when working with TADOCommand:
you can supply them when you call the Execute method, or you can specify them
ahead of time using the Parameters property.

The Execute method is overloaded to include versions that take a set of parameter
values as a Variant array. This is useful when you want to supply parameter values
quickly without the overhead of setting up the Parameters property:

Variant Values[2];
Values[0] = Edit1->Text;
Values[1] = Date();
ADOCommand1.Execute(VarArrayOf(Values,1));

When working with stored procedures that return output parameters, you must use
the Parameters property instead. Even if you do not need to read output parameters,
you may prefer to use the Parameters property, which lets you supply parameters at
design time and lets you work with TADOCommand properties in the same way you
work with the parameters on datasets.

When you set the CommandText property, the Parameters property is automatically
updated to reflect the parameters in the query or those used by the stored procedure.
At design-time, you can use the Parameter Editor to access parameters, by clicking
the ellipsis button for the Parameters property in the Object Inspector. At runtime, use
properties and methods of TParameter to set (or get) the values of each parameter.

ADOCommand1->CommandText = "INSERT INTO Talley ";
ADOCommand1->CommandText += "(Counter) ";
ADOCommand1->CommandText += "VALUES (:NewValueParam)";
ADOCommand1->CommandType = cmdText;
ADOCommand1->Parameters->ParamByName("NewValueParam")->Value = 57;
ADOCommand1->Execute()

25-20 D e v e l o p e r ’ s G u i d e

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-1

C h a p t e r

26
Chapter26Using unidirectional datasets

dbExpress is a set of lightweight database drivers that provide fast access to SQL
database servers. For each supported database, dbExpress provides a driver that
adapts the server-specific software to a set of uniform dbExpress classes. When you
deploy a database application that uses dbExpress, you need only include a dll (the
server-specific driver) with the application files you build.

dbExpress lets you access databases using unidirectional datasets. Unidirectional
datasets are designed for quick lightweight access to database information, with
minimal overhead. Like other datasets, they can send an SQL command to the
database server, and if the command returns a set of records, obtain a cursor for
accessing those records. However, unidirectional datasets can only retrieve a
unidirectional cursor. They do not buffer data in memory, which makes them faster
and less resource-intensive than other types of dataset. However, because there are
no buffered records, unidirectional datasets are also less flexible than other datasets.
Many of the capabilities introduced by TDataSet are either unimplemented in
unidirectional datasets, or cause them to raise exceptions. For example:

• The only supported navigation methods are the First and Next methods. Most
others raise exceptions. Some, such as the methods involved in bookmark support,
simply do nothing.

• There is no built-in support for editing because editing requires a buffer to hold
the edits. The CanModify property is always false, so attempts to put the dataset
into edit mode always fail. You can, however, use unidirectional datasets to
update data using an SQL UPDATE command or provide conventional editing
support by using a dbExpress-enabled client dataset or connecting the dataset to a
client dataset (see “Connecting to another dataset” on page 18-10).

• There is no support for filters, because filters work with multiple records, which
requires buffering. If you try to filter a unidirectional dataset, it raises an
exception. Instead, all limits on what data appears must be imposed using the SQL
command that defines the data for the dataset.

26-2 D e v e l o p e r ’ s G u i d e

T y p e s o f u n i d i r e c t i o n a l d a t a s e t s

• There is no support for lookup fields, which require buffering to hold multiple
records containing lookup values. If you define a lookup field on a unidirectional
dataset, it does not work properly.

Despite these limitations, unidirectional datasets are a powerful way to access data.
They are the fastest data access mechanism, and very simple to use and deploy.

Types of unidirectional datasets
The dbExpress page of the component palette contains four types of unidirectional
dataset: TSQLDataSet, TSQLQuery, TSQLTable, and TSQLStoredProc.

TSQLDataSet is the most general of the four. You can use an SQL dataset to represent
any data available through dbExpress, or to send commands to a database accessed
through dbExpress. This is the recommended component to use for working with
database tables in new database applications.

TSQLQuery is a query-type dataset that encapsulates an SQL statement and enables
applications to access the resulting records, if any. See “Using query-type datasets”
on page 22-41 for information on using query-type datasets.

TSQLTable is a table-type dataset that represents all of the rows and columns of a
single database table. See “Using table type datasets” on page 22-25 for information
on using table-type datasets.

TSQLStoredProc is a stored procedure-type dataset that executes a stored procedure
defined on a database server. See “Using stored procedure-type datasets” on
page 22-48 for information on using stored procedure-type datasets.

Note The dbExpress page also includes TSQLClientDataSet, which is not a unidirectional
dataset. Rather, it is a client dataset that uses a unidirectional dataset internally to
access its data

Connecting to the database server
The first step when working with a unidirectional dataset is to connect it to a
database server. At design time, once a dataset has an active connection to a database
server, the Object Inspector can provide drop-down lists of values for other
properties. For example, when representing a stored procedure, you must have an
active connection before the Object Inspector can list what stored procedures are
available on the server.

The connection to a database server is represented by a separate TSQLConnection
component. You work with TSQLConnection like any other database connection
component. For information about database connection components, see Chapter 21,
“Connecting to databases.”

To use TSQLConnection to connect a unidirectional dataset to a database server, set
the SQLConnection property. At design time, you can choose the SQL connection

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-3

C o n n e c t i n g t o t h e d a t a b a s e s e r v e r

component from a drop-down list in the Object Inspector. If you make this
assignment at runtime, be sure that the connection is active:

SQLDataSet1->SQLConnection = SQLConnection1;
SQLConnection1->Connected = true;

Typically, all unidirectional datasets in an application share the same connection
component, unless you are working with data from multiple database servers.
However, you may want to use a separate connection for each dataset if the server
does not support multiple statements per connection. Check whether the database
server requires a separate connection for each dataset by reading the
MaxStmtsPerConn property. By default, TSQLConnection generates connections as
needed when the server limits the number of statements that can be executed over a
connection. If you want to keep stricter track of the connections you are using, set the
AutoClone property to false.

Before you assign the SQLConnection property, you will need to set up the
TSQLConnection component so that it identifies the database server and any required
connection parameters (including which database to use on the server, the host name
of the machine running the server, the username, password, and so on).

Setting up TSQLConnection

In order to describe a database connection in sufficient detail for TSQLConnection to
open a connection, you must identify both the driver to use and a set of connection
parameters the are passed to that driver.

Identifying the driver
The driver is identified by the DriverName property, which is the name of an installed
dbExpress driver, such as INTERBASE, ORACLE, MYSQL, or DB2. The driver name is
associated with two files

• The dbExpress driver. This is a dynamic-link library with a name like dbexpint.dll,
dbexpora.dll, dbexpmys.dll, or dbexpdb2.dll.

• The dynamic-link library provided by the database vendor for client-side support.

The relationship between these two files and the database name is stored in a file
called dbxdrivers.ini, which is updated when you install a dbExpress driver.
Typically, you do not need to worry about these files because the SQL connection
component looks them up in dbxdrivers.ini when given the value of DriverName.
When you set the DriverName property, TSQLConnection automatically sets the
LibraryName and VendorLib properties to the names of the associated dlls. Once
LibraryName and VendorLib have been set, your application does not need to rely on
dbxdrivers.ini. (That is, you do not need to deploy dbxdrivers.ini with your
application unless you set the DriverName property at runtime.)

26-4 D e v e l o p e r ’ s G u i d e

C o n n e c t i n g t o t h e d a t a b a s e s e r v e r

Specifying connection parameters
The Params property is a string list that lists name/value pairs. Each pair has the
form Name=Value, where Name is the name of the parameter, and Value is the value
you want to assign.

The particular parameters you need depend on the database server you are using.
However, one particular parameter, Database, is required for all servers. Its value
depends on the server you are using. For example, with InterBase, Database is the
name of the .gdb file, with ORACLE it is the entry in TNSNames.ora, while with DB2,
it is the client-side node name.

Other typical parameters include the User_Name (the name to use when logging in),
Password (the password for User_Name), HostName (the machine name or IP address
of where the server is located), and TransIsolation (the degree to which transactions
you introduce are aware of changes made by other transactions). When you specify a
driver name, the Params property is preloaded with all the parameters you need for
that driver type, initialized to default values.

Because Params is a string list, at design time you can double-click on the Params
property in the Object Inspector to edit the parameters using the String List editor. At
runtime, use the Params::Values property to assign values to individual parameters.

Naming a connection description
Although you can always specify a connection using only the DatabaseName and
Params properties, it can be more convenient to name a specific combination and then
just identify the connection by name. You can name dbExpress database and
parameter combinations, which are then saved in a file called dbxconnections.ini.
The name of each combination is called a connection name.

Once you have defined the connection name, you can identify a database connection
by simply setting the ConnectionName property to a valid connection name. Setting
ConnectionName automatically sets the DriverName and Params properties. Once
ConnectionName is set, you can edit the Params property to create temporary
differences from the saved set of parameter values, but changing the DriverName
property clears both Params and ConnectionName.

One advantage of using connection names arises when you develop your application
using one database (for example Local InterBase), but deploy it for use with another
(such as ORACLE). In that case, DriverName and Params will likely differ on the
system where you deploy your application from the values you use during
development. You can switch between the two connection descriptions easily by
using two versions of the dbxconnections.ini file. At design-time, your application
loads the DriverName and Params from the design-time version of dbxconnections.ini.
Then, when you deploy your application, it loads these values from a separate
version of dbxconnections.ini that uses the “real” database. However, for this to
work, you must instruct your connection component to reload the DriverName and
Params properties at runtime. There are two ways to do this:

• Set the LoadParamsOnConnect property to true. This causes TSQLConnection to
automatically set DriverName and Params to the values associated with
ConnectionName in dbxconnections.ini when the connection is opened.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-5

S p e c i f y i n g w h a t d a t a t o d i s p l a y

• Call the LoadParamsFromIniFile method. This method sets DriverName and Params
to the values associated with ConnectionName in dbxconnections.ini (or in another
file that you specify). You might choose to use this method if you want to then
override certain parameter values before opening the connection.

Using the Connection Editor
The relationships between connection names and their associated driver and
connection parameters is stored in the dbxconnections.ini file. You can create or
modify these associations using the Connection Editor.

To display the Connection Editor, double-click on the TSQLConnection component.
The Connection Editor appears, with a drop-down list containing all available
drivers, a list of connection names for the currently selected driver, and a table listing
the connection parameters for the currently selected connection name.

You can use this dialog to indicate the connection to use by selecting a driver and
connection name. Once you have chosen the configuration you want, click the Test
Connection button to check that you have chosen a valid configuration.

In addition, you can use this dialog to edit the named connections in
dbxconnections.ini:

• Edit the parameter values in the parameter table to change the currently selected
named connection. When you exit the dialog by clicking OK, the new parameter
values are saved to dbxconnections.ini.

• Click the Add Connection button to define a new named connection. A dialog
appears where you specify the driver to use and the name of the new connection.
Once the connection is named, edit the parameters to specify the connection you
want and click the OK button to save the new connection to dbxconnections.ini.

• Click the Delete Connection button to delete the currently selected named
connection from dbxconnections.ini.

• Click the Rename Connection button to change the name of the currently selected
named connection. Note that any edits you have made to the parameters are saved
with the new name when you click the OK button.

Specifying what data to display
There are a number of ways to specify what data a unidirectional dataset represents.
Which method you choose depends on the type of unidirectional dataset you are
using and whether the information comes from a single database table, the results of
a query, or from a stored procedure.

When you work with a TSQLDataSet component, use the CommandType property to
indicate where the dataset gets its data. CommandType can take any of the following
values:

• ctQuery: When CommandType is ctQuery, TSQLDataSet executes a query you
specify. If the query is a SELECT command, the dataset contains the resulting set
of records.

26-6 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g w h a t d a t a t o d i s p l a y

• ctTable: When CommandType is ctTable, TSQLDataSet retrieves all of the records
from a specified table.

• ctStoredProc: When CommandType is ctStoredProc, TSQLDataSet executes a stored
procedure. If the stored procedure returns a cursor, the dataset contains the
returned records.

Note You can also populate the unidirectional dataset with metadata about what is
available on the server. For information on how to do this, see “Fetching metadata
into a unidirectional dataset” on page 26-12.

Representing the results of a query

Using a query is the most general way to specify a set of records. Queries are simply
commands written in SQL. You can use either TSQLDataSet or TSQLQuery to
represent the result of a query.

When using TSQLDataSet, set the CommandType property to ctQuery and assign the
text of the query statement to the CommandText property. When using TSQLQuery,
assign the query to the SQL property instead. These properties work the same way
for all general-purpose or query-type datasets. “Specifying the query” on page 22-42
discusses them in greater detail.

When you specify the query, it can include parameters, or variables, the values of
which can be varied at design time or runtime. Parameters can replace data values
that appear in the SQL statement. Using parameters in queries and supplying values
for those parameters is discussed in “Using parameters in queries” on page 22-43.

SQL defines queries such as UPDATE queries that perform actions on the server but
do not return records. Such queries are discussed in “Executing commands that do
not return records” on page 26-9.

Representing the records in a table

When you want to represent all of the fields and all of the records in a single
underlying database table, you can use either TSQLDataSet or TSQLTable to generate
the query for you rather than writing the SQL yourself.

Note If server performance is a concern, you may want to compose the query explicitly
rather than relying on an automatically-generated query. Automatically-generated
queries use wildcards rather than explicitly listing all of the fields in the table. This
can result in slightly slower performance on the server. The wildcard (*) in
automatically-generated queries is more robust to changes in the fields on the server.

Representing a table using TSQLDataSet
To make TSQLDataSet generate a query to fetch all fields and all records of a single
database table, set the CommandType property to ctTable.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-7

S p e c i f y i n g w h a t d a t a t o d i s p l a y

When CommandType is ctTable, TSQLDataSet generates a query based on the values of
two properties:

• CommandText specifies the name of the database table that the TSQLDataSet object
should represent.

• SortFieldNames lists the names of any fields to use to sort the data, in the order of
significance.

For example, if you specify the following:

SQLDataSet1->CommandType = ctTable;
SQLDataSet1->CommandText = "Employee";
SQLDataSet1->SortFieldNames = "HireDate,Salary"

TSQLDataSet generates the following query, which lists all the records in the
Employee table, sorted by HireDate and, within HireDate, by Salary:

select * from Employee order by HireDate, Salary

Representing a table using TSQLTable
When using TSQLTable, specify the table you want using the TableName property.

To specify the order of fields in the dataset, you must specify an index. There are two
ways to do this:

• Set the IndexName property to the name of an index defined on the server that
imposes the order you want.

• Set the IndexFieldNames property to a semicolon-delimited list of field names on
which to sort. IndexFieldNames works like the SortFieldNames property of
TSQLDataSet, except that it uses a semicolon instead of a comma as a delimiter.

Representing the results of a stored procedure

Stored procedures are sets of SQL statements that are named and stored on an SQL
server. How you indicate the stored procedure you want to execute depends on the
type of unidirectional dataset you are using.

When using TSQLDataSet, to specify a stored procedure:

• Set the CommandType property to ctStoredProc.

• Specify the name of the stored procedure as the value of the CommandText
property:

SQLDataSet1->CommandType = ctStoredProc;
SQLDataSet1->CommandText = "MyStoredProcName";

When using TSQLStoredProc, you need only specify the name of the stored procedure
as the value of the StoredProcName property.

SQLStoredProc1->StoredProcName = "MyStoredProcName";

After you have identified a stored procedure, your application may need to enter
values for any input parameters of the stored procedure or retrieve the values of
output parameters after you execute the stored procedure. See “Working with stored

26-8 D e v e l o p e r ’ s G u i d e

F e t c h i n g t h e d a t a

procedure parameters” on page 22-50 for information about working with stored
procedure parameters.

Fetching the data
Once you have specified the source of the data, you must fetch the data before your
application can access it. Once the dataset has fetched the data, data-aware controls
linked to the dataset through a data source automatically display data values and
client datasets linked to the dataset through a provider can be populated with
records.

As with any dataset, there are two ways to fetch the data for a unidirectional dataset:

• Set the Active property to true, either at design time in the Object Inspector, or in
code at runtime:

CustQuery->Active = true;

• Call the Open method at runtime,

CustQuery->Open();

Use the Active property or the Open method with any unidirectional dataset that
obtains records from the server. It does not matter whether these records come from
a SELECT query (including automatically-generated queries when the CommandType
is ctTable) or a stored procedure.

Preparing the dataset

Before a query or stored procedure can execute on the server, it must first be
“prepared”. Preparing the dataset means that dbExpress and the server allocate
resources for the statement and its parameters. If CommandType is ctTable, this is
when the dataset generates its SELECT query. Any parameters that are not bound by
the server are folded into a query at this point.

Unidirectional datasets are automatically prepared when you set Active to true or call
the Open method. When you close the dataset, the resources allocated for executing
the statement are freed. If you intend to execute the query or stored procedure more
than once, you can improve performance by explicitly preparing the dataset before
you open it the first time. To explicitly prepare a dataset, set its Prepared property to
true.

CustQuery->Prepared = true;

When you explicitly prepare the dataset, the resources allocated for executing the
statement are not freed until you set Prepared to false.

Set the Prepared property to false if you want to ensure that the dataset is re-prepared
before it executes (for example, if you change a parameter value or the SortFieldNames
property).

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-9

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

Fetching multiple datasets

Some stored procedures return multiple sets of records. The dataset only fetches the
first set when you open it. In order to access the other sets of records, call the
NextRecordSet method:

TCustomSQLDataSet *DataSet2 = SQLStoredProc1->NextRecordSet(nRows);

NextRecordSet returns a newly created TCustomSQLDataSet component that provides
access to the next set of records. That is, the first time you call NextRecordSet, it
returns a dataset for the second set of records. Calling NextRecordSet returns a third
dataset, and so on, until there are no more sets of records. When there are no
additional datasets, NextRecordSet returns NULL.

Executing commands that do not return records
You can use a unidirectional dataset even if the query or stored procedure it
represents does not return any records. Such commands include statements that use
Data Definition Language (DDL) or Data Manipulation Language (DML) statements
other than SELECT statements (For example, INSERT, DELETE, UPDATE, CREATE
INDEX, and ALTER TABLE commands do not return any records). The language
used in commands is server-specific, but usually compliant with the SQL-92 standard
for the SQL language.

The SQL command you execute must be acceptable to the server you are using.
Unidirectional datasets neither evaluate the SQL nor execute it. They merely pass the
command to the server for execution.

Note If the command does not return any records, you do not need to use a unidirectional
dataset at all, because there is no need for the dataset methods that provide access to
a set of records. The SQL connection component that connects to the database server
can be used directly to execute a command on the server. See “Sending commands to
the server” on page 21-10 for details.

Specifying the command to execute

With unidirectional datasets, the way you specify the command to execute is the
same whether the command results in a dataset or not. That is:

When using TSQLDataSet, use the CommandType and CommandText properties to
specify the command:

• If CommandType is ctQuery, CommandText is the SQL statement to pass to the
server.

• If CommandType is ctStoredProc, CommandText is the name of a stored procedure to
execute.

When using TSQLQuery, use the SQL property to specify the SQL statement to pass
to the server.

26-10 D e v e l o p e r ’ s G u i d e

E x e c u t i n g c o m m a n d s t h a t d o n o t r e t u r n r e c o r d s

When using TSQLStoredProc, use the StoredProcName property to specify the name of
the stored procedure to execute.

Just as you specify the command in the same way as when you are retrieving records,
you work with query parameters or stored procedure parameters the same way as
with queries and stored procedures that return records. See “Using parameters in
queries” on page 22-43 and “Working with stored procedure parameters” on
page 22-50 for details.

Executing the command

To execute a query or stored procedure that does not return any records, you do not
use the Active property or the Open method. Instead, you must use

• The ExecSQL method if the dataset is an instance of TSQLDataSet or TSQLQuery.

FixTicket->CommandText = "DELETE FROM TrafficViolations WHERE (TicketID = 1099)";
FixTicket->ExecSQL();

• The ExecProc method if the dataset is an instance of TSQLStoredProc.

SQLStoredProc1->StoredProcName = "MyCommandWithNoResults";
SQLStoredProc1->ExecProc();

Tip If you are executing the query or stored procedure multiple times, it is a good idea to
set the Prepared property to true.

Creating and modifying server metadata

Most of the commands that do not return data fall into two categories: those that you
use to edit data (such as INSERT, DELETE, and UPDATE commands), and those that
you use to create or modify entities on the server such as tables, indexes, and stored
procedures.

If you don’t want to use explicit SQL commands for editing, you can link your
unidirectional dataset to a client dataset and let it handle all the generation of all SQL
commands concerned with editing (see “Connecting a client dataset to another
dataset in the same application” on page 18-11). In fact, this is the recommended
approach because data-aware controls are designed to perform edits through a
dataset such as TClientDataSet.

The only way your application can create or modify metadata on the server,
however, is to send a command. Not all database drivers support the same SQL
syntax. It is beyond the scope of this topic to describe the SQL syntax supported by
each database type and the differences between the database types. For a
comprehensive and up-to-date discussion of the SQL implementation for a given
database system, see the documentation that comes with that system.

In general, use the CREATE TABLE statement to create tables in a database and
CREATE INDEX to create new indexes for those tables. Where supported, use other
CREATE statements for adding various metadata objects, such as CREATE
DOMAIN, CREATE VIEW, CREATE SCHEMA, and CREATE PROCEDURE.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-11

S e t t i n g u p m a s t e r / d e t a i l l i n k e d c u r s o r s

For each of the CREATE statements, there is a corresponding DROP statement to
delete the metadata object. These statements include DROP TABLE, DROP VIEW,
DROP DOMAIN, DROP SCHEMA, and DROP PROCEDURE.

To change the structure of a table, use the ALTER TABLE statement. ALTER TABLE
has ADD and DROP clauses to create new elements in a table and to delete them. For
example, use the ADD COLUMN clause to add a new column to the table and DROP
CONSTRAINT to delete an existing constraint from the table.

For example, the following statement creates a stored procedure called
GET_EMP_PROJ on an InterBase database:

CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT)
RETURNS (PROJ_ID CHAR(5))
AS
BEGIN

FOR SELECT PROJ_ID
FROM EMPLOYEE_PROJECT
WHERE EMP_NO = :EMP_NO
INTO :PROJ_ID
DO

SUSPEND;
END

The following code uses a TSQLDataSet to create this stored procedure. Note the use
of the ParamCheck property to prevent the dataset from confusing the parameters in
the stored procedure definition (:EMP_NO and :PROJ_ID) with a parameter of the
query that creates the stored procedure.

SQLDataSet1->ParamCheck = false;
SQLDataSet1->CommandType = ctQuery;
SQLDataSet1->CommandText = ”CREATE PROCEDURE GET_EMP_PROJ (EMP_NO SMALLINT) RETURNS (PROJ_ID
CHAR(5)) AS BEGIN FOR SELECT PROJ_ID FROM EMPLOYEE_PROJECT WHERE EMP_NO = :EMP_NO INTO
:PROJ_ID DO SUSPEND; END”;
SQLDataSet1->ExecSQL();

Setting up master/detail linked cursors
There are two ways to use linked cursors to set up a master/detail relationship with a
unidirectional dataset as the detail set. Which method you use depends on the type of
unidirectional dataset you are using. Once you have set up such a relationship, the
unidirectional dataset (the “many” in a one-to-many relationship) provides access
only to those records that correspond to the current record on the master set (the
“one” in the one-to-many relationship).

TSQLDataSet and TSQLQuery require you to use a parameterized query to establish a
master/detail relationship. This is the technique for creating such relationships on all
query-type datasets. For details on creating master/detail relationships with query-
type datasets, see “Establishing master/detail relationships using parameters” on
page 22-46.

To set up a master/detail relationship where the detail set is an instance of
TSQLTable, use the MasterSource and MasterFields properties, just as you would with

26-12 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

any other table-type dataset. For details on creating master/detail relationships with
table-type datasets, see “Establishing master/detail relationships using parameters”
on page 22-46.

Accessing schema information
There are two ways to obtain information about what is available on the server. This
information, called schema information or metadata, includes information about
what tables and stored procedures are available on the server and information about
these tables and stored procedures (such as the fields a table contains, the indexes
that are defined, and the parameters a stored procedure uses).

The simplest way to obtain this metadata is to use the methods of TSQLConnection.
These methods fill an existing string list or list object with the names of tables, stored
procedures, fields, or indexes, or with parameter descriptors. This technique is the
same as the way you fill lists with metadata for any other database connection
component. These methods are described in “Obtaining metadata” on page 21-13.

If you require more detailed schema information, you can populate a unidirectional
dataset with metadata. Instead of a simple list, the unidirectional dataset is filled with
schema information, where each record represents a single table, stored procedure,
index, field, or parameter.

Fetching metadata into a unidirectional dataset

To populate a unidirectional datasets with metadata from the database server, you
must first indicate what data you want to see, using the SetSchemaInfo method.
SetSchemaInfo takes three parameters:

• The type of schema information (metadata) you want to fetch. This can be a list of
tables (stTables), a list of system tables (stSysTables), a list of stored procedures
(stProcedures), a list of fields in a table (stColumns), a list of indexes (stIndexes), or a
list of parameters used by a stored procedure (stProcedureParams). Each type of
information uses a different set of fields to describe the items in the list. For details
on the structures of these datasets, see “The structure of metadata datasets” on
page 26-13.

• If you are fetching information about fields, indexes, or stored procedure
parameters, the name of the table or stored procedure to which they apply. If you
are fetching any other type of schema information, this parameter is NULL.

• A pattern that must be matched for every name returned. This pattern is an SQL
pattern such as ‘Cust%’, which uses the wildcards ‘%’ (to match a string of
arbitrary characters of any length) and ‘_’ (to match a single arbitrary character).
To use a literal percent or underscore in a pattern, the character is doubled (%% or
__). If you do not want to use a pattern, this parameter can be NULL.

Note If you are fetching schema information about tables (stTables), the resulting schema
information can describe ordinary tables, system tables, views, and/or synonyms,
depending on the value of the SQL connection’s TableScope property.

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-13

A c c e s s i n g s c h e m a i n f o r m a t i o n

The following call requests a table listing all system tables (server tables that contain
metadata):

SQLDataSet1->SetSchemaInfo(stSysTable, "", "");

When you open the dataset after this call to SetSchemaInfo, the resulting dataset has a
record for each table, with columns giving the table name, type, schema name, and so
on. If the server does not use system tables to store metadata (for example MySQL),
when you open the dataset it contains no records.

The previous example used only the first parameter. Suppose, Instead, you want to
obtain a list of input parameters for a stored procedure named ‘MyProc’. Suppose,
further, that the person who wrote that stored procedure named all parameters using
a prefix to indicate whether they were input or output parameters (‘inName’,
‘outValue’ and so on). You could call SetSchemaInfo as follows:

SQLDataSet1->SetSchemaInfo(stProcedureParams, "MyProc", "in%");

The resulting dataset is a table of input parameters with columns to describe the
properties of each parameter.

Fetching data after using the dataset for metadata
There are two ways to return to executing queries or stored procedures with the
dataset after a call to SetSchemaInfo:

• Change the CommandText property, specifying the query, table, or stored
procedure from which you want to fetch data.

• Call SetSchemaInfo, setting the first parameter to stNoSchema. In this case, the
dataset reverts to fetching the data specified by the current value of CommandText.

The structure of metadata datasets
For each type of metadata you can access using TSQLDataSet, there is a predefined
set of columns (fields) that are populated with information about the items of the
requested type.

Information about tables
When you request information about tables (stTables or stSysTables), the resulting
dataset includes a record for each table. It has the following columns:

Table 26.1 Columns in tables of metadata listing tables

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table. This
is the same as the Database parameter on an SQL connection
component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the table.

26-14 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about stored procedures
When you request information about stored procedures (stProcedures), the resulting
dataset includes a record for each stored procedure. It has following columns:

Information about fields
When you request information about the fields in a specified table (stColumns), the
resulting dataset includes a record for each field. It includes the following columns:

TABLE_NAME ftString The name of the table. This field determines the sort order of
the dataset.

TABLE_TYPE ftInteger Identifies the type of table. It is a sum of one or more of the
following values:

1: Table
2: View
4: System table
8: Synonym
16: Temporary table
32: Local table.

Table 26.2 Columns in tables of metadata listing stored procedures

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the stored
procedure.

PROC_NAME ftString The name of the stored procedure. This field determines the
sort order of the dataset.

PROC_TYPE ftInteger Identifies the type of stored procedure. It is a sum of one or
more of the following values:

1: Procedure (no return value)
2: Function (returns a value)
4: Package
8: System procedure

IN_PARAMS ftSmallint The number of input parameters

OUT_PARAMS ftSmallint The number of output parameters.

Table 26.3 Columns in tables of metadata listing fields

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the table
whose fields you listing. This is the same as the Database
parameter on an SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
field.

Table 26.1 Columns in tables of metadata listing tables (continued)

Column name Field type Contents

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-15

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about indexes
When you request information about the indexes on a table (stIndexes), the resulting
dataset includes a record for each field in each record. (Multi-record indexes are
described using multiple records) The dataset has the following columns:

TABLE_NAME ftString The name of the table that contains the fields.

COLUMN_NAME ftString The name of the field. This value determines the sort
order of the dataset.

COLUMN_POSITION ftSmallint The position of the column in its table.

COLUMN_TYPE ftInteger Identifies the type of value in the field. It is a sum of one
or more of the following:

1: Row ID
2: Row Version
4: Auto increment field
8: Field with a default value

COLUMN_DATATYPE ftSmallint The datatype of the column. This is one of the logical field
type constants defined in sqllinks.h.

COLUMN_TYPENAME ftString A string describing the datatype. This is the same
information as contained in COLUMN_DATATYPE and
COLUMN_SUBTYPE, but in a form used in some DDL
statements.

COLUMN_SUBTYPE ftSmallint A subtype for the column’s datatype. This is one of the
logical subtype constants defined in sqllinks.h.

COLUMN_PRECISION ftInteger The size of the field type (number of characters in a string,
bytes in a bytes field, significant digits in a BCD value,
members of an ADT field, and so on).

COLUMN_SCALE ftSmallint The number of digits to the right of the decimal on BCD
values, or descendants on ADT and array fields.

COLUMN_LENGTH ftInteger The number of bytes required to store field values.

COLUMN_NULLABLE ftSmallint A Boolean that indicates whether the field can be left
blank (0 means the field requires a value).

Table 26.4 Columns in tables of metadata listing indexes

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the index.
This is the same as the Database parameter on an SQL
connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
index.

TABLE_NAME ftString The name of the table for which the index is defined.

INDEX_NAME ftString The name of the index. This field determines the sort order
of the dataset.

PKEY_NAME ftString Indicates the name of the primary key.

COLUMN_NAME ftString The name of the field (column) in the index.

Table 26.3 Columns in tables of metadata listing fields (continued)

Column name Field type Contents

26-16 D e v e l o p e r ’ s G u i d e

A c c e s s i n g s c h e m a i n f o r m a t i o n

Information about stored procedure parameters
When you request information about the parameters of a stored procedure
(stProcedureParams), the resulting dataset includes a record for each parameter. It has
the following columns:

COLUMN_POSITION ftSmallint The position of this field in the index.

INDEX_TYPE ftSmallint Identifies the type of index. It is a sum of one or more of the
following values:

1: Non-unique
2: Unique
4: Primary key

SORT_ORDER ftString Indicates that the index is ascending (a) or descending (d).

FILTER ftString Describes a filter condition that limits the indexed records.

Table 26.5 Columns in tables of metadata listing parameters

Column name Field type Contents

RECNO ftInteger A record number that uniquely identifies each record.

CATALOG_NAME ftString The name of the catalog (database) that contains the stored
procedure. This is the same as the Database parameter on an
SQL connection component.

SCHEMA_NAME ftString The name of the schema that identifies the owner of the
stored procedure.

PROC_NAME ftString The name of the stored procedure that contains the
parameter.

PARAM_NAME ftString The name of the parameter. This field determines the sort
order of the dataset.

PARAM_TYPE ftSmallint Identifies the type of parameter. This is the same as a
TParam object’s ParamType property.

PARAM_DATATYPE ftSmallint The datatype of the parameter. This is one of the logical
field type constants defined in sqllinks.h.

PARAM_SUBTYPE ftSmallint A subtype for the parameter’s datatype. This is one of the
logical subtype constants defined in sqllinks.h.

PARAM_TYPENAME ftString A string describing the datatype. This is the same
information as contained in PARAM_DATATYPE and
PARAM_SUBTYPE, but in a form used in some DDL
statements.

PARAM_PRECISION ftInteger The maximum number of digits in floating-point values or
bytes (for strings and Bytes fields).

PARAM_SCALE ftSmallint The number of digits to the right of the decimal on floating-
point values.

PARAM_LENGTH ftInteger The number of bytes required to store parameter values.

PARAM_NULLABLE ftSmallint A Boolean that indicates whether the parameter can be left
blank (0 means the parameter requires a value).

Table 26.4 Columns in tables of metadata listing indexes (continued)

Column name Field type Contents

U s i n g u n i d i r e c t i o n a l d a t a s e t s 26-17

D e b u g g i n g d b E x p r e s s a p p l i c a t i o n s

Debugging dbExpress applications
While you are debugging your database application, it may prove useful to monitor
the SQL messages that are sent to and from the database server through your
connection component, including those that are generated automatically for you (for
example by a provider component or by the dbExpress driver).

Using TSQLMonitor to monitor SQL commands

TSQLConnection uses a companion component, TSQLMonitor, to intercept these
messages and save them in a string list. TSQLMonitor works much like the SQL
monitor utility that you can use with the BDE, except that it monitors only those
commands involving a single TSQLConnection component rather than all commands
managed by dbExpress.

To use TSQLMonitor,

1 Add a TSQLMonitor component to the form or data module containing the
TSQLConnection component whose SQL commands you want to monitor.

2 Set its SQLConnection property to the TSQLConnection component.

3 Set the SQL monitor’s Active property to true.

As SQL commands are sent to the server, the SQL monitor’s TraceList property is
automatically updated to list all the SQL commands that are intercepted.

You can save this list to a file by specifying a value for the FileName property and
then setting the AutoSave property to true. AutoSave causes the SQL monitor to save
the contents of the TraceList property to a file every time is logs a new message.

If you do not want the overhead of saving a file every time a message is logged, you
can use the OnLogTrace event handler to only save files after a number of messages
have been logged. For example, the following event handler saves the contents of
TraceList every 10th message, clearing the log after saving it so that the list never gets
too long:

void __fastcall TForm1::SQLMonitor1LogTrace(TObject *Sender, void *CBInfo)
{

TSQLMonitor *pMonitor = dynamic_cast<TSQLMonitor *>(Sender);
if (pMonitor->TraceCount == 10)
{

// build unique file name
AnsiString LogFileName = "c:\\log";
LogFileName = LogFileName + IntToStr(pMonitor->Tag);
LogFileName = LogFileName + ".txt"
pMonitor->Tag = pMonitor->Tag + 1;
// Save contents of log and clear the list
pMonitor->SaveToFile(LogFileName);
pMonitor->TraceList->Clear();

}

Note If you were to use the previous event handler, you would also want to save any
partial list (fewer than 10 entries) when the application shuts down.

26-18 D e v e l o p e r ’ s G u i d e

D e b u g g i n g d b E x p r e s s a p p l i c a t i o n s

Using a callback to monitor SQL commands

Instead of using TSQLMonitor, you can customize the way your application traces
SQL commands by using the SQL connection component’s SetTraceCallbackEvent
method. SetTraceCallbackEvent takes two parameters: a callback of type
TSQLCallbackEvent, and a user-defined value that is passed to the callback function.

The callback function takes two parameters: CallType and CBInfo:

• CallType is reserved for future use.

• CBInfo is a pointer to a structure that includes the category (the same as CallType),
the text of the SQL command, and the user-defined value that is passed to the
SetTraceCallbackEvent method.

The callback returns a value of type CBRType, typically cbrUSEDEF.

The dbExpress driver calls your callback every time the SQL connection component
passes a command to the server or the server returns an error message.

Warning Do not call SetTraceCallbackEvent if the TSQLConnection object has an associated
TSQLMonitor component. TSQLMonitor uses the callback mechanism to work, and
TSQLConnection can only support one callback at a time.

U s i n g c l i e n t d a t a s e t s 27-1

C h a p t e r

27
Chapter27Using client datasets

Client datasets are specialized datasets that hold all their data in memory. The
support for manipulating the data they store in memory is provided by midas.dll.
The format client datasets use for storing data is self-contained and easily
transported, which allows client datasets to

• Read from and write to dedicated files on disk, acting as a file-based dataset.
Properties and methods supporting this mechanism are described in “Using a
client dataset with file-based data” on page 27-32.

• Cache updates for data from a database server. Client dataset features that support
cached updates are described in “Using a client dataset to cache updates” on
page 27-15.

• Represent the data in the client portion of a multi-tiered application. To function in
this way, the client dataset must work with an external provider, as described in
“Using a client dataset with a provider” on page 27-24. For information about
multi-tiered database applications, see Chapter 29, “Creating multi-tiered
applications.”

• Represent the data from a source other than a dataset. Because a client dataset can
use the data from an external provider, specialized providers can adapt a variety
of information sources to work with client datasets. For example, you can use an
XML provider to enable a client dataset to represent the information in an XML
document.

Whether you use client datasets for file-based data, caching updates, data from an
external provider (such as working with an XML document or in a multi-tiered
application), or a combination of these approaches such as a “briefcase model”
application, you can take advantage of broad range of features client datasets
support for working with data.

27-2 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Working with data using a client dataset
Like any dataset, you can use client datasets to supply the data for data-aware
controls using a data source component. See Chapter 19, “Using data controls”for
information on how to display database information in data-aware controls.

Client datasets implement all the properties an methods inherited from TDataSet. For
a complete introduction to this generic dataset behavior, see Chapter 22,
“Understanding datasets.”

In addition, client datasets implement many of the features common to table type
datasets such as

• Sorting records with indexes.
• Using Indexes to search for records.
• Limiting records with ranges.
• Creating master/detail relationships.
• Controlling read/write access
• Creating the underlying dataset
• Emptying the dataset
• Synchronizing client datasets

For details on these features, see “Using table type datasets” on page 22-25.

Client datasets differ from other datasets in that they hold all their data in memory.
Because of this, their support for some database functions can involve additional
capabilities or considerations. This chapter describes some of these common
functions and the differences introduced by client datasets.

Navigating data in client datasets

If an application uses standard data-aware controls, then a user can navigate through
a client dataset’s records using the built-in behavior of those controls. You can also
navigate programmatically through records using standard dataset methods such as
First, Last, Next, and Prior. For more information about these methods, see
“Navigating datasets” on page 22-5.

Unlike most datasets, client datasets can also position the cursor at a specific record
in the dataset by using the RecNo property. Ordinarily an application uses RecNo to
determine the record number of the current record. Client datasets can, however, set
RecNo to a particular record number to make that record the current one.

Limiting what records appear

To restrict users to a subset of available data on a temporary basis, applications can
use ranges and filters. When you apply a range or a filter, the client dataset does not
display all the data in its in-memory cache. Instead, it only displays the data that
meets the range or filter conditions. For more information about using filters, see
“Displaying and editing a subset of data using filters” on page 22-12. For more
information about ranges, see “Limiting records with ranges” on page 22-30.

U s i n g c l i e n t d a t a s e t s 27-3

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

With most datasets, filter strings are parsed into SQL commands that are then
implemented on the database server. Because of this, the SQL dialect of the server
limits what operations are used in filter strings. Client datasets implement their own
filter support, which includes more operations than that of other datasets. For
example, when using a client dataset, filter expressions can include string operators
that return substrings, operators that parse date/time values, and much more. Client
datasets also allow filters on BLOB fields or complex field types such as ADT fields
and array fields.

The various operators and functions that client datasets can use in filters, along with
a comparison to other datasets that support filters, is given below:

Table 27.1 Filter support in client datasets

Operator
or function Example

Supported
by other
datasets Comment

Comparisons

= State = 'CA' Yes

<> State <> 'CA' Yes

>= DateEntered >= '1/1/1998' Yes

<= Total <= 100,000 Yes

> Percentile > 50 Yes

< Field1 < Field2 Yes

BLANK State <> 'CA' or State = BLANK Yes Blank records do not
appear unless explicitly
included in the filter.

IS NULL Field1 IS NULL No

IS NOT NULL Field1 IS NOT NULL No

Logical operators

and State = 'CA' and Country = 'US' Yes

or State = 'CA' or State = 'MA' Yes

not not (State = 'CA') Yes

Arithmetic operators

+ Total + 5 > 100 Depends
on driver

Applies to numbers,
strings, or date (time) +
number.

- Field1 - 7 <> 10 Depends
on driver

Applies to numbers, dates,
or date (time) - number.

* Discount * 100 > 20 Depends
on driver

Applies to numbers only.

/ Discount > Total / 5 Depends
on driver

Applies to numbers only.

27-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

String functions

Upper Upper(Field1) = 'ALWAYS' No

Lower Lower(Field1 + Field2) = 'josp' No

Substring Substring(DateFld,8) = '1998'
Substring(DateFld,1,3) = 'JAN'

No Value goes from position
of second argument to end
or number of chars in third
argument. First char has
position 1.

Trim Trim(Field1 + Field2)
Trim(Field1, '-')

No Removes third argument
from front and back. If no
third argument, trims
spaces.

TrimLeft TrimLeft(StringField)
TrimLeft(Field1, '$') <> ''

No See Trim.

TrimRight TrimRight(StringField)
TrimRight(Field1, '.') <> ''

No See Trim.

DateTime functions

Year Year(DateField) = 2000 No

Month Month(DateField) <> 12 No

Day Day(DateField) = 1 No

Hour Hour(DateField) < 16 No

Minute Minute(DateField) = 0 No

Second Second(DateField) = 30 No

GetDate GetDate - DateField > 7 No Represents current date
and time.

Date DateField = Date(GetDate) No Returns the date portion of
a datetime value.

Time TimeField > Time(GetDate) No Returns the time portion of
a datetime value.

Miscellaneous

Like Memo LIKE '%filters%' No Works like SQL-92
without the ESC clause.
When applied to BLOB
fields, FilterOptions
determines whether case is
considered.

In Day(DateField) in (1,7) No Works like SQL-92. Second
argument is a list of values
all with the same type.

* State = 'M*' Yes Wildcard for partial
comparisons.

Table 27.1 Filter support in client datasets (continued)

Operator
or function Example

Supported
by other
datasets Comment

U s i n g c l i e n t d a t a s e t s 27-5

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

When applying ranges or filters, the client dataset still stores all of its records in
memory. The range or filter merely determines which records are available to
controls that navigate or display data from the client dataset.

Note When fetching data from a provider, you can also limit the data that the client dataset
stores by supplying parameters to the provider. For details, see “Limiting records
with parameters” on page 27-28.

Editing data

Client datasets represent their data as an in-memory data packet. This packet is the
value of the client dataset’s Data property. By default, however, edits are not stored
in the Data property. Instead the insertions, deletions, and modifications (made by
users or programmatically) are stored in an internal change log, represented by the
Delta property. Using a change log serves two purposes:

• The change log is required for applying updates to a database server or external
provider component.

• The change log provides sophisticated support for undoing changes.

The LogChanges property lets you disable logging. When LogChanges is true, changes
are recorded in the log. When LogChanges is false, changes are made directly to the
Data property. You can disable the change log in file-based applications if you do not
want the undo support.

Edits in the change log remain there until they are removed by the application.
Applications remove edits when

• Undoing changes
• Saving changes

Note Saving the client dataset to a file does not remove edits from the change log. When
you reload the dataset, the Data and Delta properties are the same as they were when
the data was saved.

Undoing changes
Even though a record’s original version remains unchanged in Data, each time a user
edits a record, leaves it, and returns to it, the user sees the last changed version of the
record. If a user or application edits a record a number of times, each changed
version of the record is stored in the change log as a separate entry.

Storing each change to a record makes it possible to support multiple levels of undo
operations should it be necessary to restore a record’s previous state:

• To remove the last change to a record, call UndoLastChange. UndoLastChange takes
a boolean parameter, FollowChange, that indicates whether to reposition the cursor
on the restored record (true), or to leave the cursor on the current record (false). If
there are several changes to a record, each call to UndoLastChange removes another
layer of edits. UndoLastChange returns a boolean value indicating success or
failure. If the removal occurs, UndoLastChange returns true. Use the ChangeCount
property to check whether there are more changes to undo. ChangeCount indicates
the number of changes stored in the change log.

27-6 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

• Instead of removing each layer of changes to a single record, you can remove them
all at once. To remove all changes to a record, select the record, and call
RevertRecord. RevertRecord removes any changes to the current record from the
change log.

• To restore a deleted record, first set the StatusFilter property to [usDeleted], which
makes the deleted records “visible.” Next, navigate to the record you want to
restore and call RevertRecord. Finally, restore the StatusFilter property to
[usModified, usInserted, usUnmodified] so that the edited version of the dataset (now
containing the restored record) is again visible.

• At any point during edits, you can save the current state of the change log using
the SavePoint property. Reading SavePoint returns a marker into the current
position in the change log. Later, if you want to undo all changes that occurred
since you read the save point, set SavePoint to the value you read previously. Your
application can obtain values for multiple save points. However, once you back up
the change log to a save point, the values of all save points that your application
read after that one are invalid.

• You can abandon all changes recorded in the change log by calling CancelUpdates.
CancelUpdates clears the change log, effectively discarding all edits to all records.
Be careful when you call CancelUpdates. After you call CancelUpdates, you cannot
recover any changes that were in the log.

Saving changes
Client datasets use different mechanisms for incorporating changes from the change
log, depending on whether the client datasets stores its data in a file or represents
data obtained through a provider. Whichever mechanism is used, the change log is
automatically emptied when all updates have been incorporated.

File-based applications can simply merge the changes into the local cache
represented by the Data property. They do not need to worry about resolving local
edits with changes made by other users. To merge the change log into the Data
property, call the MergeChangeLog method. “Merging changes into data” on
page 27-33 describes this process.

You can’t use MergeChangeLog if you are using the client dataset to cache updates or
to represent the data from an external provider component. The information in the
change log is required for resolving updated records with the data stored in the
database (or source dataset). Instead, you call ApplyUpdates, which attempts to write
the modifications to the database server or source dataset, and updates the Data
property only when the modifications have been successfully committed. See
“Applying updates” on page 27-20 for more information about this process.

Constraining data values

Client datasets can enforce constraints on the edits a user makes to data. These
constraints are applied when the user tries to post changes to the change log. You can
always supply custom constraints. These let you provide your own, application-
defined limits on what values users post to a client dataset.

U s i n g c l i e n t d a t a s e t s 27-7

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

In addition, when client datasets represent server data that is accessed using the BDE,
they also enforce data constraints imported from the database server. If the client
dataset works with an external provider component, the provider can control
whether those constraints are sent to the client dataset, and the client dataset can
control whether it uses them. For details on how the provider controls whether
constraints are included in data packets, see “Handling server constraints” on
page 28-12. For details on how and why client dataset can turn off enforcement of
server constraints, see “Handling constraints from the server” on page 27-29.

Specifying custom constraints
You can use the properties of the client dataset’s field components to impose your
own constraints on what data users can enter. Each field component has two
properties that you can use to specify constraints:

• The DefaultExpression property defines a default value that is assigned to the field if
the user does not enter a value. Note that if the database server or source dataset also
assigns a default expression for the field, the client dataset’s version takes precedence
because it is assigned before the update is applied back to the database server or
source dataset.

• The CustomConstraint property lets you assign a constraint condition that must be
met before a field value can be posted. Custom constraints defined this way are
applied in addition to any constraints imported from the server. For more
information about working with custom constraints on field components, see
“Creating a custom constraint” on page 23-21.

In addition, you can create record-level constraints using the client dataset’s
Constraints property. Constraints is a collection of TCheckConstraint objects, where each
object represents a separate condition. Use the CustomConstraint property of a
TCheckConstraint object to add your own constraints that are checked when you post
records.

Sorting and indexing

Using indexes provides several benefits to your applications:

• They allow client datasets to locate data quickly.

• They let you apply ranges to limit the available records.

• They let your application set up relationships with other datasets such as lookup
tables or master/detail forms.

• They specify the order in which records appear.

If a client dataset represents server data or uses an external provider, it inherits a
default index and sort order based on the data it receives. The default index is called
DEFAULT_ORDER. You can use this ordering, but you cannot change or delete the
index.

27-8 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

In addition to the default index, the client dataset maintains a second index, called
CHANGEINDEX, on the changed records stored in the change log (Delta property).
CHANGEINDEX orders all records in the client dataset as they would appear if the
changes specified in Delta were applied. CHANGEINDEX is based on the ordering
inherited from DEFAULT_ORDER. As with DEFAULT_ORDER, you cannot change
or delete the CHANGEINDEX index.

You can use other existing indexes, and you can create your own indexes. The
following sections describe how to create and use indexes with client datasets.

Note You may also want to review the material on indexes in table type datasets, which
also applies to client datasets. This material is in “Sorting records with indexes” on
page 22-26 and “Limiting records with ranges” on page 22-30.

Adding a new index
There are three ways to add indexes to a client dataset:

• To create a temporary index at runtime that sorts the records in the client dataset,
you can use the IndexFieldNames property. Specify field names, separated by
semicolons. Ordering of field names in the list determines their order in the index.

This is the least powerful method of adding indexes. You can’t specify a
descending or case-insensitive index, and the resulting indexes do not support
grouping. These indexes do not persist when you close the dataset, and are not
saved when you save the client dataset to a file.

• To create an index at runtime that can be used for grouping, call AddIndex.
AddIndex lets you specify the properties of the index, including

• The name of the index. This can be used for switching indexes at runtime.

• The fields that make up the index. The index uses these fields to sort records
and to locate records that have specific values on these fields.

• How the index sorts records. By default, indexes impose an ascending sort
order (based on the machine’s locale). This default sort order is case-sensitive.
You can set options to make the entire index case-insensitive or to sort in
descending order. Alternately, you can provide a list of fields to be sorted case-
insensitively and a list of fields to be sorted in descending order.

• The default level of grouping support for the index.

Indexes created with AddIndex do not persist when the client dataset is closed.
(That is, they are lost when you reopen the client dataset). You can't call AddIndex
when the dataset is closed. Indexes you add using AddIndex are not saved when
you save the client dataset to a file.

• The third way to create an index is at the time the client dataset is created. Before
creating the client dataset, specify the desired indexes using the IndexDefs
property. The indexes are then created along with the underlying dataset when
you call CreateDataSet. See “Creating and deleting tables” on page 22-37 for more
information about creating client datasets.

U s i n g c l i e n t d a t a s e t s 27-9

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

As with AddIndex, indexes you create with the dataset support grouping, can sort
in ascending order on some fields and descending order on others, and can be case
insensitive on some fields and case sensitive on others. Indexes created this way
always persist and are saved when you save the client dataset to a file.

Tip You can index and sort on internally calculated fields with client datasets.

Deleting and switching indexes
To remove an index you created for a client dataset, call DeleteIndex and specify the
name of the index to remove. You cannot remove the DEFAULT_ORDER and
CHANGEINDEX indexes.

To use a different index when more than one index is available, use the IndexName
property to select the index to use. At design time, you can select from available
indexes in IndexName property drop-down box in the Object Inspector.

Using indexes to group data
When you use an index in your client dataset, it automatically imposes a sort order
on the records. Because of this order, adjacent records usually contain duplicate
values on the fields that make up the index. For example, consider the following
fragment from an orders table that is indexed on the SalesRep and Customer fields:

Because of the sort order, adjacent values in the SalesRep column are duplicated.
Within the records for SalesRep 1, adjacent values in the Customer column are
duplicated. That is, the data is grouped by SalesRep, and within the SalesRep group
it is grouped by Customer. Each grouping has an associated level. In this case, the
SalesRep group has level 1 (because it is not nested in any other groups) and the
Customer group has level 2 (because it is nested in the group with level 1). Grouping
level corresponds to the order of fields in the index.

Client datasets let you determine where the current record lies within any given
grouping level. This allows your application to display records differently,
depending on whether they are the first record in the group, in the middle of a group,
or the last record in a group. For example, you might want to display a field value

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

1 2 6 75

2 1 1 10

2 3 4 200

27-10 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

only if it is on the first record of the group, eliminating the duplicate values. To do
this with the previous table results in the following:

To determine where the current record falls within any group, use the GetGroupState
method. GetGroupState takes an integer giving the level of the group and returns a
value indicating where the current record falls the group (first record, last record, or
neither).

When you create an index, you can specify the level of grouping it supports (up to
the number of fields in the index). GetGroupState can’t provide information about
groups beyond that level, even if the index sorts records on additional fields.

Representing calculated values

As with any dataset, you can add calculated fields to your client dataset. These are
fields whose values you calculate dynamically, usually based on the values of other
fields in the same record. For more information about using calculated fields, see
“Defining a calculated field” on page 23-7.

Client datasets, however, let you optimize when fields are calculated by using
internally calculated fields. For more information on internally calculated fields, see
“Using internally calculated fields in client datasets” below.

You can also tell client datasets to create calculated values that summarize the data in
several records using maintained aggregates. For more information on maintained
aggregates, see “Using maintained aggregates” on page 27-11.

Using internally calculated fields in client datasets
In other datasets, your application must compute the value of calculated fields every
time the record changes or the user edits any fields in the current record. It does this
in an OnCalcFields event handler.

While you can still do this, client datasets let you minimize the number of times
calculated fields must be recomputed by saving calculated values in the client
dataset’s data. When calculated values are saved with the client dataset, they must
still be recomputed when the user edits the current record, but your application need
not recompute values every time the current record changes. To save calculated
values in the client dataset’s data, use internally calculated fields instead of
calculated fields.

SalesRep Customer OrderNo Amount

1 1 5 100

2 50

2 3 200

6 75

2 1 1 10

3 4 200

U s i n g c l i e n t d a t a s e t s 27-11

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Internally calculated fields, just like calculated fields, are calculated in an
OnCalcFields event handler. However, you can optimize your event handler by
checking the State property of your client dataset. When State is dsInternalCalc, you
must recompute internally calculated fields. When State is dsCalcFields, you need only
recompute regular calculated fields.

To use internally calculated fields, you must define the fields as internally calculated
before you create the client dataset. Depending on whether you use persistent fields
or field definitions, you do this in one of the following ways:

• If you use persistent fields, define fields as internally calculated by selecting
InternalCalc in the Fields editor.

• If you use field definitions, set the InternalCalcField property of the relevant field
definition to true.

Note Other types of datasets use internally calculated fields. However, with other datasets,
you do not calculate these values in an OnCalcFields event handler. Instead, they are
computed automatically by the BDE or remote database server.

Using maintained aggregates

Client datasets provide support for summarizing data over groups of records.
Because these summaries are automatically updated as you edit the data in the
dataset, this summarized data is called a “maintained aggregate.”

In their simplest form, maintained aggregates let you obtain information such as the
sum of all values in a column of the client dataset. They are flexible enough, however,
to support a variety of summary calculations and to provide subtotals over groups of
records defined by a field in an index that supports grouping.

 Specifying aggregates
To specify that you want to calculate summaries over the records in a client dataset,
use the Aggregates property. Aggregates is a collection of aggregate specifications
(TAggregate). You can add aggregate specifications to your client dataset using the
Collection Editor at design time, or using the Add method of Aggregates at runtime. If
you want to create field components for the aggregates, create persistent fields for the
aggregated values in the Fields Editor.

Note When you create aggregated fields, the appropriate aggregate objects are added to
the client dataset’s Aggregates property automatically. Do not add them explicitly
when creating aggregated persistent fields. For details on creating aggregated
persistent fields, see “Defining an aggregate field” on page 23-10.

For each aggregate, the Expression property indicates the summary calculation it
represents. Expression can contain a simple summary expression such as

Sum(Field1)

or a complex expression that combines information from several fields, such as

Sum(Qty * Price) - Sum(AmountPaid)

27-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

Aggregate expressions include one or more of the summary operators in Table 27.2

The summary operators act on field values or on expressions built from field values
using the same operators you use to create filters. (You can’t nest summary
operators, however.) You can create expressions by using operators on summarized
values with other summarized values, or on summarized values and constants.
However, you can’t combine summarized values with field values, because such
expressions are ambiguous (there is no indication of which record should supply the
field value.) These rules are illustrated in the following expressions:

Aggregating over groups of records
By default, maintained aggregates are calculated so that they summarize all the
records in the client dataset. However, you can specify that you want to summarize
over the records in a group instead. This lets you provide intermediate summaries
such as subtotals for groups of records that share a common field value.

Before you can specify a maintained aggregate over a group of records, you must use
an index that supports the appropriate grouping. See “Using indexes to group data”
on page 27-9 for information on grouping support.

Once you have an index that groups the data in the way you want it summarized,
specify the IndexName and GroupingLevel properties of the aggregate to indicate what
index it uses, and which group or subgroup on that index defines the records it
summarizes.

For example, consider the following fragment from an orders table that is grouped by
SalesRep and, within SalesRep, by Customer:

Table 27.2 Summary operators for maintained aggregates

Operator Use

Sum Totals the values for a numeric field or expression

Avg Computes the average value for a numeric or date-time field or expression

Count Specifies the number of non-blank values for a field or expression

Min Indicates the minimum value for a string, numeric, or date-time field or expression

Max Indicates the maximum value for a string, numeric, or date-time field or expression

Sum(Qty * Price) {legal -- summary of an expression on fields }

Max(Field1) - Max(Field2) {legal -- expression on summaries }

Avg(DiscountRate) * 100 {legal -- expression of summary and constant }

Min(Sum(Field1)) {illegal -- nested summaries }

Count(Field1) - Field2 {illegal -- expression of summary and field }

SalesRep Customer OrderNo Amount

1 1 5 100

1 1 2 50

1 2 3 200

U s i n g c l i e n t d a t a s e t s 27-13

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

The following code sets up a maintained aggregate that indicates the total amount for
each sales representative:

Agg->Expression = "Sum(Amount)";
Agg->IndexName = "SalesCust";
Agg->GroupingLevel = 1;
Agg->AggregateName = "Total for Rep";

To add an aggregate that summarizes for each customer within a given sales
representative, create a maintained aggregate with level 2.

Maintained aggregates that summarize over a group of records are associated with a
specific index. The Aggregates property can include aggregates that use different
indexes. However, only the aggregates that summarize over the entire dataset and
those that use the current index are valid. Changing the current index changes which
aggregates are valid. To determine which aggregates are valid at any time, use the
ActiveAggs property.

Obtaining aggregate values
To get the value of a maintained aggregate, call the Value method of the TAggregate
object that represents the aggregate. Value returns the maintained aggregate for the
group that contains the current record of the client dataset.

When you are summarizing over the entire client dataset, you can call Value at any
time to obtain the maintained aggregate. However, when you are summarizing over
grouped information, you must be careful to ensure that the current record is in the
group whose summary you want. Because of this, it is a good idea to obtain
aggregate values at clearly specified times, such as when you move to the first record
of a group or when you move to the last record of a group. Use the GetGroupState
method to determine where the current record falls within a group.

To display maintained aggregates in data-aware controls, use the Fields editor to
create a persistent aggregate field component. When you specify an aggregate field
in the Fields editor, the client dataset’s Aggregates is automatically updated to include
the appropriate aggregate specification. The AggFields property contains the new
aggregated field component, and the FindField method returns it.

Copying data from another dataset

To copy the data from another dataset at design time, right click the client dataset
and choose Assign Local Data. A dialog appears listing all the datasets available in
your project. Select the one whose data and structure you want to copy and choose
OK. When you copy the source dataset, your client dataset is automatically activated.

1 2 6 75

2 1 1 10

2 3 4 200

SalesRep Customer OrderNo Amount

27-14 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h d a t a u s i n g a c l i e n t d a t a s e t

To copy from another dataset at runtime, you can assign its data directly or, if the
source is another client dataset, you can clone the cursor.

Assigning data directly
You can use the client dataset’s Data property to assign data to a client dataset from
another dataset. Data is a data packet in the form of an OleVariant. A data packet can
come from another client dataset or from any other dataset by using a provider. Once
a data packet is assigned to Data, its contents are displayed automatically in data-
aware controls connected to the client dataset by a data source component.

When you open a client dataset that represents server data or that uses an external
provider component, data packets are automatically assigned to Data.

When your client dataset does not use a provider, you can copy the data from
another client dataset as follows:

ClientDataSet1->Data = ClientDataSet2->Data;

Note When you copy the Data property of another client dataset, you copy the change log
as well, but the copy does not reflect any filters or ranges that have been applied. To
include filters or ranges, you must clone the source dataset’s cursor instead.

If you are copying from a dataset other than a client dataset, you can create a dataset
provider component, link it to the source dataset, and then copy its data:

TempProvider = new TDataSetProvider(Form1);
TempProvider->DataSet = SourceDataSet;
ClientDataSet1->Data = TempProvider->Data;
delete TempProvider;

Note When you assign directly to the Data property, the new data packet is not merged
into the existing data. Instead, all previous data is replaced.

If you want to merge changes from another dataset, rather than copying its data, you
must use a provider component. Create a dataset provider as in the previous
example, but attach it to the destination dataset and instead of copying the data
property, use the ApplyUpdates method:

TempProvider = new TDataSetProvider(Form1);
TempProvider->DataSet = ClientDataSet1;
TempProvider->ApplyUpdates(SourceDataSet->Delta, -1, ErrCount);
delete TempProvider;

Cloning a client dataset cursor
Client datasets use the CloneCursor method to let you work with a second view of the
data at runtime. CloneCursor lets a second client dataset share the original client
dataset’s data. This is less expensive than copying all the original data, but, because
the data is shared, the second client dataset can’t modify the data without affecting
the original client dataset.

CloneCursor takes three parameters: Source specifies the client dataset to clone. The
last two parameters (Reset and KeepSettings) indicate whether to copy information
other than the data. This information includes any filters, the current index, links to a

U s i n g c l i e n t d a t a s e t s 27-15

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

master table (when the source dataset is a detail set), the ReadOnly property, and any
links to a connection component or provider.

When Reset and KeepSettings are false, a cloned client dataset is opened, and the
settings of the source client dataset are used to set the properties of the destination.
When Reset is true, the destination dataset’s properties are given the default values
(no index or filters, no master table, ReadOnly is false, and no connection component
or provider is specified). When KeepSettings is true, the destination dataset’s
properties are not changed.

Adding application-specific information to the data

Application developers can add custom information to the client dataset’s Data
property. Because this information is bundled with the data packet, it is included
when you save the data to a file or stream. It is copied when you copy the data to
another dataset. Optionally, it can be included with the Delta property so that a
provider can read this information when it receives updates from the client dataset.

To save application-specific information with the Data property, use the
SetOptionalParam method. This method lets you store an OleVariant that contains the
data under a specific name.

To retrieve this application-specific information, use the GetOptionalParam method,
passing in the name that was used when the information was stored.

Using a client dataset to cache updates
By default, when you edit data in most datasets, every time you delete or post a
record, the dataset generates a transaction, deletes or writes that record to the
database server, and commits the transaction. If there is a problem writing changes to
the database, your application is notified immediately: the dataset raises an exception
when you post the record.

If your dataset uses a remote database server, this approach can degrade
performance due to network traffic between your application and the server every
time you move to a new record after editing the current record. To minimize the
network traffic, you may want to cache updates locally. When you cache updates,
you application retrieves data from the database, caches and edits it locally, and then
applies the cached updates to the database in a single transaction. When you cache
updates, changes to a dataset (such as posting changes or deleting records) are stored
locally instead of being written directly to the dataset’s underlying table. When
changes are complete, your application calls a method that writes the cached changes
to the database and clears the cache.

Caching updates can minimize transaction times and reduce network traffic.
However, cached data is local to your application and is not under transaction
control. This means that while you are working on your local, in-memory, copy of the
data, other applications can be changing the data in the underlying database table.
They also can’t see any changes you make until you apply the cached updates.

27-16 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

Because of this, cached updates may not be appropriate for applications that work
with volatile data, as you may create or encounter too many conflicts when trying to
merge your changes into the database.

Although the BDE and ADO provide alternate mechanisms for caching updates,
using a client dataset for caching updates has several advantages:

• Applying updates when datasets are linked in master/detail relationships is
handled for you. This ensures that updates to multiple linked datasets are applied
in the correct order.

• Client datasets give you the maximum of control over the update process. You can
set properties to influence the SQL that is generated for updating records, specify
the table to use when updating records from a multi-table join, or even apply
updates manually from a BeforeUpdateRecord event handler.

• When errors occur applying cached updates to the database server, only client
datasets (and dataset providers) provide you with information about the current
record value on the database server in addition to the original (unedited) value
from your dataset and the new (edited) value of the update that failed.

• Client datasets let you specify the number of update errors you want to tolerate
before the entire update is rolled back.

Overview of using cached updates

To use cached updates, the following order of processes must occur in an application:

1 Indicate the data you want to edit. How you do this depends on the type of client
dataset you are using:

• If you are using TClientDataSet, Specify the provider component that represent
the data you want to edit. This is described in “Specifying a provider” on
page 27-24.

• If you are using a client dataset associated with a particular data access
mechanism, you must
- Identify the database server by setting the DBConnection property to an

appropriate connection component.
- Indicate what data you want to see by specifying the CommandText and

CommandType properties. CommandType indicates whether CommandText is an
SQL statement to execute, the name of a stored procedure, or the name of a
table. If CommandText is a query or stored procedure, use the Params property to
provide any input parameters.

- Optionally, use the Options property to indicate whether nested detail sets and
BLOB data should be included in data packets or fetched separately, whether
specific types of edits (insertions, modifications, or deletions) should be
disabled, whether a single update can affect multiple server records, and
whether the client dataset’s records are refreshed when it applies updates.
Options is identical to a provider’s Options property. As a result, it allows you to
set options that are not relevant or appropriate. For example, there is no reason
to include poIncFieldProps, because the client dataset does not fetch its data from

U s i n g c l i e n t d a t a s e t s 27-17

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

a dataset with persistent fields. Conversely, you do not want to exclude
poAllowCommandText, which is included by default, because that would disable
the CommandText property, which the client dataset uses to specify what data it
wants. For information on the provider’s Options property, see “Setting options
that influence the data packets” on page 28-5.

2 Display and edit the data, permit insertion of new records, and support deletions
of existing records. Both the original copy of each record and any edits to it are
stored in memory. This process is described in “Editing data” on page 27-5.

3 Fetch additional records as necessary. By default, client datasets fetch all records
and store them in memory. If a dataset contains many records or records with
large BLOB fields, you may want to change this so that the client dataset fetches
only enough records for display and re-fetches as needed. For details on how to
control the record-fetching process, see “Requesting data from the source dataset
or document” on page 27-25.

4 Optionally, refresh the records. As time passes, other users may modify the data
on the database server. This can cause the client dataset’s data to deviate more and
more from the data on the server, increasing the chance of errors when you apply
updates. To mitigate this problem, you can refresh records that have not already
been edited. See “Refreshing records” on page 27-30 for details.

5 Apply the locally cached records to the database or cancel the updates. For each
record written to the database, a BeforeUpdateRecord event is triggered. If an error
occurs when writing an individual record to the database, an OnUpdateError event
enables the application to correct the error, if possible, and continue updating.
When updates are complete, all successfully applied updates are cleared from the
local cache. For more information about applying updates to the database, see
“Updating records” on page 27-19.

Instead of applying updates, an application can cancel the updates, emptying the
change log without writing the changes to the database. You can cancel the
updates by calling CancelUpdates method. All deleted records in the cache are
undeleted, modified records revert to original values, and newly inserted record
simply disappear.

Choosing the type of dataset for caching updates

C++Builder includes some specialized client dataset components for caching
updates. Each client dataset is associated with a particular data access mechanism.
These are listed in Table 27.3:

Table 27.3 Specialized client datasets for caching updates

Client dataset Data access mechanism

TBDEClientDataSet Borland Database Engine

TSQLClientDataSet dbExpress

TIBClientDataSet InterBase Express

27-18 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

In addition, you can cache updates using the generic client dataset (TClientDataSet)
with an external provider and source dataset. For information about using
TClientDataSet with an external provider, see “Using a client dataset with a provider”
on page 27-24.

Note The specialized client datasets associated with each data access mechanism actually
use a provider and source dataset as well. However, both the provider and the source
dataset are internal to the client dataset.

It is simplest to use one of the specialized client datasets to cache updates. However,
there are times when it is preferable to use TClientDataSet with an external provider:

• If you are using a data access mechanism that does not have a specialized client
dataset, you must use TClientDataSet with an external provider component. For
example, if the data comes from an XML document or custom dataset.

• If you are working with tables that are related in a master/detail relationship, you
should use TClientDataSet and connect it, using a provider, to the master table of
two source datasets linked in a master/detail relationship. The client dataset sees
the detail dataset as a nested dataset field. This approach is necessary so that
updates to master and detail tables can be applied in the correct order.

• If you want to code event handlers that respond to the communication between
the client dataset and the provider (for example, before and after the client dataset
fetches records from the provider), you must use TClientDataSet with an external
provider component. The specialized client datasets publish the most important
events for applying updates (OnReconcileError, BeforeUpdateRecord and
OnGetTableName), but do not publish the events surrounding communication
between the client dataset and its provider, because they are intended primarily
for multi-tiered applications.

• When using the BDE, you may want to use an external provider and source
dataset if you need to use an update object. Although it is possible to code an
update object from the BeforeUpdateRecord event handler of TBDEClientDataSet, it
can be simpler just to assign the UpdateObject property of the source dataset. For
information about using update objects, see “Using update objects to update a
dataset” on page 24-39.

Indicating what records are modified

While the user edits a client dataset, you may find it useful to provide feedback about
the edits that have been made. This is especially useful if you want to allow the user
to undo specific edits, for example, by navigating to them and clicking an “Undo”
button.

The UpdateStatus method and StatusFilter properties are useful when providing
feedback on what updates have occurred:

• UpdateStatus indicates what type of update, if any, has occurred for the current
record. It can be any of the following values:

• usUnmodified indicates that the current record is unchanged.
• usModified indicates that the current record has been edited.

U s i n g c l i e n t d a t a s e t s 27-19

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

• usInserted indicates a record that was inserted by the user.
• usDeleted indicates a record that was deleted by the user.

• StatusFilter controls what type of updates in the change log are visible. StatusFilter
works on cached records in much the same way as filters work on regular data.
StatusFilter is a set, so it can contain any combination of the following values:

• usUnmodified indicates an unmodified record.
• usModified indicates a modified record.
• usInserted indicates an inserted record.
• usDeleted indicates a deleted record.

By default, StatusFilter is the set [usModified, usInserted, usUnmodified]. You can add
usDeleted to this set to provide feedback about deleted records as well.

Note UpdateStatus and StatusFilter are also useful in BeforeUpdateRecord and
OnReconcileError event handlers. For information about BeforeUpdateRecord, see
“Intervening as updates are applied” on page 27-21. For information about
OnReconcileError, see “Reconciling update errors” on page 27-22.

The following example shows how to provide feedback about the update status of
records using the UpdateStatus method. It assumes that you have changed the
StatusFilter property to include usDeleted, allowing deleted records to remain visible
in the dataset. It further assumes that you have added a calculated field to the dataset
called “Status.”

void __fastcall TForm1::ClientDataSet1CalcFields(TDataSet *DataSet)
{

switch (DataSet->UpdateStatus())
{

case usUnmodified:
ClientDataSet1Status->Value = NULL; break;

case usModified:
ClientDataSet1Status->Value = "M"; break;

case usInserted:
ClientDataSet1Status->Value = "I"; break;

case usDeleted:
ClientDataSet1Status->Value = "D"; break;

}
}

Updating records

The contents of the change log are stored as a data packet in the client dataset’s Delta
property. To make the changes in Delta permanent, the client dataset must apply
them to the database (or source dataset or XML document).

When a client applies updates to the server, the following steps occur:

1 The client application calls the ApplyUpdates method of a client dataset object. This
method passes the contents of the client dataset’s Delta property to the (internal or
external) provider. Delta is a data packet that contains a client dataset’s updated,
inserted, and deleted records.

27-20 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

2 The provider applies the updates, caching any problem records that it can’t
resolve itself. See “Responding to client update requests” on page 28-8 for details
on how the provider applies updates.

3 The provider returns all unresolved records to the client dataset in a Result data
packet. The Result data packet contains all records that were not updated. It also
contains error information, such as error messages and error codes.

4 The client dataset attempts to reconcile update errors returned in the Result data
packet on a record-by-record basis.

Applying updates
Changes made to the client dataset’s local copy of data are not sent to the database
server (or XML document) until the client application calls the ApplyUpdates method.
ApplyUpdates takes the changes in the change log, and sends them as a data packet
(called Delta) to the provider. (Note that, when using most client datasets, the
provider is internal to the client dataset.)

ApplyUpdates takes a single parameter, MaxErrors, which indicates the maximum
number of errors that the provider should tolerate before aborting the update
process. If MaxErrors is 0, then as soon as an update error occurs, the entire update
process is terminated. No changes are written to the database, and the client dataset’s
change log remains intact. If MaxErrors is -1, any number of errors is tolerated, and
the change log contains all records that could not be successfully applied. If
MaxErrors is a positive value, and more errors occur than are permitted by
MaxErrors, all updates are aborted. If fewer errors occur than specified by MaxErrors,
all records successfully applied are automatically cleared from the client dataset’s
change log.

ApplyUpdates returns the number of actual errors encountered, which is always less
than or equal to MaxErrors plus one. This return value indicates the number of
records that could not be written to the database.

The client dataset’s ApplyUpdates method does the following:

1 It indirectly calls the provider’s ApplyUpdates method. The provider’s
ApplyUpdates method writes the updates to the database, source dataset, or XML
document and attempts to correct any errors it encounters. Records that it cannot
apply because of error conditions are sent back to the client dataset.

2 The client dataset ‘s ApplyUpdates method then attempts to reconcile these
problem records by calling the Reconcile method. Reconcile is an error-handling
routine that calls the OnReconcileError event handler. You must code the
OnReconcileError event handler to correct errors. For details about using
OnReconcileError, see “Reconciling update errors” on page 27-22.

3 Finally, Reconcile removes successfully applied changes from the change log and
updates Data to reflect the newly updated records. When Reconcile completes,
ApplyUpdates reports the number of errors that occurred.

Important In some cases, the provider can’t determine how to apply updates (for example,
when applying updates from a stored procedure or multi-table join). Client datasets

U s i n g c l i e n t d a t a s e t s 27-21

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

and provider components generate events that let you handle these situations. See
“Intervening as updates are applied” below for details.

Tip If the provider is on a stateless application server, you may want to communicate
with it about persistent state information before or after you apply updates.
TClientDataSet receives a BeforeApplyUpdates event before the updates are sent, which
lets you send persistent state information to the server. After the updates are applied
(but before the reconcile process), TClientDataSet receives an AfterApplyUpdates event
where you can respond to any persistent state information returned by the
application server.

Intervening as updates are applied
When a client dataset applies its updates, the provider determines how to handle
writing the insertions, deletions, and modifications to the database server or source
dataset. When you use TClientDataSet with an external provider component, you can
use the properties and events of that provider to influence the way updates are
applied. These are described in “Responding to client update requests” on page 28-8.

When the provider is internal, however, as it is for any client dataset associated with
a data access mechanism, you can’t set its properties or provide event handlers. As a
result, the client dataset publishes one property and two events that let you influence
how the internal provider applies updates.

• UpdateMode controls what fields are used to locate records in the SQL statements
the provider generates for applying updates. UpdateMode is identical to the
provider’s UpdateMode property. For information on the provider’s UpdateMode
property, see “Influencing how updates are applied” on page 28-9.

• OnGetTableName lets you supply the provider with the name of the database table
to which it should apply updates. This lets the provider generate the SQL
statements for updates when it can’t identify the database table from the stored
procedure or query specified by CommandText. For example, if the query executes
a multi-table join that only requires updates to a single table, supplying an
OnGetTableName event handler allows the internal provider to correctly apply
updates.

An OnGetTableName event handler has three parameters: the internal provider
component, the internal dataset that fetched the data from the server, and a
parameter to return the table name to use in the generated SQL.

• BeforeUpdateRecord occurs for every record in the delta packet. This event lets you
make any last-minute changes before the record is inserted, deleted, or modified.
It also provides a way for you to execute your own SQL statements to apply the
update in cases where the provider can’t generate correct SQL (for example, for
multi-table joins where multiple tables must be updated.)

A BeforeUpdateRecord event handler has five parameters: the internal provider
component, the internal dataset that fetched the data from the server, a delta
packet that is positioned on the record that is about to be updated, an indication of
whether the update is an insertion, deletion, or modification, and a parameter that
returns whether the event handler performed the update.The use of these is

27-22 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

illustrated in the following event handler. For simplicity, the example assumes the
SQL statements are available as global variables that only need field values:
void __fastcall TForm1::SQLClientDataSet1BeforeUpdateRecord(TObject *Sender,

TDataSet *SourceDS, TCustomClientDataSet *DeltaDS, TUpdateKind UpdateKind, bool &Applied)
{

TSQLConnection *pConn := (dynamic_cast<TCustomSQLDataSet *>(SourceDS)->SQLConnection);
char buffer[256];
switch (UpdateKind)
case ukModify:

// 1st dataset: update Fields[1], use Fields[0] in where clause
sprintf(buffer, UpdateStmt1, DeltaDS->Fields->Fields[1]->NewValue,

DeltaDS->Fields->Fields[0]->OldValue);
pConn->Execute(buffer, NULL, NULL);
// 2nd dataset: update Fields[2], use Fields[3] in where clause
sprintf(buffer, UpdateStmt2, DeltaDS->Fields->Fields[2]->NewValue,

DeltaDS->Fields->Fields[3]->OldValue);
pConn->Execute(buffer, NULL, NULL);
break;

case ukDelete:
// 1st dataset: use Fields[0] in where clause
sprintf(buffer, DeleteStmt1, DeltaDS->Fields->Fields[0]->OldValue);
pConn->Execute(buffer, NULL, NULL);
// 2nd dataset: use Fields[3] in where clause
sprintf(buffer, DeleteStmt2, DeltaDS->Fields->Fields[3]->OldValue);
pConn->Execute(buffer, NULL, NULL);
break;

case ukInsert:
// 1st dataset: values in Fields[0] and Fields[1]
sprintf(buffer, UpdateStmt1, DeltaDS->Fields->Fields[0]->NewValue,

DeltaDS->Fields->Fields[1]->NewValue);
pConn->Execute(buffer, NULL, NULL);
// 2nd dataset: values in Fields[2] and Fields[3]
sprintf(buffer, UpdateStmt2, DeltaDS->Fields->Fields[2]->NewValue,

DeltaDS->Fields->Fields[3]->NewValue);
pConn->Execute(buffer, NULL, NULL);
break;

}

Reconciling update errors
There are two events that let you handle errors that occur during the update process:

• During the update process, the internal provider generates an OnUpdateError
event every time it encounters an update that it can’t handle. If you correct the
problem in an OnUpdateError event handler, then the error does not count toward
the maximum number of errors passed to the ApplyUpdates method. This event
only occurs for client datasets that use an internal provider. If you are using
TClientDataSet, you can use the provider component’s OnUpdateError event
instead.

• After the entire update operation is finished, the client dataset generates an
OnReconcileError event for every record that the provider could not apply to the
database server.

U s i n g c l i e n t d a t a s e t s 27-23

U s i n g a c l i e n t d a t a s e t t o c a c h e u p d a t e s

You should always code an OnReconcileError or OnUpdateError event handler, even if
only to discard the records returned that could not be applied. The event handlers for
these two events work the same way. They include the following parameters:

• DataSet: A client dataset that contains the updated record which couldn’t be
applied. You can use this dataset’s methods to get information about the problem
record and to edit the record in order to correct any problems. In particular, you
will want to use the CurValue, OldValue, and NewValue properties of the fields in
the current record to determine the cause of the update problem. However, you
must not call any client dataset methods that change the current record in your
event handler.

• E: An object that represents the problem that occurred. You can use this exception
to extract an error message or to determine the cause of the update error.

• UpdateKind: The type of update that generated the error. UpdateKind can be
ukModify (the problem occurred updating an existing record that was modified),
ukInsert (the problem occurred inserting a new record), or ukDelete (the problem
occurred deleting an existing record).

• Action: A reference parameter that indicates what action to take when the event
handler exits. In your event handler, you set this parameter to

• Skip this record, leaving it in the change log. (rrSkip or raSkip)

• Stop the entire reconcile operation. (rrAbort or raAbort)

• Merge the modification that failed into the corresponding record from the
server. (rrMerge or raMerge) This only works if the server record does not
include any changes to fields modified in the client dataset’s record.

• Replace the current update in the change log with the value of the record in the
event handler, which has presumably been corrected. (rrApply or raCorrect)

• Ignore the error completely. (rrIgnore) This possibility only exists in the
OnUpdateError event handler, and is intended for the case where the event
handler applies the update back to the database server. The updated record is
removed from the change log and merged into Data, as if the provider had
applied the update.

• Back out the changes for this record on the client dataset, reverting to the
originally provided values. (raCancel) This possibility only exists in the
OnReconcileError event handler.

• Update the current record value to match the record on the server. (raRefresh)
This possibility only exists in the OnReconcileError event handler.

The following code shows an OnReconcileError event handler that uses the reconcile
error dialog from the RecError unit which ships in the objrepos directory. (To use this
dialog, include RecError.hpp in your source unit.)

void __fastcall TForm1::ClientDataSetReconcileError(TCustomClientDataSet *DataSet,
EReconcileError *E, TUpdateKind UpdateKind, TReconcileAction &Action)

{
Action = HandleReconcileError(this, DataSet, UpdateKind, E);

}

27-24 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Using a client dataset with a provider
A client dataset uses a provider to supply it with data and apply updates when

• It caches updates from a database server or another dataset.

• It represents the data in an XML document.

• It stores the data in the client portion of a multi-tiered application.

For any client dataset other than TClientDataSet, this provider is internal, and so not
directly accessible by the application. With TClientDataSet, the provider is an external
component that links the client dataset to an external source of data.

An external provider component can reside in the same application as the client
dataset, or it can be part of a separate application running on another system. For
more information about provider components, see Chapter 28, “Using provider
components.” For more information about applications where the provider is in a
separate application on another system, see Chapter 29, “Creating multi-tiered
applications.”

When using an (internal or external) provider, the client dataset always caches any
updates. For information on how this works, see “Using a client dataset to cache
updates” on page 27-15.

The following topics describe additional properties and methods of the client dataset
that enable it to work with a provider.

Specifying a provider

Unlike the client datasets that are associated with a data access mechanism,
TClientDataSet has no internal provider component to package data or apply
updates. If you want it to represent data from a source dataset or XML document,
therefore, you must associated the client dataset with an external provider
component.

The way you associate TClientDataSet with a provider depends on whether the
provider is in the same application as the client dataset or on a remote application
server running on another system.

• If the provider is in the same application as the client dataset, you can associate it
with a provider by choosing a provider from the drop-down list for the
ProviderName property in the Object Inspector. This works as long as the provider
has the same Owner as the client dataset. (The client dataset and the provider have
the same Owner if they are placed in the same form or data module.) To use a local
provider that has a different Owner, you must form the association at runtime
using the client dataset’s SetProvider method

If you think you may eventually scale up to a remote provider, or if you want to
make calls directly to the IAppServer interface, you can also set the RemoteServer
property to a TLocalConnection component. If you use TLocalConnection, the
TLocalConnection instance manages the list of all providers that are local to the
application, and handles the client dataset’s IAppServer calls. If you do not use

U s i n g c l i e n t d a t a s e t s 27-25

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

TLocalConnection, the application creates a hidden object that handles the
IAppServer calls from the client dataset.

• If the provider is on a remote application server, then, in addition to the
ProviderName property, you need to specify a component that connects the client
dataset to the application server. There are two properties that can handle this
task: RemoteServer, which specifies the name of a connection component from
which to get a list of providers, or ConnectionBroker, which specifies a centralized
broker that provides an additional level of indirection between the client dataset
and the connection component. The connection component and, if used, the
connection broker, reside in the same data module as the client dataset. The
connection component establishes and maintains a connection to an application
server, sometimes called a “data broker”. For more information, see “The structure
of the client application” on page 29-4.

At design time, after you specify RemoteServer or ConnectionBroker, you can select a
provider from the drop-down list for the ProviderName property in the Object
Inspector. This list includes both local providers (in the same form or data
module) and remote providers that can be accessed through the connection
component.

Note If the connection component is an instance of TDCOMConnection, the application
server must be registered on the client machine.

At runtime, you can switch among available providers (both local and remote) by
setting ProviderName in code.

Requesting data from the source dataset or document

Client datasets can control how they fetch their data packets from a provider. By
default, they retrieve all records from the source dataset. This is true whether the
source dataset and provider are internal components (as with TBDEClientDataSet,
TSQLClientDataSet, and TIBClientDataSet), or separate components that supply the
data for TClientDataSet.

You can change how the client dataset fetches records using the PacketRecords and
FetchOnDemand properties.

Incremental fetching
By changing the PacketRecords property, you can specify that the client dataset fetches
data in smaller chunks. PacketRecords specifies either how many records to fetch at a
time, or the type of records to return. By default, PacketRecords is set to -1, which
means that all available records are fetched at once, either when the client dataset is
first opened, or when the application explicitly calls GetNextPacket. When
PacketRecords is -1, then after the client dataset first fetches data, it never needs to
fetch more data because it already has all available records.

To fetch records in small batches, set PacketRecords to the number of records to fetch.
For example, the following statement sets the size of each data packet to ten records:

ClientDataSet1->PacketRecords = 10;

27-26 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

This process of fetching records in batches is called “incremental fetching”. Client
datasets use incremental fetching when PacketRecords is greater than zero.

To fetch each batch of records, the client dataset calls GetNextPacket. Newly fetched
packets are appended to the end of the data already in the client dataset.
GetNextPacket returns the number of records it fetches. If the return value is the same
as PacketRecords, the end of available records was not encountered. If the return value
is greater than 0 but less than PacketRecords, the last record was reached during the
fetch operation. If GetNextPacket returns 0, then there are no more records to fetch.

Warning Incremental fetching does not work if you are fetching data from a remote provider
on a stateless application server. See “Supporting state information in remote data
modules” on page 29-19 for information on how to use incremental fetching with
stateless remote data modules.

Note You can also use PacketRecords to fetch metadata information about the source
dataset. To retrieve metadata information, set PacketRecords to 0.

Fetch-on-demand
Automatic fetching of records is controlled by the FetchOnDemand property. When
FetchOnDemand is true (the default), the client dataset automatically fetches records
as needed. To prevent automatic fetching of records, set FetchOnDemand to false.
When FetchOnDemand is false, the application must explicitly call GetNextPacket to
fetch records.

For example, Applications that need to represent extremely large read-only datasets
can turn off FetchOnDemand to ensure that the client datasets do not try to load more
data than can fit into memory. Between fetches, the client dataset frees its cache using
the EmptyDataSet method. This approach, however, does not work well when the
client must post updates to the server.

The provider controls whether the records in data packets include BLOB data and
nested detail datasets. If the provider excludes this information from records, the
FetchOnDemand property causes the client dataset to automatically fetch BLOB data
and detail datasets on an as-needed basis. If FetchOnDemand is false and the provider
does not include BLOB data and detail datasets with records, you must explicitly call
the FetchBlobs or FetchDetails method to retrieve this information.

Getting parameters from the source dataset

There are two circumstances when the client dataset needs to fetch parameter values:

• The application needs the value of output parameters on a stored procedure.

• The application wants to initialize the input parameters of a query or stored
procedure to the current values on the source dataset.

Client datasets store parameter values in their Params property. These values are
refreshed with any output parameters when the client dataset fetches data from the
source dataset. However, there may be times a TClientDataSet component in a client
application needs output parameters when it is not fetching data.

U s i n g c l i e n t d a t a s e t s 27-27

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

To fetch output parameters when not fetching records, or to initialize input
parameters, the client dataset can request parameter values from the source dataset
by calling the FetchParams method. The parameters are returned in a data packet
from the provider and assigned to the client dataset’s Params property.

At design time, the Params property can be initialized by right-clicking the client
dataset and choosing Fetch Params.

Note There is never a need to call FetchParams when the client dataset uses an internal
provider and source dataset, because the Params property always reflects the
parameters of the internal source dataset. With TClientDataSet, the FetchParams
method (or the Fetch Params command) only works if the client dataset is connected
to a provider whose associated dataset can supply parameters. For example, if the
source dataset is a table type dataset, there are no parameters to fetch.

If the provider is on a separate system as part of a stateless application server, you
can’t use FetchParams to retrieve output parameters. In a stateless application server,
other clients can change and rerun the query or stored procedure, changing output
parameters before the call to FetchParams. To retrieve output parameters from a
stateless application server, use the Execute method. If the provider is associated with
a query or stored procedure, Execute tells the provider to execute the query or stored
procedure and return any output parameters. These returned parameters are then
used to automatically update the Params property.

Passing parameters to the source dataset

Client datasets can pass parameters to the source dataset to specify what data they
want provided in the data packets it sends. These parameters can specify

• Input parameter values for a query or stored procedure that is run on the
application server

• Field values that limit the records sent in data packets

You can specify parameter values that your client dataset sends to the source dataset
at design time or at runtime. At design time, select the client dataset and double-click
the Params property in the Object Inspector. This brings up the collection editor,
where you can add, delete, or rearrange parameters. By selecting a parameter in the
collection editor, you can use the Object Inspector to edit the properties of that
parameter.

At runtime, use the CreateParam method of the Params property to add parameters to
your client dataset. CreateParam returns a parameter object, given a specified name,
parameter type, and datatype. You can then use the properties of that parameter
object to assign a value to the parameter.

For example, the following code adds an input parameter named CustNo with a
value of 605:

TParam *pParam = ClientDataSet1->Params->CreateParam(ftInteger, "CustNo", ptInput);
pParam->AsInteger = 605;

27-28 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

If the client dataset is not active, you can send the parameters to the application
server and retrieve a data packet that reflects those parameter values simply by
setting the Active property to true.

Sending query or stored procedure parameters
When the client dataset’s CommandType property is ctQuery or ctStoredProc, or, if the
client dataset is a TClientDataSet instance, when the associated provider represents
the results of a query or stored procedure, you can use the Params property to specify
parameter values. When the client dataset requests data from the source dataset or
uses its Execute method to run a query or stored procedure that does not return a
dataset, it passes these parameter values along with the request for data or the
execute command. When the provider receives these parameter values, it assigns
them to its associated dataset. It then instructs the dataset to execute its query or
stored procedure using these parameter values, and, if the client dataset requested
data, begins providing data, starting with the first record in the result set.

Note Parameter names should match the names of the corresponding parameters on the
source dataset.

Limiting records with parameters
If the client dataset is

• a TClientDataSet instance whose associated provider represents a TTable or
TSQLTable component

• a TSQLClientDataSet or TBDEClientDataSet instance whose CommandType property
is ctTable

then it can use the Params property to limit the records that it caches in memory. Each
parameter represents a field value that must be matched before a record can be
included in the client dataset’s data. This works much like a filter, except that with a
filter, the records are still cached in memory, but unavailable.

Each parameter name must match the name of a field. When using TClientDataSet,
these are the names of fields in the TTable or TSQLTable component associated with
the provider. When using TSQLClientDataSet or TBDEClientDataSet, these are the
names of fields in the table on the database server. The data in the client dataset then
includes only those records whose values on the corresponding fields match the
values assigned to the parameters.

For example, consider an application that displays the orders for a single customer.
When the user identifies the customer, the client dataset sets its Params property to
include a single parameter named CustID (or whatever field in the source table is
called) whose value identifies the customer whose orders should be displayed. When
the client dataset requests data from the source dataset, it passes this parameter
value. The provider then sends only the records for the identified customer. This is
more efficient than letting the provider send all the orders records to the client
application and then filtering the records using the client dataset.

U s i n g c l i e n t d a t a s e t s 27-29

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Handling constraints from the server

When a database server defines constraints on what data is valid, it is useful if the
client dataset knows about them. That way, the client dataset can ensure that user
edits never violate those server constraints. As a result, such violations are never
passed to the database server where they would be rejected. This means fewer
updates generate error conditions during the updating process.

Regardless of the source of data, you can duplicate such server constraints by
explicitly adding them to the client dataset. This process is described in “Specifying
custom constraints” on page 27-7.

It is more convenient, however, if the server constraints are automatically included in
data packets. Then you need not explicitly specify default expressions and
constraints, and the client dataset changes the values it enforces when the server
constraints change. By default, this is exactly what happens: if the source dataset is
aware of server constraints, the provider automatically includes them in data packets
and the client dataset enforces them when the user posts edits to the change log.

Note Only datasets that use the BDE can import constraints from the server. This means
that server constraints are only included in data packets when using
TBDEClientDataSet or TClientDataSet with a provider that represents a BDE-based
dataset. For more information on how to import server constraints and how to
prevent a provider from including them in data packets, see “Handling server
constraints” on page 28-12.

Note For more information on working with the constraints once they have been imported,
see “Using server constraints” on page 23-21.

While importing server constraints and expressions is an extremely valuable feature
that helps an application preserve data integrity, there may be times when it needs to
disable constraints on a temporary basis. For example, if a server constraint is based
on the current maximum value of a field, but the client dataset uses incremental
fetching, the current maximum value for a field in the client dataset may differ from
the maximum value on the database server, and constraints may be invoked
differently. In another case, if a client dataset applies a filter to records when
constraints are enabled, the filter may interfere in unintended ways with constraint
conditions. In each of these cases, an application may disable constraint-checking.

To disable constraints temporarily, call the DisableConstraints method. Each time
DisableConstraints is called, a reference count is incremented. While the reference
count is greater than zero, constraints are not enforced on the client dataset.

To reenable constraints for the client dataset, call the dataset’s EnableConstraints
method. Each call to EnableConstraints decrements the reference count. When the
reference count is zero, constraints are enabled again.

Tip Always call DisableConstraints and EnableConstraints in paired blocks to ensure that
constraints are enabled when you intend them to be.

27-30 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

Refreshing records

Client datasets work with an in-memory snapshot of the data from the source
dataset. If the source dataset represents server data, then as time elapses other users
may modify that data. The data in the client dataset becomes a less accurate picture
of the underlying data.

Like any other dataset, client datasets have a Refresh method that updates its records
to match the current values on the server. However, calling Refresh only works if
there are no edits in the change log. Calling Refresh when there are unapplied edits
results in an exception.

Client datasets can also update the data while leaving the change log intact. To do
this, call the RefreshRecord method. Unlike the Refresh method, RefreshRecord updates
only the current record in the client dataset. RefreshRecord changes the record value
originally obtained from the provider but leaves any changes in the change log.

Warning It is not always appropriate to call RefreshRecord. If the user’s edits conflict with
changes made to the underlying dataset by other users, calling RefreshRecord masks
this conflict. When the client dataset applies its updates, no reconcile error occurs
and the application can’t resolve the conflict.

In order to avoid masking update errors, you may want to check that there are no
pending updates before calling RefreshRecord. For example, the following AfterScroll
refreshes the current record every time the user moves to a new record (ensuring the
most up-to-date value), but only when it is safe to do so.:

void __fastcall TForm1::ClientDataSet1AfterScroll(TDataSet *DataSet)
{

if (ClientDataSet1->UpdateStatus == usUnModified)
ClientDataSet1->RefreshRecord();

}

Communicating with providers using custom events

Client datasets communicate with a provider component through a special interface
called IAppServer. If the provider is local, IAppServer is the interface to an
automatically-generated object that handles all communication between the client
dataset and its provider. If the provider is remote, IAppServer is the interface to a
remote data module’s associated COM object on the application server, or (in the case
of a SOAP server) an interface generated by the connection component.

TClientDataSet provides many opportunities for customizing the communication that
uses the IAppServer interface. Before and after every IAppServer method call that is
directed at the client dataset’s provider, TClientDataSet receives special events that
allow it to communicate arbitrary information with its provider. These events are
matched with similar events on the provider. Thus for example, when the client
dataset calls its ApplyUpdates method, the following events occur:

1 The client dataset receives a BeforeApplyUpdates event, where it specifies arbitrary
custom information in an OleVariant called OwnerData.

U s i n g c l i e n t d a t a s e t s 27-31

U s i n g a c l i e n t d a t a s e t w i t h a p r o v i d e r

2 The provider receives a BeforeApplyUpdates event, where it can respond to the
OwnerData from the client dataset and update the value of OwnerData to new
information.

3 The provider goes through its normal process of assembling a data packet
(including all the accompanying events).

4 The provider receives an AfterApplyUpdates event, where it can respond to the
current value of OwnerData and update it to a value for the client dataset.

5 The client dataset receives an AfterApplyUpdates event, where it can respond to the
returned value of OwnerData.

Every other IAppServer method call is accompanied by a similar set of BeforeXXX and
AfterXXX events that let you customize the communication between client dataset
and provider.

In addition, the client dataset has a special method, DataRequest, whose only purpose
is to allow application-specific communication with the provider. When the client
dataset calls DataRequest, it passes an OleVariant as a parameter that can contain any
information you want. This, in turn, generates an is the OnDataRequest event on the
provider, where you can respond in any application-defined way and return a value
to the client dataset.

Overriding the source dataset

The client datasets that are associated with a particular data access mechanism use
the CommandText and CommandType properties to specify the data they represent.
When using TClientDataSet, however, the data is specified by the source dataset, not
the client dataset. Typically, this source dataset has a property that specifies an SQL
statement to generate the data or the name of a database table or stored procedure.

If the provider allows, TClientDataSet can override the property on the source dataset
that indicates what data it represents. That is, if the provider permits, the client
dataset’s CommandText property replaces the property on the provider’s dataset that
specifies what data it represents. This allows TClientDataSet to specify dynamically what
data it wants to see.

By default, external provider components do not let client datasets use the
CommandText value in this way. To allow TClientDataSet to use its CommandText
property, you must add poAllowCommandText to the Options property of the provider.
Otherwise, the value of CommandText is ignored.

Note Never remove poAllowCommandText from the Options property of TSQLClientDataSet,
TBDEClientDataSet, or TIBClientDataSet. The client dataset’s Options property is
forwarded to the internal provider, so removing poAllowCommandText prevents the
client dataset from specifying what data to access.

The client dataset sends its CommandText string to the provider at two times:

• When the client dataset first opens. After it has retrieved the first data packet from
the provider, the client dataset does not send CommandText when fetching
subsequent data packets.

27-32 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

• When the client dataset sends an Execute command to provider.

To send an SQL command or to change a table or stored procedure name at any other
time, you must explicitly use the IAppServer interface that is available as the
AppServer property. This property represents the interface through which the client
dataset communicates with its provider.

Using a client dataset with file-based data
Client datasets can work with dedicated files on disk as well as server data. This
allows them to be used in file-based database applications and “briefcase model”
applications. The special files that client datasets use for their data are called MyBase.

Tip All client datasets are appropriate for a briefcase model application, but for a pure
MyBase application (one that does not use a provider), it is preferable to use
TClientDataSet, because it involves less overhead.

In a pure MyBase application, the client application cannot get table definitions and
data from the server, and there is no server to which it can apply updates. Instead,
the client dataset must independently

• Define and create tables
• Load saved data
• Merge edits into its data
• Save data

Creating a new dataset

There are three ways to define and create client datasets that do not represent server
data:

• You can define and create a new client dataset using persistent fields or field and
index definitions. This follows the same scheme as creating any table type dataset.
See “Creating and deleting tables” on page 22-37 for details.

• You can copy an existing dataset (at design or runtime). See “Copying data from
another dataset” on page 27-13 for more information about copying existing
datasets.

• You can create a client dataset from an arbitrary XML document. See “Converting
XML documents into data packets” on page 30-6 for details.

Once the dataset is created, you can save it to a file. From then on, you do not need to
recreate the table, only load it from the file you saved. When beginning a file-based
database application, you may want to first create and save empty files for your
datasets before writing the application itself. This way, you start with the metadata
for your client dataset already defined, making it easier to set up the user interface.

U s i n g c l i e n t d a t a s e t s 27-33

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

Loading data from a file or stream

To load data from a file, call a client dataset’s LoadFromFile method. LoadFromFile
takes one parameter, a string that specifies the file from which to read data. The file
name can be a fully qualified path name, if appropriate. If you always load the client
dataset’s data from the same file, you can use the FileName property instead. If
FileName names an existing file, the data is automatically loaded when the client
dataset is opened.

To load data from a stream, call the client dataset’s LoadFromStream method.
LoadFromStream takes one parameter, a stream object that supplies the data.

The data loaded by LoadFromFile (LoadFromStream) must have previously been saved
in a client dataset’s data format by this or another client dataset using the SaveToFile
(SaveToStream) method, or generated from an XML document. For more information
about saving data to a file or stream, see “Saving data to a file or stream” on
page 27-34. For information about creating client dataset data from an XML
document, see Chapter 30, “Using XML in database applications.”

When you call LoadFromFile or LoadFromStream, all data in the file is read into the
Data property. Any edits that were in the change log when the data was saved are
read into the Delta property. However, the only indexes that are read from the file are
those that were created with the dataset.

Merging changes into data

When you edit the data in a client dataset, all edits to the data exist only in an in-
memory change log. This log can be maintained separately from the data itself,
although it is completely transparent to objects that use the client dataset. That is,
controls that navigate the client dataset or display its data see a view of the data that
includes the changes. If you do not want to back out of changes, however, you should
merge the change log into the data of the client dataset by calling the MergeChangeLog
method. MergeChangeLog overwrites records in Data with any changed field values in
the change log.

After MergeChangeLog executes, Data contains a mix of existing data and any changes
that were in the change log. This mix becomes the new Data baseline against which
further changes can be made. MergeChangeLog clears the change log of all records and
resets the ChangeCount property to 0.

Warning Do not call MergeChangeLog for client datasets that use a provider. In this case, call
ApplyUpdates to write changes to the database. For more information, see “Applying
updates” on page 27-20.

Note It is also possible to merge changes into the data of a separate client dataset if that
dataset originally provided the data in the Data property. To do this, you must use a
dataset provider. For an example of how to do this, see “Assigning data directly” on
page 27-14.

27-34 D e v e l o p e r ’ s G u i d e

U s i n g a c l i e n t d a t a s e t w i t h f i l e - b a s e d d a t a

If you do not want to use the extended undo capabilities of the change log, you can
set the client dataset’s LogChanges property to false. When LogChanges is false, edits
are automatically merged when you post records and there is no need to call
MergeChangeLog.

Saving data to a file or stream

Even when you have merged changes into the data of a client dataset, this data still
exists only in memory. While it persists if you close the client dataset and reopen it in
your application, it will disappear when your application shuts down. To make the
data permanent, it must be written to disk. Write changes to disk using the SaveToFile
method.

SaveToFile takes one parameter, a string that specifies the file into which to write data.
The file name can be a fully qualified path name, if appropriate. If the file already
exists, its current contents are completely overwritten.

Note SaveToFile does not preserve any indexes you added to the client dataset at runtime,
only indexes that were added when you created the client dataset.

If you always save the data to the same file, you can use the FileName property
instead. If FileName is set, the data is automatically saved to the named file when the
client dataset is closed.

You can also save data to a stream, using the SaveToStream method. SaveToStream
takes one parameter, a stream object that receives the data.

Note If you save a client dataset while there are still edits in the change log, these are not
merged with the data. When you reload the data, using the LoadFromFile or
LoadFromStream method, the change log will still contain the unmerged edits. This is
important for applications that support the briefcase model, where those changes
will eventually have to be applied to a provider component on the application server.

U s i n g p r o v i d e r c o m p o n e n t s 28-1

C h a p t e r

28
Chapter28Using provider components

Provider components (TDataSetProvider and TXMLTransformProvider) supply the
most common mechanism by which client datasets obtain their data. Providers

• Receive data requests from a client dataset (or XML broker), fetch the requested
data, package the data into a transportable data packet, and return the data to the
client dataset (or XML broker). This activity is called “providing.”

• Receive updated data from a client dataset (or XML broker), apply updates to the
database server, source dataset, or source XML document, and log any updates
that cannot be applied, returning unresolved updates to the client dataset for
further reconciliation. This activity is called “resolving.”

Most of the work of a provider component happens automatically. You need not
write any code on the provider to create data packets from the data in a dataset or
XML document or to apply updates. However, provider components include a
number of events and properties that allow your application more direct control over
what information is packaged for clients and how your application responds to client
requests.

When using TBDEClientDataSet, TSQLClientDataSet, or TIBClientDataSet, the
provider is internal to the client dataset, and the application has no direct access to it.
When using TClientDataSet or TXMLBroker, however, the provider is a separate
component that you can use to control what information is packaged for clients and
for responding to events that occur around the process of providing and resolving.
The client datasets that have internal providers surface some of the internal
provider’s properties and events as their own properties and events, but for the
greatest amount of control, you may want to use TClientDataSet with a separate
provider component.

When using a separate provider component, it can reside in the same application as
the client dataset (or XML broker), or it can reside on an application server as part of
a multi-tiered application.

This chapter describes how to use a provider component to control the interaction
with client datasets or XML brokers.

28-2 D e v e l o p e r ’ s G u i d e

D e t e r m i n i n g t h e s o u r c e o f d a t a

Determining the source of data
When you use a provider component, you must specify the source it uses to get the
data it assembles into data packets. Depending on your version of C++Builder, you
can specify the source as one of the following:

• To provide the data from a dataset, use TDataSetProvider.
• To provide the data from an XML document, use TXMLTransformProvider.

Using a dataset as the source of the data

If the provider is a dataset provider (TDataSetProvider), set the DataSet property of the
provider to indicate the source dataset. At design time, select from available datasets
in the DataSet property drop-down list in the Object Inspector.

TDataSetProvider interacts with the source dataset using the IProviderSupport
interface. This interface is introduced by TDataSet, so it is available for all datasets.
However, the IProviderSupport methods implemented in TDataSet are mostly stubs
that don’t do anything or that throw exceptions.

The dataset classes that ship with C++Builder (BDE-enabled datasets, ADO-enabled
datasets, dbExpress datasets, and InterBase Express datasets) override these methods
to implement the IProviderSupport interface in a more useful fashion. Client datasets
don’t add anything to the inherited IProviderSupport implementation, but can still be
used as a source dataset as long as the ResolveToDataSet property of the provider is
true.

Component writers that create their own custom descendants from TDataSet must
override all appropriate IProviderSupport methods if their datasets are to supply data
to a provider. If the provider only provides data packets on a read-only basis (that is,
if it does not apply updates), the IProviderSupport methods implemented in TDataSet
may be sufficient.

Using an XML document as the source of the data

If the provider is an XML provider, set the XMLDataFile property of the provider to
indicate the source document.

XML providers must transform the source document into data packets, so in addition
to indicating the source document, you must also specify how to transform that
document into data packets. This transformation is handled by the provider’s
TransformRead property. TransformRead represents a TXMLTransform object. You can
set its properties to specify what transformation to use, and use its events to provide
your own input to the transformation. For more information on using XML
providers, see “Using an XML document as the source for a provider” on page 30-8.

U s i n g p r o v i d e r c o m p o n e n t s 28-3

C o m m u n i c a t i n g w i t h t h e c l i e n t d a t a s e t

Communicating with the client dataset
All communication between a provider and a client dataset or XML broker takes
place through an IAppServer interface. If the provider is in the same application as the
client, this interface is implemented by a hidden object generated automatically for
you, or by a TLocalConnection component. If the provider is part of a multi-tiered
application, this is the interface for the application server or (in the case of a SOAP
server) an interface generated by the connection component.

Most applications do not use IAppServer directly, but invoke it indirectly through the
properties and methods of the client dataset or XML broker. However, when
necessary, you can make direct calls to the IAppServer interface by using the
AppServer property of a client dataset.

Table 28.1 lists the methods of the IAppServer interface, as well as the corresponding
methods and events on the provider component and the client dataset. These
IAppServer methods include a Provider parameter. In multi-tiered applications, this
parameter indicates the provider on the application server with which the client
dataset communicates. Most methods also include an OleVariant parameter called
OwnerData that allows a client dataset and a provider to pass custom information
back and forth. OwnerData is not used by default, but is passed to all event handlers
so that you can write code that allows your provider to adjust to application-defined
information before and after each call from a client dataset.

Table 28.1 AppServer interface members

IAppServer Provider component TClientDataSet

AS_ApplyUpdates method ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event

ApplyUpdates method,
BeforeApplyUpdates event,
AfterApplyUpdates event.

AS_DataRequest method DataRequest method,
OnDataRequest event

DataRequest method.

AS_Execute method Execute method,
BeforeExecute event,
AfterExecute event

Execute method,
BeforeExecute event,
AfterExecute event.

AS_GetParams method GetParams method,
BeforeGetParams event,
AfterGetParams event

FetchParams method,
BeforeGetParams event,
AfterGetParams event.

AS_GetProviderNames method Used to identify all available
providers.

Used to create a design-time list
for ProviderName property.

AS_GetRecords method GetRecords method,
BeforeGetRecords event,
AfterGetRecords event

GetNextPacket method,
Data property,
BeforeGetRecords event,
AfterGetRecords event

AS_RowRequest method RowRequest method,
BeforeRowRequest event,
AfterRowRequest event

FetchBlobs method,
FetchDetails method,
RefreshRecord method,
BeforeRowRequest event,
AfterRowRequest event

28-4 D e v e l o p e r ’ s G u i d e

C h o o s i n g h o w t o a p p l y u p d a t e s u s i n g a d a t a s e t p r o v i d e r

Choosing how to apply updates using a dataset provider
TXMLTransformProvider components always apply updates to the associated XML
document. When using TDataSetProvider, however, you can choose how updates are
applied. By default, when TDataSetProvider components apply updates and resolve
update errors, they communicate directly with the database server using
dynamically generated SQL statements. This approach has the advantage that your
server application does not need to merge updates twice (first to the dataset, and
then to the remote server).

However, you may not always want to take this approach. For example, you may
want to use some of the events on the dataset component. Alternately, the dataset
you use may not support the use of SQL statements (for example if you are providing
from a TClientDataSet component).

TDataSetProvider lets you decide whether to apply updates to the database server
using SQL or to the source dataset by setting the ResolveToDataSet property. When
this property is true, updates are applied to the dataset. When it is false, updates are
applied directly to the underlying database server.

Controlling what information is included in data packets
When working with a dataset provider, there are a number of ways to control what
information is included in data packets that are sent to and from the client. These
include

• Specifying what fields appear in data packets
• Setting options that influence the data packets
• Adding custom information to data packets

Note These techniques for controlling the content of data packets are only available for
dataset providers. When using TXMLTransformProvider, you can only control the
content of data packets by controlling the transformation file the provider uses.

Specifying what fields appear in data packets

When using a dataset provider, you can control what fields are included in data
packets by creating persistent fields on the dataset that the provider uses to build
data packets. The provider then includes only these fields. Fields whose values are
generated dynamically by the source dataset (such as calculated fields or lookup
fields) can be included, but appear to client datasets on the receiving end as static
read-only fields. For information about persistent fields, see “Persistent field
components” on page 23-3.

If the client dataset will be editing the data and applying updates, you must include
enough fields so that there are no duplicate records in the data packet. Otherwise,
when the updates are applied, it is impossible to determine which record to update.
If you do not want the client dataset to be able to see or use extra fields provided only

U s i n g p r o v i d e r c o m p o n e n t s 28-5

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

to ensure uniqueness, set the ProviderFlags property for those fields to include
pfHidden.

Note Including enough fields to avoid duplicate records is also a consideration when the
provider’s source dataset represents a query. You must specify the query so that it
includes enough fields to ensure all records are unique, even if your application does
not use all the fields.

Setting options that influence the data packets

The Options property of a dataset provider lets you specify when BLOBs or nested
detail tables are sent, whether field display properties are included, what type of
updates are allowed, and so on. The following table lists the possible values that can
be included in Options.

Table 28.2 Provider options

Value Meaning

poAutoRefresh The provider refreshes the client dataset with current record
values whenever it applies updates.

poReadOnly The client dataset can’t apply updates to the provider.

poDisableEdits Client datasets can’t modify existing data values. If the user tries
to edit a field, the client dataset raises exception. (This does not
affect the client dataset’s ability to insert or delete records).

poDisableInserts Client datasets can’t insert new records. If the user tries to insert
a new record, the client dataset raises an exception. (This does
not affect the client dataset’s ability to delete records or modify
existing data)

poDisableDeletes Client datasets can’t delete records. If the user tries to delete a
record, the client dataset raises an exception. (This does not
affect the client dataset’s ability to insert or modify records)

poFetchBlobsOnDemand BLOB field values are not included in data packets. Instead,
client datasets must request these values on an as-needed basis.
If the client dataset’s FetchOnDemand property is true, it requests
these values automatically. Otherwise, the application must call
the client dataset’s FetchBlobs method to retrieve BLOB data.

poFetchDetailsOnDemand When the provider’s dataset represents the master of a master/
detail relationship, nested detail values are not included in data
packets. Instead, client datasets request these on an as-needed
basis. If the client dataset’s FetchOnDemand property is true, it
requests these values automatically. Otherwise, the application
must call the client dataset’s FetchDetails method to retrieve
nested details.

poIncFieldProps The data packet includes the following field properties (where
applicable): Alignment, DisplayLabel, DisplayWidth, Visible,
DisplayFormat, EditFormat, MaxValue, MinValue, Currency,
EditMask, DisplayValues.

poCascadeDeletes When the provider’s dataset represents the master of a master/
detail relationship, the server automatically deletes detail
records when master records are deleted. To use this option, the
database server must be set up to perform cascaded deletes as
part of its referential integrity.

28-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g w h a t i n f o r m a t i o n i s i n c l u d e d i n d a t a p a c k e t s

Adding custom information to data packets

Dataset providers can add application-defined information to data packets using the
OnGetDataSetProperties event. This information is encoded as an OleVariant, and
stored under a name you specify. Client datasets can then retrieve the information
using their GetOptionalParam method. You can also specify that the information be
included in delta packets that the client dataset sends when updating records. In this
case, the client dataset may never be aware of the information, but the provider can
send a round-trip message to itself.

When adding custom information in the OnGetDataSetProperties event, each
individual attribute (sometimes called an “optional parameter”) is specified using a
Variant array that contains three elements: the name (a string), the value (a Variant),
and a boolean flag indicating whether the information should be included in delta
packets when the client applies updates. Add multiple attributes by creating a
Variant array of Variant arrays. For example, the following OnGetDataSetProperties
event handler sends two values, the time the data was provided and the total number
of records in the source dataset. Only the time the data was provided is returned
when client datasets apply updates:

void __fastcall TMyDataModule1::Provider1GetDataSetProperties(TObject *Sender, TDataSet
*DataSet, out OleVariant Properties)
{

int ArrayBounds[2];
ArrayBounds[0] = 0;
ArrayBounds[1] = 1;

poCascadeUpdates When the provider’s dataset represents the master of a master/
detail relationship, key values on detail tables are updated
automatically when the corresponding values are changed in
master records. To use this option, the database server must be
set up to perform cascaded updates as part of its referential
integrity.

poAllowMultiRecordUpdates A single update can cause more than one record of the
underlying database table to change. This can be the result of
triggers, referential integrity, SQL statements on the source
dataset, and so on. Note that if an error occurs, the event
handlers provide access to the record that was updated, not the
other records that change in consequence.

poNoReset Client datasets can’t specify that the provider should reposition
the cursor on the first record before providing data.

poPropogateChanges Changes made by the server to updated records as part of the
update process are sent back to the client and merged into the
client dataset.

poAllowCommandText The client can override the associated dataset’s SQL text or the
name of the table or stored procedure it represents.

poRetainServerOrder The client dataset should not re-sort the records in the dataset to
enforce a default order.

Table 28.2 Provider options (continued)

Value Meaning

U s i n g p r o v i d e r c o m p o n e n t s 28-7

R e s p o n d i n g t o c l i e n t d a t a r e q u e s t s

Properties = VarArrayCreate(ArrayBounds, 1, varVariant);
Variant values[3];
values[0] = Variant("TimeProvided");
values[1] = Variant(Now());
values[2] = Variant(true);
Properties[0] = VarArrayOf(values,2);
values[0] = Variant("TableSize");
values[1] = Variant(DataSet->RecordCount);
values[2] = Variant(false);
Properties[1] = VarArrayOf(values,2);

}

When the client dataset applies updates, the time the original records were provided
can be read in the provider’s OnUpdateData event:

void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TCustomClientDataSet
*DataSet)
{

Variant WhenProvided = DataSet->GetOptionalParam("TimeProvided");
...

}

Responding to client data requests
Usually client requests for data are handled automatically. A client dataset or XML
broker requests a data packet by calling GetRecords (indirectly, through the
IAppServer interface). The provider responds automatically by fetching data from the
associated dataset or XML document, creating a data packet, and sending the packet
to the client.

The provider has the option of editing data after it has been assembled into a data
packet but before the packet is sent to the client. For example, you might want to
remove records from the packet based on some criterion (such as the user’s level of
access), or, in a multi-tiered application, you might want to encrypt sensitive data
before it is sent on to the client.

To edit the data packet before sending it on to the client, write an OnGetData event
handler. OnGetData event handlers provide the data packet as a parameter in the
form of a client dataset. Using the methods of this client dataset, you can edit data
before it is sent to the client.

As with all method calls made through the IAppServer interface, the provider can
communicate persistent state information with a client dataset before and after the
call to GetRecords. This communication takes place using the BeforeGetRecords and
AfterGetRecords event handlers. For a discussion of persistent state information in
application servers, see “Supporting state information in remote data modules” on
page 29-19.

28-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Responding to client update requests
A provider applies updates to database records based on a Delta data packet received
from a client dataset or XML broker. The client requests updates by calling the
ApplyUpdates method (indirectly, through the IAppServer interface).

As with all method calls made through the IAppServer interface, the provider can
communicate persistent state information with a client dataset before and after the
call to ApplyUpdates. This communication takes place using the BeforeApplyUpdates
and AfterApplyUpdates event handlers. For a discussion of persistent state
information in application servers, see “Supporting state information in remote data
modules” on page 29-19.

If you are using a dataset provider, a number of additional events allow you more
control:

When a dataset provider receives an update request, it generates an OnUpdateData
event, where you can edit the Delta packet before it is written to the dataset or
influence how updates are applied. After the OnUpdateData event, the provider
writes the changes to the database or source dataset.

The provider performs the update on a record-by-record basis. Before the dataset
provider applies each record, it generates a BeforeUpdateRecord event, which you can
use to screen updates before they are applied. If an error occurs when updating a
record, the provider receives an OnUpdateError event where it can resolve the error.
Usually errors occur because the change violates a server constraint or a database
record was changed by a different application subsequent to its retrieval by the
provider, but prior to the client dataset’s request to apply updates.

Update errors can be processed by either the dataset provider or the client dataset.
When the provider is part of a multi-tiered application, it should handle all update
errors that do not require user interaction to resolve. When the provider can’t resolve
an error condition, it temporarily stores a copy of the offending record. When record
processing is complete, the provider returns a count of the errors it encountered to
the client dataset, and copies the unresolved records into a results data packet that it
returns to the client dataset for further reconciliation.

The event handlers for all provider events are passed the set of updates as a client
dataset. If your event handler is only dealing with certain types of updates, you can
filter the dataset based on the update status of records. By filtering the records, your
event handler does not need to sort through records it won’t be using. To filter the
client dataset on the update status of its records, set its StatusFilter property.

Note Applications must supply extra support when the updates are directed at a dataset
that does not represent a single table. For details on how to do this, see “Applying
updates to datasets that do not represent a single table” on page 28-11.

U s i n g p r o v i d e r c o m p o n e n t s 28-9

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Editing delta packets before updating the database

Before a dataset provider applies updates to the database, it generates an
OnUpdateData event. The OnUpdateData event handler receives a copy of the Delta
packet as a parameter. This is a client dataset.

In the OnUpdateData event handler, you can use any of the properties and methods of
the client dataset to edit the Delta packet before it is written to the dataset. One
particularly useful property is the UpdateStatus property. UpdateStatus indicates what
type of modification the current record in the delta packet represents. It can have any
of the values in Table 28.3.

For example, the following OnUpdateData event handler inserts the current date into
every new record that is inserted into the database:

void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TCustomClientDataSet
*DataSet)
{

DataSet->First();
while (!DataSet->Eof)
{

if (DataSet->UpdateStatus == usInserted)
{

DataSet->Edit();
DataSet->FieldByName("DateCreated")->AsDateTime = Date();
DataSet->Post();

}
DataSet->Next();

}
}

Influencing how updates are applied

The OnUpdateData event also gives your dataset provider a chance to indicate how
records in the delta packet are applied to the database.

By default, changes in the delta packet are written to the database using
automatically generated SQL UPDATE, INSERT, or DELETE statements such as

UPDATE EMPLOYEES
 set EMPNO = 748, NAME = 'Smith', TITLE = 'Programmer 1', DEPT = 52
WHERE
 EMPNO = 748 and NAME = 'Smith' and TITLE = 'Programmer 1' and DEPT = 47

Table 28.3 UpdateStatus values

Value Description

usUnmodified Record contents have not been changed

usModified Record contents have been changed

usInserted Record has been inserted

usDeleted Record has been deleted

28-10 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Unless you specify otherwise, all fields in the delta packet records are included in the
UPDATE clause and in the WHERE clause. However, you may want to exclude some
of these fields. One way to do this is to set the UpdateMode property of the provider.
UpdateMode can be assigned any of the following values:

You might, however, want even more control. For example, with the previous
statement, you might want to prevent the EMPNO field from being modified by
leaving it out of the UPDATE clause and leave the TITLE and DEPT fields out of the
WHERE clause to avoid update conflicts when other applications have modified the
data. To specify the clauses where a specific field appears, use the ProviderFlags
property. ProviderFlags is a set that can include any of the values in Table 28.5

Thus, the following OnUpdateData event handler allows the TITLE field to be
updated and uses the EMPNO and DEPT fields to locate the desired record. If an
error occurs, and a second attempt is made to locate the record based only on the key,
the generated SQL looks for the EMPNO field only:

void __fastcall TMyDataModule1::Provider1UpdateData(TObject *Sender, TCustomClientDataSet
*DataSet)
{

DataSet->FieldByName("EMPNO")->ProviderFlags.Clear();
DataSet->FieldByName("EMPNO")->ProviderFlags << pfInWHere << pfInKey;
DataSet->FieldByName("TITLE")->ProviderFlags.Clear();
DataSet->FieldByName("TITLE")->ProviderFlags << pfInUpdate;
DataSet->FieldByName("DEPT")->ProviderFlags.Clear();
DataSet->FieldByName("DEPT")->ProviderFlags << pfInWhere;

}

Note You can use the UpdateFlags property to influence how updates are applied even if
you are updating to a dataset and not using dynamically generated SQL. These flags
still determine which fields are used to locate records and which fields get updated.

Table 28.4 UpdateMode values

Value Meaning

upWhereAll All fields are used to locate fields (the WHERE clause).

upWhereChanged Only key fields and fields that are changed are used to locate records.

upWhereKeyOnly Only key fields are used to locate records.

Table 28.5 ProviderFlags values

Value Description

pfInWhere The field appears in the WHERE clause of generated INSERT, DELETE, and
UPDATE statements when UpdateMode is upWhereAll or upWhereChanged.

pfInUpdate The field appears in the UPDATE clause of generated UPDATE statements.

pfInKey The field is used in the WHERE clause of generated statements when UpdateMode
is upWhereKeyOnly.

pfHidden The field is included in records to ensure uniqueness, but can’t be seen or used on
the client side.

U s i n g p r o v i d e r c o m p o n e n t s 28-11

R e s p o n d i n g t o c l i e n t u p d a t e r e q u e s t s

Screening individual updates

Immediately before each update is applied, a dataset provider receives a
BeforeUpdateRecord event. You can use this event to edit records before they are
applied, similar to the way you can use the OnUpdateData event to edit entire delta
packets. For example, the provider does not compare BLOB fields (such as memos)
when checking for update conflicts. If you want to check for update errors involving
BLOB fields, you can use the BeforeUpdateRecord event.

In addition, you can use this event to apply updates yourself or to screen and reject
updates. The BeforeUpdateRecord event handler lets you signal that an update has
been handled already and should not be applied. The provider then skips that
record, but does not count it as an update error. For example, this event provides a
mechanism for applying updates to a stored procedure (which can’t be updated
automatically), allowing the provider to skip any automatic processing once the
record is updated from within the event handler.

Resolving update errors on the provider

When an error condition arises as the dataset provider tries to post a record in the
delta packet, an OnUpdateError event occurs. If the provider can’t resolve an update
error, it temporarily stores a copy of the offending record. When record processing is
complete, the provider returns a count of the errors it encountered, and copies the
unresolved records into a results data packet that it passes back to the client for
further reconciliation.

In multi-tiered applications, this mechanism lets you handle any update errors you
can resolve mechanically on the application server, while still allowing user
interaction on the client application to correct error conditions.

The OnUpdateError handler gets a copy of the record that could not be changed, an
error code from the database, and an indication of whether the resolver was trying to
insert, delete, or update the record. The problem record is passed back in a client
dataset. You should never use the data navigation methods on this dataset. However,
for each field in the dataset, you can use the NewValue, OldValue, and CurValue
properties to determine the cause of the problem and make any modifications to
resolve the update error. If the OnUpdateError event handler can correct the problem,
it sets the Response parameter so that the corrected record is applied.

Applying updates to datasets that do not represent a single table

When a dataset provider generates SQL statements that apply updates directly to a
database server, it needs the name of the database table that contains the records.
This can be handled automatically for many datasets such as table type datasets or
“live” TQuery components. Automatic updates are a problem however, if the
provider must apply updates to the data underlying a stored procedure with a result
set or a multi-table query. There is no easy way to obtain the name of the table to
which updates should be applied.

28-12 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o c l i e n t - g e n e r a t e d e v e n t s

If the query or stored procedure is a BDE-enabled dataset (TQuery or TStoredProc)
and it has an associated update object, the provider uses the update object. However,
if there is no update object, you can supply the table name programmatically in an
OnGetTableName event handler. Once an event handler supplies the table name, the
provider can generate appropriate SQL statements to apply updates.

Supplying a table name only works if the target of the updates is a single database
table (that is, only the records in one table need to be updated). If the update requires
making changes to multiple underlying database tables, you must explicitly apply
the updates in code using the BeforeUpdateRecord event of the provider. Once this
event handler has applied an update, you can set the event handler’s Applied
parameter to true so that the provider does not generate an error.

Note If the provider is associated with a BDE-enabled dataset, you can use an update
object in the BeforeUpdateRecord event handler to apply updates using customized
SQL statements. See “Using update objects to update a dataset” on page 24-39 for
details.

Responding to client-generated events
Provider components implement a general-purpose event that lets you create your
own calls from client datasets directly to the provider. This is the OnDataRequest
event.

OnDataRequest is not part of the normal functioning of the provider. It is simply a
hook to allow your client datasets to communicate directly with providers. The event
handler takes an OleVariant as an input parameter and returns an OleVariant. By
using OleVariants, the interface is sufficiently general to accommodate almost any
information you want to pass to or from the provider.

To generate an OnDataRequest event, the client application calls the DataRequest
method of the client dataset.

Handling server constraints
Most relational database management systems implement constraints on their tables
to enforce data integrity. A constraint is a rule that governs data values in tables and
columns, or that governs data relationships across columns in different tables. For
example, most SQL-92 compliant relational databases support the following
constraints:

• NOT NULL, to guarantee that a value supplied to a column has a value.

• NOT NULL UNIQUE, to guarantee that column value has a value and does not
duplicate any other value already in that column for another record.

• CHECK, to guarantee that a value supplied to a column falls within a certain
range, or is one of a limited number of possible values.

• CONSTRAINT, a table-wide check constraint that applies to multiple columns.

U s i n g p r o v i d e r c o m p o n e n t s 28-13

H a n d l i n g s e r v e r c o n s t r a i n t s

• PRIMARY KEY, to designate one or more columns as the table’s primary key for
indexing purposes.

• FOREIGN KEY, to designate one or more columns in a table that reference another
table.

Note This list is not exclusive. Your database server may support some or all of these
constraints in part or in whole, and may support additional constraints. For more
information about supported constraints, see your server documentation.

Database server constraints obviously duplicate many kinds of data checks that
traditional desktop database applications manage. You can take advantage of server
constraints in multi-tiered database applications without having to duplicate the
constraints in application server or client application code.

If the provider is working with a BDE-enabled dataset, the Constraints property lets
you replicate and apply server constraints to data passed to and received from client
datasets. When Constraints is true (the default), server constraints stored in the source
dataset are included in data packets and affect client attempts to update data.

Important Before the provider can pass constraint information on to client datasets, it must
retrieve the constraints from the database server. To import database constraints
from the server, use SQL Explorer to import the database server’s constraints and
default expressions into the Data Dictionary. Constraints and default expressions in
the Data Dictionary are automatically made available to BDE-enabled datasets.

There may be times when you do not want to apply server constraints to data sent to
a client dataset. For example, a client dataset that receives data in packets and
permits local updating of records prior to fetching more records may need to disable
some server constraints that might be triggered because of the temporarily
incomplete set of data. To prevent constraint replication from the provider to a client
dataset, set Constraints to false. Note that client datasets can disable and enable
constraints using the DisableConstraints and EnableConstraints methods. For more
information about enabling and disabling constraints from the client dataset, see
“Handling constraints from the server” on page 27-29.

28-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-1

C h a p t e r

29
Chapter29Creating multi-tiered applications

This chapter describes how to create a multi-tiered, client/server database
application. A multi-tiered client/server application is partitioned into logical units,
called tiers, which run in conjunction on separate machines. Multi-tiered applications
share data and communicate with one another over a local-area network or even over
the Internet. They provide many benefits, such as centralized business logic and thin
client applications.

In its simplest form, sometimes called the “three-tiered model,” a multi-tiered
application is partitioned into thirds:

• Client application: provides a user interface on the user’s machine.

• Application server: resides in a central networking location accessible to all clients
and provides common data services.

• Remote database server: provides the relational database management system
(RDBMS).

In this three-tiered model, the application server manages the flow of data between
clients and the remote database server, so it is sometimes called a “data broker.” You
usually only create the application server and its clients, although, if you are really
ambitious, you could create your own database back end as well.

In more complex multi-tiered applications, additional services reside between a
client and a remote database server. For example, there might be a security services
broker to handle secure Internet transactions, or bridge services to handle sharing of
data with databases on other platforms.

VCL and CLX support for developing multi-tiered applications is an extension of the
way client datasets communicate with a provider component using transportable
data packets. This chapter focuses on creating a three-tiered database application.
Once you understand how to create and manage a three-tiered application, you can
create and add additional service layers based on your needs.

29-2 D e v e l o p e r ’ s G u i d e

A d v a n t a g e s o f t h e m u l t i - t i e r e d d a t a b a s e m o d e l

Advantages of the multi-tiered database model
The multi-tiered database model breaks a database application into logical pieces.
The client application can focus on data display and user interactions. Ideally, it
knows nothing about how the data is stored or maintained. The application server
(middle tier) coordinates and processes requests and updates from multiple clients. It
handles all the details of defining datasets and interacting with the database server.

The advantages of this multi-tiered model include the following:

• Encapsulation of business logic in a shared middle tier. Different client
applications all access the same middle tier. This allows you to avoid the
redundancy (and maintenance cost) of duplicating your business rules for each
separate client application.

• Thin client applications. Your client applications can be written to make a small
footprint by delegating more of the processing to middle tiers. Not only are client
applications smaller, but they are easier to deploy because they don’t need to
worry about installing, configuring, and maintaining the database connectivity
software (such as the Borland Database Engine and the database server’s client-
side software). Thin client applications can be distributed over the Internet for
additional flexibility.

• Distributed data processing. Distributing the work of an application over several
machines can improve performance because of load balancing, and allow
redundant systems to take over when a server goes down.

• Increased opportunity for security. You can isolate sensitive functionality into
tiers that have different access restrictions. This provides flexible and configurable
levels of security. Middle tiers can limit the entry points to sensitive material,
allowing you to control access more easily. If you are using HTTP or COM+, you
can take advantage of the security models they support.

Understanding provider-based multi-tiered applications
Multi-tiered applications use the components on the DataSnap page, the Data Access
page, and possibly the WebServices page of the component palette, plus a remote
data module that is created by a wizard on the Multitier or WebServices page of the
New Items dialog. They are based on the ability of provider components to package
data into transportable data packets and handle updates received as transportable
delta packets.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-3

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

The components needed for a multi-tiered application are described in Table 29.1:

The provider and client dataset components require midas.dll or midaslib.dcu,
which manages datasets stored as data packets. (Note that, because the provider is
used on the application server and the client dataset is used on the client application,
if you are using midas.dll, you must deploy it on both application server and client
application.)

If you are using BDE-enabled datasets, the application server may also require SQL
Explorer to help in database administration and to import server constraints into the
Data Dictionary so that they can be checked at any level of the multi-tiered
application.

Note You must purchase server licenses for deploying your application server.

An overview of the architecture into which these components fit is described in
“Using a multi-tiered architecture” on page 18-12.

Overview of a three-tiered application

The following numbered steps illustrate a normal sequence of events for a provider-
based three-tiered application:

1 A user starts the client application. The client connects to the application server
(which can be specified at design time or runtime). If the application server is not
already running, it starts. The client receives an IAppServer interface for
communicating with the application server.

2 The client requests data from the application server. A client may request all data
at once, or may request chunks of data throughout the session (fetch on demand).

3 The application server retrieves the data (first establishing a database connection,
if necessary), packages it for the client, and returns a data packet to the client.
Additional information, (for example, field display characteristics) can be
included in the metadata of the data packet. This process of packaging data into
data packets is called “providing.”

Table 29.1 Components used in multi-tiered applications

Component Description

Remote data
modules

Specialized data modules that work with a COM Automation server or
Web Services application to give client applications access to any providers
they contain. Used on the application server.

Provider
component

A data broker that provides data by creating data packets and resolves
client updates. Used on the application server.

Client dataset
component

A specialized dataset that uses midas.dll or midaslib.dcu to manage data
stored in data packets. The client dataset is used in the client application. It
caches updates locally, and applies them in delta packets to the application
server.

Connection
components

A family of components that locate the server, form connections, and make
the IAppServer interface available to client datasets. Each connection
component is specialized to use a particular communications protocol.

29-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

4 The client decodes the data packet and displays the data to the user.

5 As the user interacts with the client application, the data is updated (records are
added, deleted, or modified). These modifications are stored in a change log by the
client.

6 Eventually the client applies its updates to the application server, usually in
response to a user action. To apply updates, the client packages its change log and
sends it as a data packet to the server.

7 The application server decodes the package and posts updates (in the context of a
transaction if appropriate). If a record can’t be posted (for example, because
another application changed the record after the client requested it and before the
client applied its updates), the application server either attempts to reconcile the
client’s changes with the current data, or saves the records that could not be
posted. This process of posting records and caching problem records is called
“resolving.”

8 When the application server finishes the resolving process, it returns any
unposted records to the client for further resolution.

9 The client reconciles unresolved records. There are many ways a client can
reconcile unresolved records. Typically the client attempts to correct the situation
that prevented records from being posted or discards the changes. If the error
situation can be rectified, the client applies updates again.

10 The client refreshes its data from the server.

The structure of the client application

To the end user, the client application of a multi-tiered application looks and behaves
no differently than a two-tiered application that uses cached updates. User
interaction takes place through standard data-aware controls that display data from a
TClientDataSet component. For detailed information about using the properties,
events, and methods of client datasets, see Chapter 27, “Using client datasets.”

TClientDataSet fetches data from and applies updates to a provider component, just
as in two-tiered applications that use a client dataset with an external provider. For
details about providers, see Chapter 28, “Using provider components.” For details
about client dataset features that facilitate its communication with a provider, see
“Using a client dataset with a provider” on page 27-24

The client dataset communicates with the provider through the IAppServer interface.
It gets this interface from a connection component. The connection component
establishes the connection to the application server. Different connection components

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-5

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

are available for using different communications protocols. These connection
components are summarized in the following table:

Note The DataSnap page of the component palette also includes a connection component
that does not connect to an application server at all, but instead supplies an
IAppServer interface for client datasets to use when communicating with providers in
the same application. This component, TLocalConnection, is not required, but makes it
easier to later scale up to a multi-tiered application.

For more information about using connection components, see “Connecting to the
application server” on page 29-22.

The structure of the application server

When you set up and run an application server, it does not establish any connection
with client applications. Rather, client applications initiate and maintain the
connection. The client application uses a connection component to connect to the
application server, and uses the interface of the application server to communicate
with a selected provider. All of this happens automatically, without your having to
write code to manage incoming requests or supply interfaces.

The basis of an application server is a remote data module, which is a specialized
data module that supports the IAppServer interface (for application servers that also
function as a Web Service, the remote data module supports the IAppServerSOAP
interface as well, and uses it in preference to IAppServer.) Client applications use the
remote data module’s interface to communicate with providers on the application
server. When the remote data module uses IAppServerSOAP, the connection
component adapts this to an IAppServer interface that client datasets can use.

 There are two types of remote data modules:

• COM-based remote data modules are data modules that use an associated object,
called the implementation object, that descends from
REMOTEDATAMODULE_IMPL(). REMOTEDATAMODULE_IMPL is a macro
defined in Atlvcl.h that lists the ancestors for the implementation object. These
include the ATL classes CComObjectRootEx and CComCoClass, as well as the
IAppServer interface. If you are creating an application server that can take
advantage of the distributed application services provided by MTS or COM+,
REMOTEDATAMODULE_IMPL also includes the IObjectControl interface, which
is required of all transactional objects. The implementation class, which is
generated for you by a wizard, has access to an IObjectContext interface, which is

Table 29.2 Connection components

Component Protocol

TDCOMConnection DCOM

TSocketConnection Windows sockets (TCP/IP)

TWebConnection HTTP

TSOAPConnection SOAP (HTTP and XML)

29-6 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

provided by the system on its behalf and which it uses to manage transactions,
free resources, and take advantage of security support.

• SOAP data modules are data modules that implement the IAppServerSOAP
interface as an invokable interface. These data modules are added to a Web
Service application and allow clients to access the data as a Web Service. For
information about Web Service applications, see Chapter 36, “Using Web
Services.”

Note If the application server is to be deployed under MTS or COM+, the remote data
module includes events for when the application server is activated or deactivated.
This allows it to acquire database connections when activated and release them when
deactivated.

The contents of the remote data module
As with any data module, you can include any nonvisual component in the remote
data module. There are certain components, however, that you must include:

• If the remote data module is exposing information from a database server, it must
include a dataset component to represent the records from that database server.
Other components, such as a database connection component of some type, may
be required to allow the dataset to interact with a database server. For information
about datasets, see Chapter 22, “Understanding datasets.” For information about
database connection components, see Chapter 21, “Connecting to databases.”

For every dataset that the remote data module exposes to clients, it must include a
dataset provider. A dataset provider packages data into data packets that are sent
to client datasets and applies updates received from client datasets back to a
source dataset or a database server. For more information about dataset providers,
see Chapter 28, “Using provider components.”

• For every XML document that the remote data module exposes to clients, it must
include an XML provider. An XML provider acts like a dataset provider, except
that it fetches data from and applies updates to an XML document rather than a
database server. For more information about XML providers, see “Using an XML
document as the source for a provider” on page 30-8.

Note Do not confuse database connection components, which connect datasets to a
database server, with the connection components used by client applications in a
multi-tiered application. The connection components in multi-tiered applications can
be found on the DataSnap page or WebServices page of the Component palette.

Using transactional data modules
You can write an application server that takes advantage of special services for
distributed applications that are supplied by MTS (before Windows 2000) or COM+
(under Windows 2000 and later). To do so, you create a transactional data module
instead of an ordinary remote data module.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-7

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

When you use a transactional data module, your application can take advantage of
the following special services:

• Security. MTS and COM+ provide role-based security for your application server.
Clients are assigned roles, which determine how they can access the application
server’s interface. You can use the IObjectContext interface which is accessed
through your implementation class, to access these security services. For more
information about MTS and COM+ security, see “Role-based security” on
page 44-16.

• Database handle pooling. Transactional data modules automatically pool
database connections that are made via ADO or (if you are using MTS and turn on
MTS POOLING) the BDE. When one client is finished with a database connection,
another client can reuse it. This cuts down on network traffic, because your middle
tier does not need to log off of the remote database server and then log on again.
When pooling database handles, your database connection component should set
its KeepConnection property to false, so that your application maximizes the
sharing of connections. For more information about pooling database handles, see
“Database resource dispensers” on page 44-6.

• Transactions. When using a transactional data module, you can provide enhanced
transaction support beyond that available with a single database connection.
Transactional data modules can participate in transactions that span multiple
databases, or include functions that do not involve databases at all. For more
information about the transaction support provided by transactional objects such
as transactional data modules, see “Managing transactions in multi-tiered
applications” on page 29-17.

• Just-in-time activation and as-soon-as-possible deactivation. You can write your
server so that instances are activated and deactivated on an as-needed basis. When
using just-in-time activation and as-soon-as-possible deactivation, your
application server is instantiated only when it is needed to handle client requests.
This prevents it from tying up resources such as database handles when they are
not in use.

Using just-in-time activation and as-soon-as-possible deactivation provides a
middle ground between routing all clients through a single remote data module
instance, and creating a separate instance for every client connection. With a single
remote data module instance, the application server must handle all database calls
through a single database connection. This acts as a bottleneck, and can impact
performance when there are many clients. With multiple instances of the remote
data module, each instance can maintain a separate database connection, thereby
avoiding the need to serialize database access. However, this monopolizes
resources because other clients can’t use the database connection while it is
associated with another client’s remote data module.

To take advantage of transactions, just-in-time activation, and as-soon-as-possible
deactivation, remote data module instances must be stateless. This means you must
provide additional support if your client relies on state information. For example, the
client must pass information about the current record when performing incremental
fetches. For more information about state information and remote data modules in

29-8 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

multi-tiered applications, see “Supporting state information in remote data modules”
on page 29-19.

By default, all automatically generated calls to a transactional data module are
transactional (that is, they assume that when the call exits, the data module can be
deactivated and any current transactions committed or rolled back). You can write a
transactional data module that depends on persistent state information by setting the
AutoComplete property to false, but it will not support transactions, just-in-time
activation, or as-soon-as-possible deactivation unless you use a custom interface.

Warning Application servers containing transactional data modules should not open database
connections until the data module is activated. While developing your application,
be sure that all datasets are not active and the database is not connected before
running your application. In the application itself, add code to open database
connections when the data module is activated and close them when it is deactivated.

Pooling remote data modules
Object pooling allows you to create a cache of application servers that are shared by
their clients, thereby conserving resources. How this works depends on the type of
remote data module and on the connection protocol.

If you are creating a transactional data module that will be installed to COM+, you
can use the COM+ Component Manager to install the application server as a pooled
object. See “Object pooling” on page 44-9 for details.

Even if you are not using a transactional data module, you can take advantage of
object pooling if the connection is formed using TWebConnection. Under this second
type of object pooling, you limit the number of instances of your application server
that are created. This limits the number of database connections that you must hold,
as well as any other resources used by the application server.

When the Web Server application (which passes calls to your application server)
receives client requests, it passes them on to the first available application server in
the pool. If there is no available application server, it creates a new one (up to a
maximum number that you specify). This provides a middle ground between routing
all clients through a single application server instance (which can act as a bottleneck),
and creating a separate instance for every client connection (which can consume
many resources).

If an application server instance in the pool does not receive any client requests for a
while, it is automatically freed. This prevents the pool from monopolizing resources
unless they are used.

To set up object pooling when using a Web connection (HTTP), do the following:

1 Locate the UpdateRegistry method of the implementation class. This method
appears in the header file of your implementation unit:

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)
{

TRemoteDataModuleRegistrar regObj(GetObjectCLSID(), GetProgID(), GetDescription());
return regObj.UpdateRegistry(bRegister);

}

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-9

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

2 Set the RegisterPooled flag of the regObj variable, which is an instance of
TRemoteDataModuleRegistrar, to true. You will also want to set other properties of
regObj to indicate how the cache of remote data modules should be managed. For
example, the following code allows a maximum of 10 remote data module
instances and frees them from the cache if they are idle for more than 15 minutes:

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)
{

TRemoteDataModuleRegistrar regObj(GetObjectCLSID(), GetProgID(), GetDescription());
regObj.RegisterPooled = true;
regObj.Timeout = 15;
regObj.Max = 10;
return regObj.UpdateRegistry(bRegister);

}

When using either method of object pooling, your application server must be
stateless. This is because a single instance potentially handles requests from several
clients. If it relied on persistent state information, clients could interfere with each
other. See “Supporting state information in remote data modules” on page 29-19 for
more information on how to ensure that your remote data module is stateless.

Choosing a connection protocol

Each communications protocol you can use to connect your client applications to the
application server provides its own unique benefits. Before choosing a protocol,
consider how many clients you expect, how you are deploying your application, and
future development plans.

Using DCOM connections
DCOM provides the most direct approach to communication, requiring no
additional runtime applications on the server. However, because DCOM is not
included with Windows 95, some older client machines may not have DCOM
installed.

DCOM provides the only approach that lets you use security services when writing a
transactional data module. These security services are based on assigning roles to the
callers of transactional objects. When using DCOM, DCOM identifies the caller to the
system that calls your application server (MTS or COM+). Therefore, it is possible to
accurately determine the role of the caller. When using other protocols, however,
there is a runtime executable, separate from the application server, that receives
client calls. This runtime executable makes COM calls into the application server on
behalf of the client. Because of this, it is impossible to assign roles to separate clients:
The runtime executable is, effectively, the only client. For more information about
security and transactional objects, see “Role-based security” on page 44-16.

Using Socket connections
TCP/IP Sockets let you create lightweight clients. For example, if you are writing a
Web-based client application, you can’t be sure that client systems support DCOM.
Sockets provide a lowest common denominator that you know will be available for

29-10 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g p r o v i d e r - b a s e d m u l t i - t i e r e d a p p l i c a t i o n s

connecting to the application server. For more information about sockets, see
Chapter 37, “Working with sockets.”

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), sockets use a separate application on the server (ScktSrvr.exe), which
accepts client requests and instantiates the application server using COM. The
connection component on the client and ScktSrvr.exe on the server are responsible
for marshaling IAppServer calls.

Note ScktSrvr.exe can run as an NT service application. Register it with the Service
manager by starting it using the -install command line option. You can unregister it
using the -uninstall command line option.

Before you can use a socket connection, the application server must register its
availability to clients using a socket connection. By default, all new remote data
modules automatically register themselves via the TRemoteDataModuleRegistrar
object in the UpdateRegistry method of the implementation object. You can prevent
this registration by setting that object’s EnableSocket property to false.

Note Because older servers did not add this registration, you can disable the check for
whether an application server is registered by unchecking the Connections|
Registered Objects Only menu item on ScktSrvr.exe.

When using sockets, there is no protection on the server against client systems failing
before they release a reference to interfaces on the application server. While this
results in less message traffic than when using DCOM (which sends periodic keep-
alive messages), this can result in an application server that can’t release its resources
because it is unaware that the client has gone away.

Using Web connections
HTTP lets you create clients that can communicate with an application server that is
protected by a firewall. HTTP messages provide controlled access to internal
applications so that you can distribute your client applications safely and widely.
Like socket connections, HTTP messages provide a lowest common denominator
that you know will be available for connecting to the application server. For more
information about HTTP messages, see Chapter 32, “Creating Internet server
applications.”

Instead of instantiating the remote data module directly from the client (as happens
with DCOM), HTTP-based connections use a Web server application on the server
(httpsrvr.dll) that accepts client requests and instantiates the application server using
COM. Because of this, they are also called Web connections. The connection
component on the client and httpsrvr.dll on the server are responsible for marshaling
IAppServer calls.

Web connections can take advantage of the SSL security provided by wininet.dll (a
library of Internet utilities that runs on the client system). Once you have configured
the Web server on the server system to require authentication, you can specify the
user name and password using the properties of the Web connection component.

As an additional security measure, the application server must register its availability
to clients using a Web connection. By default, all new remote data modules
automatically register themselves via the TRemoteDataModuleRegistrar object in the

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-11

B u i l d i n g a m u l t i - t i e r e d a p p l i c a t i o n

UpdateRegistry method of the implementation object. You can prevent this
registration by setting that object’s EnableWeb property to false.

Web connections can take advantage of object pooling. This allows your server to
create a limited pool of application server instances that are available for client
requests. By pooling the application servers, your server does not consume the
resources for the data module and its database connection except when they are
needed. For more information on object pooling, see “Pooling remote data modules”
on page 29-8.

Unlike most other connection components, you can’t use callbacks when the
connection is formed via HTTP.

Using SOAP connections
SOAP is the protocol that underlies the VCL or CLX support for Web Service
applications. SOAP marshals method calls using an XML encoding. SOAP
connections use HTTP as a transport protocol.

SOAP connections have the advantage that they work in cross-platform applications
because they are supported on both the Windows and Linux. Because SOAP
connections use HTTP, they have the same advantages as Web connections: HTTP
provides a lowest common denominator that you know is available on all clients, and
clients can communicate with an application server that is protected by a “firewall”.
For more information about using SOAP to distribute applications, see Chapter 36,
“Using Web Services.”

As with HTTP connections, you can’t use callbacks when the connection is formed
via SOAP. SOAP connections also limit you to a single remote data module in the
application server.

Building a multi-tiered application
The general steps for creating a multi-tiered database application are

1 Create the application server.

2 Register or install the application server.

3 Create a client application.

The order of creation is important. You should create and run the application server
before you create a client. At design time, you can then connect to the application
server to test your client. You can, of course, create a client without specifying the
application server at design time, and only supply the server name at runtime.
However, doing so prevents you from seeing if your application works as expected
when you code at design time, and you will not be able to choose servers and
providers using the Object Inspector.

Note If you are not creating the client application on the same system as the server, and
you are using a DCOM connection, you may want to register the application server
on the client system. This makes the connection component aware of the application
server at design time so that you can choose server names and provider names from

29-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

a drop-down list in the Object Inspector. (If you are using a Web connection, SOAP
connection, or socket connection, the connection component fetches the names of
registered providers from the server machine.)

Creating the application server
You create an application server very much as you create most database applications.
The major difference is that the application server uses a remote data module.

To create an application server, follow these steps:

1 Start a new project:

• If you are using SOAP as a transport protocol, this should be a new Web Service
application. Choose File|New|Other, and on the WebServices page of the new
items dialog, choose SOAP Server application.

• For any other transport protocol, you need only choose File|New|Application.

Save the new project.

2 Add a new remote data module to the project. From the main menu, choose File|
New |Other, and on the MultiTier or WebServices page of the new items dialog,
select

• Remote Data Module if you are creating a COM Automation server that clients
access using DCOM, HTTP, or sockets.

• Transactional Data Module if you are creating a remote data module that runs
under MTS or COM+. Connections can be formed using DCOM, HTTP, or
sockets. However, only DCOM supports the security services.

• SOAP Server Data Module if you are creating a SOAP server in a Web Service
application.

For more detailed information about setting up a remote data module, see “Setting
up the remote data module” on page 29-13.

Note If you choose Remote Data Module or Transactional Data Module, the Wizard also
creates a special COM Automation object that contains a reference to the remote
data module and uses it to look for providers. This object is called the
implementation object. For SOAP data modules, there is no need for a separate
implementation object, because the data module implements the IAppServerSOAP
interface itself.

3 Place the appropriate dataset components on the data module and set them up to
access the database server.

4 Place a TDataSetProvider component on the data module for each dataset. This
provider is required for brokering client requests and packaging data. Set the
DataSet property for each provider component to the name of the dataset to access.
You can set additional properties for the provider. See Chapter 28, “Using
provider components” for more detailed information about setting up a provider.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-13

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

If you are working with data from XML documents, you can use a
TXMLTransformProvider component instead of a dataset and TDataSetProvider
component. When using TXMLTransformProvider, set the XMLDataFile property to
specify the XML document from which data is provided and to which updates are
applied.

5 Write application server code to implement events, shared business rules, shared
data validation, and shared security. When writing this code, you may want to

• Extend the application server’s interface to provide additional ways for the
client application to call the server. Extending the application server’s interface
is described in “Extending the application server’s interface” on page 29-16.

• Provide transaction support beyond the transactions automatically created
when applying updates. Transaction support in multi-tiered database
applications is described in “Managing transactions in multi-tiered
applications” on page 29-17.

• Create master/detail relationships between the datasets in your application
server. Master/detail relationships are described in “Supporting master/detail
relationships” on page 29-18.

• Ensure your application server is stateless. Handling state information is
described in “Supporting state information in remote data modules” on
page 29-19.

• Divide your application server into multiple remote data modules. Using
multiple remote data modules is described in “Using multiple remote data
modules” on page 29-20.

6 Save, compile, and register or install the application server. Registering an
application server is described in “Registering the application server” on
page 29-21.

7 If your server application does not use DCOM or SOAP, you must install the
runtime software that receives client messages, instantiates the remote data
module, and marshals interface calls.

• For TCP/IP sockets this is a socket dispatcher application, Scktsrvr.exe.

• For HTTP connections this is httpsrvr.dll, an ISAPI/NSAPI DLL that must be
installed with your Web server.

Setting up the remote data module

When you create the remote data module, you must provide certain information that
indicates how it responds to client requests. This information varies, depending on
the type of remote data module.

Configuring the remote data module when it is not transactional
To add a COM-based remote data module to your application without including
transactional attributes, choose File|New|Other and select Remote Data Module
from the Multitier page of the new items dialog. You will see the Remote Data
Module wizard.

29-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

You must supply a class name for your remote data module. This is the base name of
a descendant of TCRemoteDataModule that your application creates. It is also the base
name of the application server’s interface. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TCRemoteDataModule. In the unit header, the Wizard also declares a the
implementation class (TMyDataServerImpl) that implements IMyDataServer, a
descendant of IAppServer.

Note You can add your own properties and methods to the new interface. For more
information, see “Extending the application server’s interface” on page 29-16.

You must specify the threading model in the Remote Data Module wizard. You can
choose Single-threaded, Apartment-threaded, Free-threaded, or Both.

• If you choose Single-threaded, COM ensures that only one client request is
serviced at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment-threaded, COM ensures that any instance of your remote
data module services one request at a time. When writing code in an Apartment-
threaded library, you must guard against thread conflicts if you use global
variables or objects not contained in the remote data module. This is the
recommended model if you are using BDE-enabled datasets. (Note that you will
need a session component with its AutoSessionName property set to true to handle
threading issues on BDE-enabled datasets).

• If you choose Free-threaded, your application can receive simultaneous client
requests on several threads. You are responsible for ensuring your application is
thread-safe. Because multiple clients can access your remote data module
simultaneously, you must guard your instance data (properties, contained objects,
and so on) as well as global variables. This is the recommended model if you are
using ADO datasets.

• If you choose Both, your library works the same as when you choose Free-
threaded, with one exception: all callbacks (calls to client interfaces) are serialized
for you.

• If you choose Neutral, the remote data module can receive simultaneous calls on
separate threads, as in the Free-threaded model, but COM guarantees that no two
threads access the same method at the same time.

Configuring a transactional remote data module
To add a remote data module to your application when you will be using MTS or
COM+, choose File|New|Other and select Transactional Data Module from the
Multitier page of the new items dialog. You will see the Transactional Data Module
wizard.

You must supply a class name for your remote data module. This is the base name of
a descendant of TCRemoteDataModule that your application creates. It is also the base
name of the application server’s interface. For example, if you specify the class name
MyDataServer, the wizard creates a new unit declaring TMyDataServer, a descendant
of TCRemoteDataModule. In the unit header, the Wizard also declares the
implementation class (TMyDataServerImpl) that implements both IMyDataServer (a

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-15

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

descendant of IAppServer) and IObjectControl (which is required of all transactional
objects). TMyDataServerImpl includes a data member for the IObjectContext interface,
which you can use to manage transactions, check security, and so on.

Note You can add your own properties and methods to your new interface. For more
information, see “Extending the application server’s interface” on page 29-16.

You must specify the threading model in the Transactional Data Module wizard.
Choose Single, Apartment, or Both.

• If you choose Single, client requests are serialized so that your application services
only one at a time. You do not need to worry about client requests interfering with
each other.

• If you choose Apartment, the system ensures that any instance of your remote
data module services one request at a time, and calls always use the same thread.
You must guard against thread conflicts if you use global variables or objects not
contained in the remote data module. Instead of using global variables, you can
use the shared property manager. For more information on the shared property
manager, see “Shared property manager” on page 44-6.

• If you choose Both, MTS calls into the application server’s interface in the same
way as when you choose Apartment. However, any callbacks you make to client
applications are serialized, so that you don’t need to worry about them interfering
with each other.

Note The Apartment model under MTS or COM+ is different from the corresponding
model under DCOM.

You must also specify the transaction attributes of your remote data module. You can
choose from the following options:

• Requires a transaction. When you select this option, every time a client uses your
application server’s interface, that call is executed in the context of a transaction. If
the caller supplies a transaction, a new transaction need not be created.

• Requires a new transaction. When you select this option, every time a client uses
your application server’s interface, a new transaction is automatically created for
that call.

• Supports transactions. When you select this option, your application server can be
used in the context of a transaction, but the caller must supply the transaction
when it invokes the interface.

• Does not support transactions. When you select this option, your application
server can’t be used in the context of transactions.

Configuring TSoapDataModule
To add a TSoapDataModule component to your application, choose File|New|Other
and select SOAP Server Data Module from the WebServices page of the new items
dialog. The SOAP data module wizard appears.

You must supply a class name for your SOAP data module. This is the base name of a
TSoapDataModule descendant that your application creates. For example, if you
specify the class name MyDataServer, the wizard creates a new unit declaring

29-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

TMyDataServer, a descendant of TSoapDataModule. This new class inherits an
implementation of IAppServer. and IAppServerSOAP from TSoapDataModule.

Unlike with other remote data modules, SOAP data modules do not implement a
custom interface that descends from IAppServer or IAppServerSOAP. This is because
of differences in the way Web Service applications dispatch incoming interface calls.
Instead, you can add new interfaces to your application using the Add Web Service
wizard.

Note To use TSoapDataModule, the new data module should be added to a Web Service
application. The IAppServerSOAP interface is an invokable interface, which is
registered in the startup code of the new unit. This allows the invoker component in
the main Web module to forward all incoming calls to your data module.

Note If you want your application server to respond to clients that are written using Kylix
2 or Delphi 6 (prior to update patch 2), you must add code to register the IAppServer
interface. Locate the startup code that registers IAppServerSOAP. Immediately after
that registration call, add a call to the global RegDefIAppServerInvClass function,
which registers the data module as the implementation for IAppServer.

Extending the application server’s interface

For COM-based servers, client applications interact with the application server by
creating or connecting to the implementation class that was created by the data
module Wizard. They use its interface as the basis of all communication with the
application server.

If you are using a COM-based application server, you can add to your
implementation class’s interface to provide additional support for your client
applications. This interface is a descendant of IAppServer and is created for you
automatically by the wizard when you create the remote data module.

To add to the implementation class’s interface, use the type library editor. For more
information about using the type library editor, see Chapter 39, “Working with type
libraries.”

When you add to a COM interface, your changes are added to your unit source code
and the type library file (.TLB).

Note You must explicitly save the TLB file by choosing Refresh in the type library editor
and then saving the changes from the IDE.

Once you have added to your implementation class’s interface, locate the properties
and methods that were added to your implementation class. Add code to finish this
implementation by filling in the bodies of the new methods.

Client applications call your interface extensions using the AppServer property of
their connection component. For more information on how to do this, see “Calling
server interfaces” on page 29-27.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-17

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Adding callbacks to the application server’s interface
You can allow the application server to call your client application by introducing a
callback. To do this, the client application passes an interface to one of the application
server’s methods, and the application server later calls this method as needed.
However, if your extensions to the implementation class’s interface include callbacks,
you can’t use an HTTP or SOAP-based connection. TWebConnection and
TSoapConnection do not support callbacks. If you are using a socket-based connection,
client applications must indicate whether they are using callbacks by setting the
SupportCallbacks property. All other types of connection automatically support
callbacks.

Extending a transactional application server’s interface
When using transactions or just-in-time activation, you must be sure all new methods
call the IObjectContext’s SetComplete method to indicate when they are finished. This
allows transactions to complete and permits the application server to be deactivated.

Furthermore, you can’t return any values from your new methods that allow the
client to communicate directly with objects or interfaces on the application server
unless they provide a safe reference. If you are using a stateless MTS data module,
neglecting to use a safe reference can lead to crashes because you can’t guarantee that
the remote data module is active. For more information on safe references, see
“Passing object references” on page 44-24.

Managing transactions in multi-tiered applications

When client applications apply updates to the application server, the provider
component automatically wraps the process of applying updates and resolving
errors in a transaction. This transaction is committed if the number of problem
records does not exceed the MaxErrors value specified as an argument to the
ApplyUpdates method. Otherwise, it is rolled back.

In addition, you can add transaction support to your server application by adding a
database connection component or managing the transaction directly by sending
SQL to the database server. This works the same way that you would manage
transactions in a two-tiered application. For more information about this sort of
transaction control, see “Managing transactions” on page 21-6.

If you have a transactional data module, you can broaden your transaction support
by using MTS or COM+ transactions. These transactions can include any of the
business logic on your application server, not just the database access. In addition,
because they support two-phase commits, they can span multiple databases.

Only the BDE- and ADO-based data access components support two-phase commit.
Do not use InterbaseExpress or dbExpress components if you want to have
transactions that span multiple databases.

Warning When using the BDE, two-phase commit is fully implemented only on Oracle7 and
MS-SQL databases. If your transaction involves multiple databases, and some of
them are remote servers other than Oracle7 or MS-SQL, your transaction runs a small

29-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

risk of only partially succeeding. Within any one database, however, you will always
have transaction support.

By default, all IAppServer calls on a transactional data module are transactional. You
need only set the transaction attribute of your data module to indicate that it must
participate in transactions. In addition, you can extend the application server’s
interface to include method calls that encapsulate transactions that you define.

If your transaction attribute indicates that the application server requires a
transaction, then every time a client calls a method on its interface, it is automatically
wrapped in a transaction. All client calls to your application server are then enlisted
in that transaction until you indicate that the transaction is complete. These calls
either succeed as a whole or are rolled back.

Note Do not combine MTS or COM+ transactions with explicit transactions created by a
database connection component or using explicit SQL commands. When your
transactional data module is enlisted in a transaction, it automatically enlists all of
your database calls in the transaction as well.

For more information about using MTS and COM+ transactions, see “MTS and
COM+ transaction support” on page 44-10.

Supporting master/detail relationships

You can create master/detail relationships between client datasets in your client
application in the same way you set them up using any table-type dataset. For more
information about setting up master/detail relationships in this way, see “Creating
master/detail relationships” on page 22-34.

However, this approach has two major drawbacks:

• The detail table must fetch and store all of its records from the application server
even though it only uses one detail set at a time. (This problem can be mitigated by
using parameters. For more information, see “Limiting records with parameters”
on page 27-28.)

• It is very difficult to apply updates, because client datasets apply updates at the
dataset level and master/detail updates span multiple datasets. Even in a two-
tiered environment, where you can use the database connection component to
apply updates for multiple tables in a single transaction, applying updates in
master/detail forms is tricky.

In multi-tiered applications, you can avoid these problems by using nested tables to
represent the master/detail relationship. To do this when providing from datasets,
set up a master/detail relationship between the datasets on the application server.
Then set the DataSet property of your provider component to the master table. To use
nested tables to represent master/detail relationships when providing from XML
documents, use a transformation file that defines the nested detail sets.

When clients call the GetRecords method of the provider, it automatically includes the
detail dataset as a DataSet field in the records of the data packet. When clients call the
ApplyUpdates method of the provider, it automatically handles applying updates in
the proper order.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-19

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

Supporting state information in remote data modules

The IAppServer interface, which client datasets use to communicate with providers on
the application server, is mostly stateless. When an application is stateless, it does not
“remember” anything that happened in previous calls by the client. This stateless
quality is useful if you are pooling database connections in a transactional data
module, because your application server does not need to distinguish between
database connections for persistent information such as record currency. Similarly,
this stateless quality is important when you are sharing remote data module
instances between many clients, as occurs with just-in-time activation or object
pooling. SOAP data modules must be stateless.

However, there are times when you want to maintain state information between calls
to the application server. For example, when requesting data using incremental
fetching, the provider on the application server must “remember” information from
previous calls (the current record).

Before and after any calls to the IAppServer interface that the client dataset makes
(AS_ApplyUpdates, AS_Execute, AS_GetParams, AS_GetRecords, or AS_RowRequest), it
receives an event where it can send or retrieve custom state information. Similarly,
before and after providers respond to these client-generated calls, they receive events
where they can retrieve or send custom state information. Using this mechanism, you
can communicate persistent state information between client applications and the
application server, even if the application server is stateless.

For example, consider a dataset that represents the following parameterized query:

SELECT * from CUSTOMER WHERE CUST_NO > :MinVal ORDER BY CUST_NO

To enable incremental fetching in a stateless application server, you can do the
following:

• When the provider packages a set of records in a data packet, it notes the value of
CUST_NO on the last record in the packet:

TRemoteDataModule1::DataSetProvider1GetData(TObject *Sender, TCustomClientDataSet *DataSet)
{

DataSet->Last(); // move to the last record
TComponent *pProvider = dynamic_cast<TComponent *>(Sender);
pProvider->Tag = DataSet->FieldValues["CUST_NO"];

}

• The provider sends this last CUST_NO value to the client after sending the data
packet:

TRemoteDataModule1::DataSetProvider1AfterGetRecords(TObject *Sender, OleVariant &OwnerData)
{

TComponent *pProvider = dynamic_cast<TComponent *>(Sender);
OwnerData = pProvider->Tag;

}

• On the client, the client dataset saves this last value of CUST_NO:

TDataModule1::ClientDataSet1AfterGetRecords(TObject *Sender, OleVariant &OwnerData)
{

TComponent *pDS = dynamic_cast<TComponent *>(Sender);

29-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e a p p l i c a t i o n s e r v e r

pDS->Tag = OwnerData;
}

• Before fetching a data packet, the client sends the last value of CUST_NO it
received:

TDataModule1::ClientDataSet1BeforeGetRecords(TObject *Sender, OleVariant &OwnerData)
{

TClientDataSet *pDS = dynamic_cast<TClientDataSet *>(Sender);
if (!pDS->Active)

return;
OwnerData = pDS->Tag;

}

• Finally, on the server, the provider uses the last CUST_NO sent as a minimum
value in the query:

TRemoteDataModule1::DataSetProvider1BeforeGetRecords(TObject *Sender, OleVariant &OwnerData)
{

if (!VarIsEmpty(OwnerData))
{

TDataSetProvider *pProv = dynamic_cast<TDataSetProvider *>(Sender);
TSQLDataSet *pDS = (dynamic_cast<TSQLDataSet *>(pProv->DataSet);
pDS->Params->ParamValues["MinVal"] = OwnerData;
pDS->Refresh(); // force the query to reexecute

}
}

Using multiple remote data modules

You may want to structure your application server so that it uses multiple remote
data modules. Using multiple remote data modules lets you partition your code,
organizing a large application server into multiple units, where each unit is relatively
self-contained.

Although you can always create multiple remote data modules on the application
server that function independently, a special connection component on the DataSnap
page of the Component palette provides support for a model where you have one
main “parent” remote data module that dispatches connections from clients to other
“child” remote data modules. This model requires that you use a COM-based
application server.

To create the parent remote data module, you must extend its IAppServer interface,
adding properties that expose the interfaces of the child remote data modules. That
is, for each child remote data module, add a property to the parent data module’s
interface whose value is the IAppServer interface for the child data module.

For information about extending the parent remote data module’s interface, see
“Extending the application server’s interface” on page 29-16.

Tip You may also want to extend the interface for each child data module, exposing the
parent data module’s interface, or the interfaces of the other child data modules. This
lets the various data modules in your application server communicate more freely
with each other.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-21

R e g i s t e r i n g t h e a p p l i c a t i o n s e r v e r

Once you have added properties that represent the child remote data modules to the
main remote data module, client applications do not need to form separate
connections to each remote data module on the application server. Instead, they
share a single connection to the parent remote data module, which then dispatches
messages to the “child” data modules. Because each client application uses the same
connection for every remote data module, the remote data modules can share a single
database connection, conserving resources. For information on how child
applications share a single connection, see “Connecting to an application server that
uses multiple data modules” on page 29-28.

Registering the application server
Before client applications can locate and use an application server, it must be
registered or installed.

• If the application server uses DCOM, HTTP, or sockets as a communication
protocol, it acts as an Automation server and must be registered like any other
COM server. For information about registering a COM server, see “Registering a
COM object” on page 41-16.

• If you are using a transactional data module, you do not register the application
server. Instead, you install it with MTS or COM+. For information about installing
transactional objects, see “Installing transactional objects” on page 44-27.

• When the application server uses SOAP, the application must be a Web Service
application. As such, it must be registered with your Web Server, so that it
receives incoming HTTP messages. In addition, you need to publish a WSDL
document that describes the invokable interfaces in your application. For
information about exporting a WSDL document for a Web Service application, see
“Generating WSDL documents for a Web Service application” on page 36-15.

Creating the client application
In most regards, creating a multi-tiered client application is similar to creating a two-
tiered client that uses a client dataset to cache updates. The major difference is that a
multi-tiered client uses a connection component to establish a conduit to the
application server.

To create a multi-tiered client application, start a new project and follow these steps:

1 Add a new data module to the project.

2 Place a connection component on the data module. The type of connection
component you add depends on the communication protocol you want to use. See
“The structure of the client application” on page 29-4 for details.

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 29-22.

29-22 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

4 Set the other connection component properties as needed for your application. For
example, you might set the ObjectBroker property to allow the connection
component to choose dynamically from several servers. For more information
about using the connection components, see “Managing server connections” on
page 29-26

5 Place as many TClientDataSet components as needed on the data module, and set
the RemoteServer property for each component to the name of the connection
component you placed in Step 2. For a full introduction to client datasets, see
Chapter 27, “Using client datasets.”

6 Set the ProviderName property for each TClientDataSet component. If your
connection component is connected to the application server at design time, you
can choose available application server providers from the ProviderName
property’s drop-down list.

7 Continue in the same way you would create any other database application. There
are a few additional features available to clients of multi-tiered applications:

• Your application may want to make direct calls to the application server.
“Calling server interfaces” on page 29-27 describes how to do this.

• You may want to use the special features of client datasets that support their
interaction with the provider components. These are described in “Using a
client dataset with a provider” on page 27-24.

Connecting to the application server

To establish and maintain a connection to an application server, a client application
uses one or more connection components. You can find these components on the
DataSnap or WebServices page of the Component palette.

Use a connection component to

• Identify the protocol for communicating with the application server. Each type of
connection component represents a different communication protocol. See
“Choosing a connection protocol” on page 29-9 for details on the benefits and
limitations of the available protocols.

• Indicate how to locate the server machine. The details of identifying the server
machine vary depending on the protocol.

• Identify the application server on the server machine.

• If you are not using SOAP, identify the server using the ServerName or ServerGUID
property. ServerName identifies the base name of the class you specify when
creating the remote data module on the application server. See “Setting up the
remote data module” on page 29-13 for details on how this value is specified on
the server. If the server is registered or installed on the client machine, or if the
connection component is connected to the server machine, you can set the
ServerName property at design time by choosing from a drop-down list in the
Object Inspector. ServerGUID specifies the GUID of the remote data module’s
interface. You can look up this value using the type library editor.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-23

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

If you are using SOAP, the server is identified in the URL you use to locate the
server machine. Follow the steps in “Specifying a connection using SOAP” on
page 29-25.

• Manage server connections. Connection components can be used to create or drop
connections and to call application server interfaces.

Usually the application server is on a different machine from the client application,
but even if the server resides on the same machine as the client application (for
example, during the building and testing of the entire multi-tier application), you can
still use the connection component to identify the application server by name, specify
a server machine, and use the application server interface.

Specifying a connection using DCOM
When using DCOM to communicate with the application server, client applications
include a TDCOMConnection component for connecting to the application server.
TDCOMConnection uses the ComputerName property to identify the machine on
which the server resides.

When ComputerName is blank, the DCOM connection component assumes that the
application server resides on the client machine or that the application server has a
system registry entry. If you do not provide a system registry entry for the
application server on the client when using DCOM, and the server resides on a
different machine from the client, you must supply ComputerName.

Note Even when there is a system registry entry for the application server, you can specify
ComputerName to override this entry. This can be especially useful during
development, testing, and debugging.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for ComputerName. For more
information, see “Brokering connections” on page 29-25.

If you supply the name of a host computer or server that cannot be found, the DCOM
connection component throws an exception when you try to open the connection.

Specifying a connection using sockets
You can establish a connection to the application server using sockets from any
machine that has a TCP/IP address. This method has the advantage of being
applicable to more machines, but does not provide for using any security protocols.
When using sockets, include a TSocketConnection component for connecting to the
application server.

TSocketConnection identifies the server machine using the IP Address or host name of
the server system, and the port number of the socket dispatcher program
(Scktsrvr.exe) that is running on the server machine. For more information about IP
addresses and port values, see “Describing sockets” on page 37-3.

Three properties of TSocketConnection specify this information:

• Address specifies the IP Address of the server.

• Host specifies the host name of the server.

29-24 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

• Port specifies the port number of the socket dispatcher program on the application
server.

Address and Host are mutually exclusive. Setting one unsets the value of the other.
For information on which one to use, see “Describing the host” on page 37-4.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for Address or Host. For more
information, see “Brokering connections” on page 29-25.

By default, the value of Port is 211, which is the default port number of the socket
dispatcher program that forwards incoming messages to your application server. If
the socket dispatcher has been configured to use a different port, set the Port
property to match that value.

Note You can configure the port of the socket dispatcher while it is running by right-
clicking the Borland Socket Server tray icon and choosing Properties.

Although socket connections do not provide for using security protocols, you can
customize the socket connection to add your own encryption. To do this

1 Create a COM object that supports the IDataIntercept interface. This is an interface
for encrypting and decrypting data.

2 Register your new COM server on the client machine.

3 Set the InterceptName or InterceptGUID property of the socket connection
component to specify this COM object.

4 Finally, right click the Borland Socket Server tray icon, choose Properties, and on
the properties tab set the Intercept Name or Intercept GUID to the ProgId or GUID
for the interceptor.

This mechanism can also be used for data compression and decompression.

Specifying a connection using HTTP
You can establish a connection to the application server using HTTP from any
machine that has a TCP/IP address. Unlike sockets, however, HTTP allows you to
take advantage of SSL security and to communicate with a server that is protected
behind a firewall. When using HTTP, include a TWebConnection component for
connecting to the application server.

The Web connection component establishes a connection to the Web server
application (httpsrvr.dll), which in turn communicates with the application server.
TWebConnection locates httpsrvr.dll using a Uniform Resource Locator (URL). The
URL specifies the protocol (http or, if you are using SSL security, https), the host
name for the machine that runs the Web server and httpsrvr.dll, and the path to the
Web server application (httpsrvr.dll). Specify this value using the URL property.

Note When using TWebConnection, wininet.dll must be installed on the client machine. If
you have IE3 or higher installed, wininet.dll can be found in the Windows system
directory.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-25

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

If the Web server requires authentication, or if you are using a proxy server that
requires authentication, you must set the values of the UserName and Password
properties so that the connection component can log on.

If you have multiple servers that your client application can choose from, you can use
the ObjectBroker property instead of specifying a value for URL. For more
information, see “Brokering connections” on page 29-25.

Specifying a connection using SOAP
You can establish a connection to a SOAP application server using the
TSoapConnection component. TSoapConnection is very similar to TWebConnection,
because it also uses HTTP as a transport protocol. Thus, you can use TSoapConnection
from any machine that has a TCP/IP address, and it can take advantage of SSL
security to communicate with a server that is protected by a firewall.

The SOAP connection component establishes a connection to a Web Service provider
that implements the IAppServerSOAP or IAppServer interface. (The UseSOAPAdapter
property specifies which interface it expects the server to support.) If the server
implements the IAppServerSOAP interface, TSoapConnection converts that interface to
an IAppServer interface for client datasets. TSoapConnection locates the Web Server
application using a Uniform Resource Locator (URL). The URL specifies the protocol
(http or, if you are using SSL security, https), the host name for the machine that runs
the Web server, the name of the Web Service application, and a path that matches the
path name of the THTTPSoapDispatcher on the application server. Specify this value
using the URL property.

Note When using TSoapConnection, wininet.dll must be installed on the client machine. If
you have IE3 or higher installed, wininet.dll can be found in the Windows system
directory.

If the Web server requires authentication, or if you are using a proxy server that
requires authentication, you must set the values of the <~JMP UserName and
Password properties so that the connection component can log on.

 Brokering connections
If you have multiple COM-based servers that your client application can choose
from, you can use an Object Broker to locate an available server system. The object
broker maintains a list of servers from which the connection component can choose.
When the connection component needs to connect to an application server, it asks the
Object Broker for a computer name (or IP address, host name, or URL). The broker
supplies a name, and the connection component forms a connection. If the supplied
name does not work (for example, if the server is down), the broker supplies another
name, and so on, until a connection is formed.

Once the connection component has formed a connection with a name supplied by
the broker, it saves that name as the value of the appropriate property
(ComputerName, Address, Host, RemoteHost, or URL). If the connection component
closes the connection later, and then needs to reopen the connection, it tries using this
property value, and only requests a new name from the broker if the connection fails.

29-26 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Use an Object Broker by specifying the ObjectBroker property of your connection
component. When the ObjectBroker property is set, the connection component does
not save the value of ComputerName, Address, Host, RemoteHost, or URL to disk.

Managing server connections

The main purpose of connection components is to locate and connect to the
application server. Because they manage server connections, you can also use
connection components to call the methods of the application server’s interface.

Connecting to the server
To locate and connect to the application server, you must first set the properties of
the connection component to identify the application server. This process is
described in “Connecting to the application server” on page 29-22. Before opening
the connection, any client datasets that use the connection component to
communicate with the application server should indicate this by setting their
RemoteServer property to specify the connection component.

The connection is opened automatically when client datasets try to access the
application server. For example, setting the Active property of the client dataset to
true opens the connection, as long as the RemoteServer property has been set.

If you do not link any client datasets to the connection component, you can open the
connection by setting the Connected property of the connection component to true.

Before a connection component establishes a connection to an application server, it
generates a BeforeConnect event. You can perform any special actions prior to
connecting in a BeforeConnect handler that you code. After establishing a connection,
the connection component generates an AfterConnect event for any special actions.

Dropping or changing a server connection
A connection component drops a connection to the application server when you

• set the Connected property to false.

• free the connection component. A connection object is automatically freed when a
user closes the client application.

• change any of the properties that identify the application server (ServerName,
ServerGUID, ComputerName, and so on). Changing these properties allows you to
switch among available application servers at runtime. The connection component
drops the current connection and establishes a new one.

Note Instead of using a single connection component to switch among available
application servers, a client application can instead have more than one connection
component, each of which is connected to a different application server.

Before a connection component drops a connection, it automatically calls its
BeforeDisconnect event handler, if one is provided. To perform any special actions
prior to disconnecting, write a BeforeDisconnect handler. Similarly, after dropping the
connection, the AfterDisconnect event handler is called. If you want to perform any
special actions after disconnecting, write an AfterDisconnect handler.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-27

C r e a t i n g t h e c l i e n t a p p l i c a t i o n

Calling server interfaces

Applications do not need to call the IAppServer interface directly because the
appropriate calls are made automatically when you use the properties and methods
of the client dataset. However, while it is not necessary to work directly with the
IAppServer interface, if you are not using SOAP you may have added your own
extensions to the application server’s interface. When you extend the application
server’s interface, you need a way to call those extensions using the connection
created by your connection component. You can do this using the AppServer property
of the connection component. For information about extending the application
server’s interface, see “Extending the application server’s interface” on page 29-16.

AppServer is a Variant that represents the application server’s interface. To call this
interface, you must obtain a dispatch interface from this Variant. The dispatch
interface has the same name as the interface that was created when you created the
remote data module, but with the string “Disp” appended. Thus, if your remote data
module is called MyAppServer, you can use AppServer to call its interface as follows:

IDispatch* disp = (IDispatch*)(MyConnection->AppServer)
IMyAppServerDisp TempInterface((IMyAppServer*)disp);
TempInterface.SpecialMethod(x,y);

Note The dispatch interface is declared in the _TLB.h file generated by the Type Library
editor.

If you are using SOAP, you can’t use the AppServer property. Instead, you must use a
remote interfaced object (THTTPRio) and make early-bound calls. As with all early-
bound calls, the client application must know the application server’s interface
declaration at compile time. You can add this to your client application by
referencing a WSDL document that describes the interface you want to call. Note that
for SOAP servers, this interface is entirely separate from the SOAP data module’s
interface. For information on importing a WSDL document that describes the
interface, see “Importing WSDL documents” on page 36-16.

Note The unit that declares the server interface must also register it with the invocation
registry. For details on how to register invokable interfaces, see “Understanding
invokable interfaces” on page 36-2.

Once you have imported a WSDL document to generate a unit declaring and
registering the interface, create an instance of THTTPRio for the desired interface:

THTTPRio *X = new THTTPRio(NULL);

Next, assign the URL that your connection component uses to the remote interfaced
object, appending the name of the interface you want to call:

X->URL = SoapConnection1.URL + "IMyInterface";

Now, you can use the QueryInterface method to obtain an interface to call the
server’s methods:

InterfaceVariable = X->QueryInterface(IMyInterfaceIntf);
if (InterfaceVariable)
{

InterfaceVariable->SpecialMethod(a,b);
}

29-28 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Note that the call to QueryInterface takes as an argument the DelphiInterface wrapper
for the invokable interface rather than the invokable interface itself.

Connecting to an application server that uses multiple data modules

If a COM-based application server uses a main “parent” remote data module and
several child remote data modules, as described in “Using multiple remote data
modules” on page 29-20, then you need a separate connection component for every
remote data module on the application server. Each connection component
represents the connection to a single remote data module.

While it is possible to have your client application form independent connections to
each remote data module on the application server, it is more efficient to use a single
connection to the application server that is shared by all the connection components.
That is, you add a single connection component that connects to the “main” remote
data module on the application server, and then, for each “child” remote data
module, add an additional component that shares the connection to the main remote
data module.

1 For the connection to the main remote data module, add and set up a connection
component as described in “Connecting to the application server” on page 29-22.
The only limitation is that you can’t use a SOAP connection.

2 For each child remote data module, use a TSharedConnection component.

• Set its ParentConnection property to the connection component you added in
step 1. The TSharedConnection component shares the connection that this main
connection establishes.

• Set its ChildName property to the name of the property on the main remote data
module’s interface that exposes the interface of the desired child remote data
module.

When you assign the TSharedConnection component placed in step 2 as the value of a
client dataset’s RemoteServer property, it works as if you were using an entirely
independent connection to the child remote data module. However, the
TSharedConnection component uses the connection established by the component you
placed in step 1.

Writing Web-based client applications
If you want to create Web-based clients for your multi-tiered database application,
you must replace the client tier with a special Web application that acts
simultaneously as a client to an application server and as a Web server application
that is installed with a Web server on the same machine. This architecture is
illustrated in Figure 29.1.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-29

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Figure 29.1 Web-based multi-tiered database application

There are two approaches that you can take to build the Web application:

• You can combine the multi-tiered database architecture with an ActiveX form to
distribute the client application as an ActiveX control. This allows any browser
that supports ActiveX to run your client application as an in-process server.

• You can use XML data packets to build an InternetExpress application. This allows
browsers that supports javascript to interact with your client application through
html pages.

These two approaches are very different. Which one you choose depends on the
following considerations:

• Each approach relies on a different technology (ActiveX vs. javascript and XML).
Consider what systems your end users will use. The first approach requires a
browser to support ActiveX (which limits clients to a Windows platform). The
second approach requires a browser to support javascript and the DHTML
capabilities introduced by Netscape 4 and Internet Explorer 4.

• ActiveX controls must be downloaded to the browser to act as an in-process
server. As a result, the clients using an ActiveX approach require much more
memory than the clients of an HTML-based application.

• The InternetExpress approach can be integrated with other HTML pages. An
ActiveX client must run in a separate window.

• The InternetExpress approach uses standard HTTP, thereby avoiding any firewall
issues that confront an ActiveX application.

• The ActiveX approach provides greater flexibility in how you program your
application. You are not limited by the capabilities of the javascript libraries. The
client datasets used in the ActiveX approach surface more features (such as filters,
ranges, aggregation, optional parameters, delayed fetching of BLOBs or nested
details, and so on) than the XML brokers used in the InternetExpress approach.

Caution Your Web client application may look and act differently when viewed from
different browsers. Test your application with the browsers you expect your end-
users to use.

Remote Database

Web ServerBrowser

Application
Server

Web-based
Client

Application

29-30 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Distributing a client application as an ActiveX control

The multi-tiered database architecture can be combined with ActiveX features to
distribute a client application as an ActiveX control.

When you distribute your client application as an ActiveX control, create the
application server as you would for any other multi-tiered application. For details on
creating the application server, see “Creating the application server” on page 29-12.

When creating the client application, you must use an Active Form as the basis
instead of an ordinary form. See “Creating an Active Form for the client application”
for details.

Once you have built and deployed your client application, it can be accessed from
any ActiveX-enabled Web browser on another machine. For a Web browser to
successfully launch your client application, the Web server must be running on the
machine that has the client application.

If the client application uses DCOM to communicate between the client application
and the application server, the machine with the Web browser must be enabled to
work with DCOM. If the machine with the Web browser is a Windows 95 machine, it
must have installed DCOM95, which is available from Microsoft.

Creating an Active Form for the client application
1 Because the client application will be deployed as an ActiveX control, you must

have a Web server that runs on the same system as the client application. You can
use a ready-made server such as Microsoft’s Personal Web server or you can write
your own using the socket components described in Chapter 37, “Working with
sockets.”

2 Create the client application following the steps described in “Creating the client
application” on page 29-21, except start by choosing File|New|ActiveX|Active
Form, rather than beginning an ordinary client project.

3 If your client application uses a data module, add a call to explicitly create the data
module in the active form initialization.

4 When your client application is finished, compile the project, and select Project |
Web Deployment Options. In the Web Deployment Options dialog, you must do
the following:

1 On the Project page, specify the Target directory, the URL for the target
directory, and the HTML directory. Typically, the Target directory and the
HTML directory will be the same as the projects directory for your Web Server.
The target URL is typically the name of the server machine.

2 On the Additional Files page, include midas.dll with your client application.

5 Finally, select Project|WebDeploy to deploy the client application as an active
form.

Any Web browser that can run Active forms can run your client application by
specifying the .HTM file that was created when you deployed the client application.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-31

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

This .HTM file has the same name as your client application project, and appears in
the directory specified as the Target directory.

Building Web applications using InternetExpress

A client application can request that the application server provide data packets that
are coded in XML instead of OleVariants. By combining XML-coded data packets,
special javascript libraries of database functions, and the Web server application
support, you can create thin client applications that can be accessed using a Web
browser that supports javascript. This combination of features is called
InternetExpress.

Before building an InternetExpress application, you should understand the Web
server application architecture. This is described in Chapter 32, “Creating Internet
server applications.”

An InternetExpress application extends the basic Web server application architecture
to act as the client of an application server. InternetExpress applications generate
HTML pages that contain a mixture of HTML, XML, and javascript. The HTML
governs the layout and appearance of the pages seen by end users in their browsers.
The XML encodes the data packets and delta packets that represent database
information. The javascript allows the HTML controls to interpret and manipulate
the data in these XML data packets on the client machine.

If the InternetExpress application uses DCOM to connect to the application server,
you must take additional steps to ensure that the application server grants access and
launch permissions to its clients. See “Granting permission to access and launch the
application server” on page 29-33 for details.

Tip You can create an InternetExpress application to provide Web browsers with “live”
data even if you do not have an application server. Simply add the provider and its
dataset to the Web module.

Building an InternetExpress application

The following steps describe one way to build a Web application using
InternetExpress. The result is an application that creates HTML pages that let users
interact with the data from an application server via a javascript-enabled Web
browser. You can also build an InternetExpress application using the Site Express
architecture by using the InternetExpress page producer (TInetXPageProducer).

1 Choose File|New|Other to display the New Items dialog box, and on the New
page select Web Server application. This process is described in “Creating Web
server applications with Web Broker” on page 33-1.

2 From the DataSnap page of the component palette, add a connection component
to the Web Module that appears when you create a new Web server application.
The type of connection component you add depends on the communication
protocol you want to use. See “Choosing a connection protocol” on page 29-9 for
details.

29-32 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

3 Set properties on your connection component to specify the application server
with which it should establish a connection. To learn more about setting up the
connection component, see “Connecting to the application server” on page 29-22.

4 Instead of a client dataset, add an XML broker from the InternetExpress page of
the component palette to the Web module. Like TClientDataSet, TXMLBroker
represents the data from a provider on the application server and interacts with
the application server through an IAppServer interface. However, unlike client
datasets, XML brokers request data packets as XML instead of as OleVariants and
interact with InternetExpress components instead of data controls.

5 Set the RemoteServer property of the XML broker to point to the connection
component you added in step 2. Set the ProviderName property to indicate the
provider on the application server that provides data and applies updates. For
more information about setting up the XML broker, see “Using an XML broker”
on page 29-34.

6 Add an InternetExpress page producer (TInetXPageProducer) to the Web module
for each separate page that users will see in their browsers. For each page
producer, you must set the IncludePathURL property to indicate where it can find
the javascript libraries that augment its generated HTML controls with data
management capabilities.

7 Right-click a Web page and choose Action Editor to display the Action editor. Add
action items for every message you want to handle from browsers. Associate the
page producers you added in step 6 with these actions by setting their Producer
property or writing code in an OnAction event handler. For more information on
adding action items using the Action editor, see “Adding actions to the
dispatcher” on page 33-4.

8 Double-click each Web page to display the Web Page editor. (You can also display
this editor by clicking the ellipsis button in the Object Inspector next to the
WebPageItems property.) In this editor you can add Web Items to design the pages
that users see in their browsers. For more information about designing Web pages
for your InternetExpress application, see “Creating Web pages with an
InternetExpress page producer” on page 29-36.

9 Build your Web application. Once you install this application with your Web
server, browsers can call it by specifying the name of the application as the script
name portion of the URL and the name of the Web Page component as the
pathinfo portion.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-33

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Using the javascript libraries
The HTML pages generated by the InternetExpress components and the Web items
they contain make use of several javascript libraries that ship in the source/
webmidas directory:

Once you have installed these libraries, you must set the IncludePathURL property of
all InternetExpress page producers to indicate where they can be found.

It is possible to write your own HTML pages using the javascript classes provided in
these libraries instead of using Web items to generate your Web pages. However, you
must ensure that your code does not do anything illegal, as these classes include
minimal error checking (so as to minimize the size of the generated Web pages).

Granting permission to access and launch the application server
Requests from the InternetExpress application appear to the application server as
originating from a guest account with the name IUSR_computername, where
computername is the name of the system running the Web application. By default,
this account does not have access or launch permission for the application server. If
you try to use the Web application without granting these permissions, when the
Web browser tries to load the requested page it times out with EOLE_ACCESS_ERROR.

Note Because the application server runs under this guest account, it can’t be shut down
by other accounts.

To grant the Web application access and launch permissions, run DCOMCnfg.exe,
which is located in the System32 directory of the machine that runs the application
server. The following steps describe how to configure your application server:

1 When you run DCOMCnfg, select your application server in the list of
applications on the Applications page.

2 Click the Properties button. When the dialog changes, select the Security page.

Table 29.3 Javascript libraries

Library Description

xmldom.js This library is a DOM-compatible XML parser written in javascript. It allows
parsers that do not support XML to use XML data packets. Note that this does
not include support for XML Islands, which are supported by IE5 and later.

xmldb.js This library defines data access classes that manage XML data packets and
XML delta packets.

xmldisp.js This library defines classes that associate the data access classes in xmldb with
HTML controls in the HTML page.

xmlerrdisp.js This library defines classes that can be used when reconciling update errors.
These classes are not used by any of the built-in InternetExpress components,
but are useful when writing a Reconcile producer.

xmlshow.js This library includes functions to display formatted XML data packets and
XML delta packets. This library is not used by any of the InternetExpress
components, but is useful when debugging.

29-34 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

3 Select Use Custom Access Permissions, and press the Edit button. Add the name
IUSR_computername to the list of accounts with access permission, where
computername is the name of the machine that runs the Web application.

4 Select Use Custom Launch Permissions, and press the Edit button. Add
IUSR_computername to this list as well.

5 Click the Apply button.

Using an XML broker

The XML broker serves two major functions:

• It fetches XML data packets from the application server and makes them available
to the Web Items that generate HTML for the InternetExpress application.

• It receives updates in the form of XML delta packets from browsers and applies
them to the application server.

Fetching XML data packets
Before the XML broker can supply XML data packets to the components that
generate HTML pages, it must fetch them from the application server. To do this, it
uses the IAppServer interface, which it acquires from a connection component.

Note Even when using SOAP, where the application server supports IAppServerSOAP, the
XML broker uses IAppServer because the connection component acts as an adapter
between the two interfaces.

You must set the following properties so that the XML producer can use the
IAppServer interface:

• Set the RemoteServer property to the connection component that establishes the
connection to the application server and gets its IAppServer interface. At design
time, you can select this value from a drop-down list in the object inspector.

• Set the ProviderName property to the name of the provider component on the
application server that represents the dataset for which you want XML data
packets. This provider both supplies XML data packets and applies updates from
XML delta packets. At design time, if the RemoteServer property is set and the
connection component has an active connection, the Object Inspector displays a
list of available providers. (If you are using a DCOM connection the application
server must also be registered on the client machine).

Two properties let you indicate what you want to include in data packets:

• You can limit the number of records that are added to the data packet by setting
the MaxRecords property. This is especially important for large datasets because
InternetExpress applications send the entire data packet to client Web browsers. If
the data packet is too large, the download time can become prohibitively long.

• If the provider on the application server represents a query or stored procedure,
you may want to provide parameter values before obtaining an XML data packet.
You can supply these parameter values using the Params property.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-35

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

The components that generate HTML and javascript for the InternetExpress
application automatically use the XML broker’s XML data packet once you set their
XMLBroker property. To obtain the XML data packet directly in code, use the
RequestRecords method.

Note When the XML broker supplies a data packet to another component (or when you
call RequestRecords), it receives an OnRequestRecords event. You can use this event to
supply your own XML string instead of the data packet from the application server.
For example, you could fetch the XML data packet from the application server using
GetXMLRecords and then edit it before supplying it to the emerging Web page.

Applying updates from XML delta packets
When you add the XML broker to the Web module (or data module containing a
TWebDispatcher), it automatically registers itself with the Web dispatcher as an auto-
dispatching object. This means that, unlike other components, you do not need to
create an action item for the XML broker in order for it to respond to update
messages from a Web browser. These messages contain XML delta packets that
should be applied to the application server. Typically, they originate from a button
that you create on one of the HTML pages produced by the Web client application.

So that the dispatcher can recognize messages for the XML broker, you must describe
them using the WebDispatch property. Set the PathInfo property to the path portion of
the URL to which messages for the XML broker are sent. Set MethodType to the value
of the method header of update messages addressed to that URL (typically mtPost). If
you want to respond to all messages with the specified path, set MethodType to
mtAny. If you don’t want the XML broker to respond directly to update messages (for
example, if you want to handle them explicitly using an action item), set the Enabled
property to false. For more information on how the Web dispatcher determines
which component handles messages from the Web browser, see “Dispatching
request messages” on page 33-5.

When the dispatcher passes an update message on to the XML broker, it passes the
updates on to the application server and, if there are update errors, receives an XML
delta packet describing all update errors. Finally, it sends a response message back to
the browser, which either redirects the browser to the same page that generated the
XML delta packet or sends it some new content.

A number of events allow you to insert custom processing at all steps of this update
process:

1 When the dispatcher first passes the update message to the XML broker, it receives
a BeforeDispatch event, where you can preprocess the request or even handle it
entirely. This event allows the XML broker to handle messages other than update
messages.

2 If the BeforeDispatch event handler does not handle the message, the XML broker
receives an OnRequestUpdate event, where you can apply the updates yourself
rather than using the default processing.

3 If the OnRequestUpdate event handler does not handle the request, the XML broker
applies the updates and receives a delta packet containing any update errors.

29-36 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

4 If there are no update errors, the XML broker receives an OnGetResponse event,
where you can create a response message that indicates the updates were
successfully applied or sends refreshed data to the browser. If the OnGetResponse
event handler does not complete the response (does not set the Handled parameter
to true), the XML broker sends a response that redirects the browser back to the
document that generated the delta packet.

5 If there are update errors, the XML broker receives an OnGetErrorResponse event
instead. You can use this event to try to resolve update errors or to generate a Web
page that describes them to the end user. If the OnGetErrorResponse event handler
does not complete the response (does not set the Handled parameter to true), the
XML broker calls on a special content producer called the ReconcileProducer to
generate the content of the response message.

6 Finally, the XML broker receives an AfterDispatch event, where you can perform
any final actions before sending a response back to the Web browser.

Creating Web pages with an InternetExpress page producer

Each InternetExpress page producer generates an HTML document that appears in
the browsers of your application’s clients. If your application includes several
separate Web documents, use a separate page producer for each of them.

The InternetExpress page producer (TInetXPageProducer) is a special page producer
component. As with other page producers, you can assign it as the Producer property
of an action item or call it explicitly from an OnAction event handler. For more
information about using content producers with action items, see “Responding to
request messages with action items” on page 33-7. For more information about page
producers, see “Using page producer components” on page 33-13.

The InternetExpress page producer has a default template as the value of its
HTMLDoc property. This template contains a set of HTML-transparent tags that the
InternetExpress page producer uses to assemble an HTML document (with
embedded javascript and XML) including content produced by other components.
Before it can translate all of the HTML-transparent tags and assemble this document,
you must indicate the location of the javascript libraries used for the embedded
javascript on the page. This location is specified by setting the IncludePathURL
property.

You can specify the components that generate parts of the Web page using the Web
page editor. Display the Web page editor by double-clicking the Web page
component or clicking the ellipsis button next to the WebPageItems property in the
Object Inspector.

The components you add in the Web page editor generate the HTML that replaces
one of the HTML-transparent tags in the InternetExpress page producer’s default
template. These components become the value of the WebPageItems property. After
adding the components in the order you want them, you can customize the template
to add your own HTML or change the default tags.

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-37

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

Using the Web page editor
The Web page editor lets you add Web items to your InternetExpress page producer
and view the resulting HTML page. Display the Web page editor by double-clicking
on a InternetExpress page producer component.

Note You must have Internet Explorer 4 or better installed to use the Web page editor.

The top of the Web page editor displays the Web items that generate the HTML
document. These Web items are nested, where each type of Web item assembles the
HTML generated by its subitems. Different types of items can contain different
subitems. On the left, a tree view displays all of the Web items, indicating how they
are nested. On the right, you can see the Web items included by the currently selected
item. When you select a component in the top of the Web page editor, you can set its
properties using the Object Inspector.

Click the New Item button to add a subitem to the currently selected item. The Add
Web Component dialog lists only those items that can be added to the currently
selected item.

The InternetExpress page producer can contain one of two types of item, each of
which generates an HTML form:

• TDataForm, which generates an HTML form for displaying data and the controls
that manipulate that data or submit updates.

Items you add to TDataForm display data in a multi-record grid (TDataGrid) or in a
set of controls each of which represents a single field from a single record
(TFieldGroup). In addition, you can add a set of buttons to navigate through data or
post updates (TDataNavigator), or a button to apply updates back to the Web client
(TApplyUpdatesButton). Each of these items contains subitems to represent
individual fields or buttons. Finally, as with most Web items, you can add a layout
grid (TLayoutGroup), that lets you customize the layout of any items it contains.

• TQueryForm, which generates an HTML form for displaying or reading
application-defined values. For example, you can use this form for displaying and
submitting parameter values.

Items you add to TQueryForm display application-defined
values(TQueryFieldGroup) or a set of buttons to submit or reset those values
(TQueryButtons). Each of these items contains subitems to represent individual
values or buttons. You can also add a layout grid to a query form, just as you can
to a data form.

The bottom of the Web page editor displays the generated HTML code and lets you
see what it looks like in a browser (IE4).

Setting Web item properties
The Web items that you add using the Web page editor are specialized components
that generate HTML. Each Web item class is designed to produce a specific control or
section of the final HTML document, but a common set of properties influences the
appearance of the final HTML.

29-38 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

When a Web item represents information from the XML data packet (for example,
when it generates a set of field or parameter display controls or a button that
manipulates the data), the XMLBroker property associates the Web item with the
XML broker that manages the data packet. You can further specify a dataset that is
contained in a dataset field of that data packet using the XMLDataSetField property. If
the Web item represents a specific field or parameter value, the Web item has a
FieldName or ParamName property.

You can apply a style attribute to any Web item, thereby influencing the overall
appearance of all the HTML it generates. Styles and style sheets are part of the
HTML 4 standard. They allow an HTML document to define a set of display
attributes that apply to a tag and everything in its scope. Web items offer a flexible
selection of ways to use them:

• The simplest way to use styles is to define a style attribute directly on the Web
item. To do this, use the Style property. The value of Style is simply the attribute
definition portion of a standard HTML style definition, such as
color: red.

• You can also define a style sheet that defines a set of style definitions. Each
definition includes a style selector (the name of a tag to which the style always
applies or a user-defined style name) and the attribute definition in curly braces:
H2 B {color: red}
.MyStyle {font-family: arial; font-weight: bold; font-size: 18px }

The entire set of definitions is maintained by the InternetExpress page producer as
its Styles property. Each Web item can then reference the styles with user-defined
names by setting its StyleRule property.

• If you are sharing a style sheet with other applications, you can supply the style
definitions as the value of the InternetExpress page producer’s StylesFile property
instead of the Styles property. Individual Web items still reference styles using the
StyleRule property.

Another common property of Web items is the Custom property. Custom includes a
set of options that you add to the generated HTML tag. HTML defines a different set
of options for each type of tag. The VCL reference for the Custom property of most
Web items gives an example of possible options. For more information on possible
options, use an HTML reference.

Customizing the InternetExpress page producer template
The template of an InternetExpress page producer is an HTML document with extra
embedded tags that your application translates dynamically. Initially, the page
producer generates a default template as the value of the HTMLDoc property. This
default template has the form

<HTML>
<HEAD>
</HEAD>
<BODY>
<#INCLUDES> <#STYLES> <#WARNINGS> <#FORMS> <#SCRIPT>
</BODY>
</HTML>

C r e a t i n g m u l t i - t i e r e d a p p l i c a t i o n s 29-39

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

The HTML-transparent tags in the default template are translated as follows:

<#INCLUDES> generates the statements that include the javascript libraries. These
statements have the form

<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldom.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmldb.js"> </SCRIPT>
<SCRIPT language=Javascript type="text/javascript" SRC="IncludePathURL/xmlbind.js"> </SCRIPT>

<#STYLES> generates the statements that defines a style sheet from definitions listed in
the Styles or StylesFile property of the InternetExpress page producer.

<#WARNINGS> generates nothing at runtime. At design time, it adds warning messages
for problems detected while generating the HTML document. You can see these
messages in the Web page editor.

<#FORMS> generates the HTML produced by the components that you add in the Web
page editor. The HTML from each component is generated in the order it appears in
WebPageItems.

<#SCRIPT> generates a block of javascript declarations that are used in the HTML
generated by the components added in the Web page editor.

You can replace the default template by changing the value of HTMLDoc or setting
the HTMLFile property. The customized HTML template can include any of the
HTML-transparent tags that make up the default template. The InternetExpress page
producer automatically translates these tags when you call the Content method. In
addition, The InternetExpress page producer automatically translates three
additional tags:

<#BODYELEMENTS> is replaced by the same HTML as results from the 5 tags in the default
template. It is useful when generating a template in an HTML editor when you want
to use the default layout but add additional elements using the editor.

<#COMPONENT Name=WebComponentName> is replaced by the HTML that the component
named WebComponentName generates. This component can be one of the components
added in the Web page editor, or it can be any component that supports the
IWebContent interface and has the same Owner as the InternetExpress page producer.

<#DATAPACKET XMLBroker=BrokerName> is replaced with the XML data packet obtained
from the XML broker specified by BrokerName. When, in the Web page editor, you see
the HTML that the InternetExpress page producer generates, you see this tag instead
of the actual XML data packet.

In addition, the customized template can include any other HTML-transparent tags
that you define. When the InternetExpress page producer encounters a tag that is not
one of the seven types it translates automatically, it generates an OnHTMLTag event,
where you can write code to perform your own translations. For more information
about HTML templates in general, see “HTML templates” on page 33-13.

Tip The components that appear in the Web page editor generate static code. That is,
unless the application server changes the metadata that appears in data packets, the
HTML is always the same, no matter when it is generated. You can avoid the
overhead of generating this code dynamically at runtime in response to every request

29-40 D e v e l o p e r ’ s G u i d e

W r i t i n g W e b - b a s e d c l i e n t a p p l i c a t i o n s

message by copying the generated HTML in the Web page editor and using it as a
template. Because the Web page editor displays a <#DATAPACKET> tag instead of
the actual XML, using this as a template still allows your application to fetch data
packets from the application server dynamically.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 30-1

C h a p t e r

30
Chapter30Using XML in database applications

In addition to the support for connecting to database servers, C++Builder lets you
work with XML documents as if they were database servers. XML (Extensible
Markup Language) is a markup language for describing structured data. XML
documents provide a standard, transportable format for data that is used in Web
applications, business-to-business communication, and so on. For information on
C++Builder’s support for working directly with XML documents, see Chapter 35,
“Working with XML documents.”

C++Builder’s support for working with XML documents in database applications is
based on a set of components that can convert data packets (the Data property of a
client dataset) into XML documents and convert XML documents into data packets.
In order to use these components, you must first define the transformation between
the XML document and the data packet. Once you have defined the transformation,
you can use special components to

• convert XML documents into data packets.
• provide data from and resolve updates to an XML document.
• use an XML document as the client of a provider.

Defining transformations
Before you can convert between data packets and XML documents, you must define
the relationship between the metadata in a data packet and the nodes of the
corresponding XML document. A description of this relationship is stored in a
special XML document called a transformation.

Each transformation file contains two things: the mapping between the nodes in an
XML schema and the fields in a data packet, and a skeletal XML document that
represents the structure for the results of the transformation. A transformation is a
one-way mapping: from an XML schema or document to a data packet or from the
metadata in a data packet to an XML schema. Often, you create transformation files

30-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g t r a n s f o r m a t i o n s

in pairs: one that maps from XML to data packet, and one that maps from data packet
to XML.

In order to create the transformation files for a mapping, use the XMLMapper utility
that ships in the bin directory.

Mapping between XML nodes and data packet fields

XML provides a text-based way to store or describe structured data. Datasets provide
another way to store and describe structured data. To convert an XML document into
a dataset, therefore, you must identify the correspondences between the nodes in an
XML document and the fields in a dataset.

Consider, for example, an XML document that represents a set of email messages. It
might look like the following (containing a single message):

<?xml version="1.0" standalone='yes' ?>
<email>

<head>
<from>

<name>Dave Boss</name>
<address>dboss@MyCo.com</address>

</from>
<to>

<name>Joe Engineer</name>
<address>jengineer@MyCo.com</address>

</to>
<cc>

<name>Robin Smith/name>
<address>rsmith@MyCo.com</address>

</cc>
<cc>

<name>Leonard Devon</name>
<address>ldevon@MyCo.com</address>

</cc>
</head>
<body>

<subject>XML components</subject>
<content>
Joe,
Attached is the specification for the new XML component support in C++Builder.
This looks like a good solution to our buisness-to-buisness application!
Also attached, please find the project schedule. Do you think its reasonable?

Dave.
</content>
<attachment attachfile="XMLSpec.txt"/>
<attachment attachfile="Schedule.txt"/>

</body>
</email>

One natural mapping between this document and a dataset would map each e-mail
message to a single record. The record would have fields for the sender’s name and
address. Because an e-mail message can have multiple recipients, the recipient (<to>

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 30-3

D e f i n i n g t r a n s f o r m a t i o n s

would map to a nested dataset. Similarly, the cc list maps to a nested dataset. The
subject line would map to a string field while the message itself (<content>) would
probably be a memo field. The names of attachment files would map to a nested
dataset because one message can have several attachments. Thus, the e-mail above
would map to a dataset something like the following:

where the nested dataset in the “To” field is

the nested dataset in the “CC” field is

and the nested dataset in the “Attach” field is

Defining such a mapping involves identifying those nodes of the XML document that
can be repeated and mapping them to nested datasets. Tagged elements that have
values and appear only once (such as <content>...</content>) map to fields whose
datatype reflects the type of data that can appear as the value. Attributes of a tag
(such as the AttachFile attribute of the attachment tag) also map to fields.

Note that not all tags in the XML document appear in the corresponding dataset. For
example, the <head>...<head/> element has no corresponding element in the
resulting dataset. Typically, only elements that have values, elements that can be
repeated, or the attributes of a tag map to the fields (including nested dataset fields)
of a dataset. The exception to this rule is when a parent node in the XML document
maps to a field whose value is built up from the values of the child nodes. For
example, an XML document might contain a set of tags such as

<FullName>
<Title> Mr. </Title>
<FirstName> John </FirstName>
<LastName> Smith </LastName>

</FullName>

which could map to a single dataset field with the value

Mr. John Smith

SenderName SenderAddress To CC Subject Content Attach

Dave Boss dboss@MyCo.Com (DataSet) (DataSet) XML components (MEMO) (DataSet)

Name Address

Joe Engineer jengineer@MyCo.Com

Name Address

Robin Smith rsmith@MyCo.Com

Leonard Devon ldevon@MyCo.Com

Attachfile

XMLSpec.txt

Schedule.txt

30-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g t r a n s f o r m a t i o n s

Using XMLMapper

The XML mapper utility, xmlmapper.exe, lets you define mappings in three ways:

• From an existing XML schema (or document) to a client dataset that you define.
This is useful when you want to create a database application to work with data
for which you already have an XML schema.

• From an existing data packet to a new XML schema you define. This is useful
when you want to expose existing database information in XML, for example to
create a new business-to-business communication system.

• Between an existing XML schema and an existing data packet. This is useful when
you have an XML schema and a database that both describe the same information
and you want to make them work together.

Once you define the mapping, you can generate the transformation files that are used
to convert XML documents to data packets and to convert data packets to XML
documents. Note that only the transformation file is directional: a single mapping
can be used to generate both the transformation from XML to data packet and from
data packet to XML.

Note XML mapper relies on two .DLLs (midas.dll and msxml.dll) to work correctly. Be
sure that you have both of these .DLLs installed before you try to use
xmlmapper.exe. In addition, msxml.dll must be registered as a COM server. You can
register it using Regsvr32.exe.

Loading an XML schema or data packet
Before you can define a mapping and generate a transformation file, you must first
load descriptions of the XML document and the data packet between which you are
mapping.

You can load an XML document or schema by choosing File|Open and selecting the
document or schema in the resulting dialog.

You can load a data packet by choosing File|Open and selecting a data packet file in
the resulting dialog. (The data packet is simply the file generated when you call a
client dataset’s SaveToFile method.) If you have not saved the data packet to disk, you
can fetch the data packet directly from the application server of a multi-tiered
application by right-clicking in the Datapacket pane and choosing Connect To
Remote Server.

You can load only an XML document or schema, only a data packet, or you can load
both. If you load only one side of the mapping, XML mapper can generate a natural
mapping for the other side.

Defining mappings
The mapping between an XML document and a data packet need not include all of
the fields in the data packet or all of the tagged elements in the XML document.
Therefore, you must first specify those elements that are mapped. To specify these
elements, first select the Mapping page in the central pane of the dialog.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 30-5

D e f i n i n g t r a n s f o r m a t i o n s

To specify the elements of an XML document or schema that are mapped to fields in
a data packet, select the Sample or Structure tab of the XML document pane and
double-click on the nodes for elements that map to data packet fields.

To specify the fields of the data packet that are mapped to tagged elements or
attributes in the XML document and double-click on the nodes for those fields in the
Datapacket pane.

If you have only loaded one side of the mapping (the XML document or the data
packet), you can generate the other side after you have selected the nodes that are
mapped.

• If you are generating a data packet from an XML document, you first define
attributes for the selected nodes that determine the types of fields to which they
correspond in the data packet. In the center pane, select the Node Repository page.
Select each node that participates in the mapping and indicate the attributes of the
corresponding field. If the mapping is not straightforward (for example, a node
with subnodes that corresponds to a field whose value is built from those
subnodes), check the User Defined Translation check box. You will need to write
an event handler later to perform the transformation on user defined nodes.

Once you have specified the way nodes are to be mapped, choose Create|
Datapacket from XML. The corresponding data packet is automatically generated
and displayed in the Datapacket pane.

• If you are generating an XML document from a data packet, choose Create|XML
from Datapacket. A dialog appears where you can specify the names of the tags
and attributes in the XML document that correspond to fields, records, and
datasets in the data packet. For field values, you specify whether they map to a
tagged element with a value or to an attribute by the way you name them. Names
that begin with an @ symbol map to attributes of the tag that corresponds to the
record, while names that do not begin with an @ symbol map to tagged elements
that have values and that are nested within the element for the record.

• If you have loaded both an XML document and a data packet (client dataset file),
be sure you select corresponding nodes in the same order. The corresponding
nodes should appear next to each other in the table at the top of the Mapping page.

Once you have loaded or generated both the XML document and the data packet and
selected the nodes that appear in the mapping, the table at the top of the Mapping
page should reflect the mapping you have defined.

Generating transformation files
To generate a transformation file, use the following steps:

1 First select the radio button that indicates what the transformation creates:

• Choose the Datapacket to XML button if the mapping goes from data packet to
XML document.

• Choose the XML to Datapacket button if the mapping goes from XML
document to data packet.

30-6 D e v e l o p e r ’ s G u i d e

C o n v e r t i n g X M L d o c u m e n t s i n t o d a t a p a c k e t s

2 If you are generating a data packet, you will also want to use the radio buttons in
the Create Datapacket As section. These buttons let you specify how the data
packet will be used: as a dataset, as a delta packet for applying updates, or as the
parameters to supply to a provider before fetching data.

3 Click Create and Test Transformation to generate an in-memory version of the
transformation. XML mapper displays the XML document that would be
generated for the data packet in the Datapacket pane or the data packet that would
be generated for the XML document in the XML Document pane.

4 Finally, choose File|Save|Transformation to save the transformation file. The
transformation file is a special XML file (with the .xtr extension) that describes the
transformation you have defined.

Converting XML documents into data packets
Once you have created a transformation file that indicates how to transform an XML
document into a data packet, you can create data packets for any XML document that
conforms to the schema used in the transformation. These data packets can then be
assigned to a client dataset and saved to a file so that they form the basis of a file-
based database application.

The TXMLTransform component transforms an XML document into a data packet
according to the mapping in a transformation file.

Note You can also use TXMLTransform to convert a data packet that appears in XML
format into an arbitrary XML document.

Specifying the source XML document

There are three ways to specify the source XML document:

• If the source document is an .xml file on disk, you can use the SourceXmlFile
property.

• If the source document is an in-memory string of XML, you can use the SourceXml
property.

• If you have an IDOMDocument interface for the source document, you can use the
SourceXmlDocument property.

TXMLTransform checks these properties in the order listed above. That is, it first
checks for a file name in the SourceXmlFile property. Only if SourceXmlFile is an
empty string does it check the SourceXml property. Only if SourceXml is an empty
string does it then check the SourceXmlDocument property.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 30-7

C o n v e r t i n g X M L d o c u m e n t s i n t o d a t a p a c k e t s

Specifying the transformation

There are two ways to specify the transformation that converts the XML document
into a data packet:

• Set the TransformationFile property to indicate a transformation file that was
created using xmlmapper.exe.

• Set the TransformationDocument property if you have an IDOMDocument interface
for the transformation.

TXMLTransform checks these properties in the order listed above. That is, it first
checks for a file name in the TransformationFile property. Only if TransformationFile is
an empty string does it check the TransformationDocument property.

Obtaining the resulting data packet

To cause TXMLTransform to perform its transformation and generate a data packet,
you need only read the Data property. For example, the following code uses an XML
document and transformation file to generate a data packet, which is then assigned
to a client dataset:

XMLTransform1->SourceXMLFile = "CustomerDocument.xml";
XMLTransform1->TransformationFile = "CustXMLToCustTable.xtr";
ClientDataSet1->XMLData = XMLTransform1->Data;

Converting user-defined nodes

When you define a transformation using xmlmapper.exe, you can specify that some
of the nodes in the XML document are “user-defined”. User-defined nodes are nodes
for which you want to provide the transformation in code rather than relying on a
straightforward node-value-to-field-value translation.

You can provide the code to translate user-defined nodes using the OnTranslate
event. OnTranslate is called every time the TXMLTransform component encounters a
user-defined node in the XML document. In the OnTranslate event handler, you can
read the source document and specify the resulting value for the field in the data
packet.

For example, the following OnTranslate event handler converts a node in the XML
document with the following form

<FullName>
<Title> </Title>
<FirstName> </FirstName>
<LastName> </LastName>

</FullName>

into a single field value:

void __fastcall TForm1::XMLTransform1Translate(TObject *Sender, AnsiString Id,
 _di_IDOMNode SrcNode, AnsiString &Value, _di_IDOMNode DestNode)
{

if (Id == "FullName")

30-8 D e v e l o p e r ’ s G u i d e

U s i n g a n X M L d o c u m e n t a s t h e s o u r c e f o r a p r o v i d e r

{
Value = "";
if (SrcNode.hasChildNodes)
{

_di_IXMLDOMNode CurNode = SrcNode.firstChild;
Value = SrcValue + AnsiString(CurNode.nodeValue);
while (CurNode != SrcNode.lastChild)
{
CurNode = CurNode.nextSibling;
Value = Value + AnsiString(" ");
Value = Value + AnsiString(CurNode.nodeValue);

}
}

}
}

Using an XML document as the source for a provider
The TXMLTransformProvider component lets you use an XML document as if it were
a database table. TXMLTransformProvider packages the data from an XML document
and applies updates from clients back to that XML document. It appears to clients
such as client datasets or XML brokers like any other provider component. For
information on provider components, see Chapter 28, “Using provider components.”
For information on using provider components with client datasets, see “Using a
client dataset with a provider” on page 27-24.

You can specify the XML document from which the XML provider provides data and
to which it applies updates using the XMLDataFile property.

TXMLTransformProvider components use internal TXMLTransform components to
translate between data packets and the source XML document: one to translate the
XML document into data packets, and one to translate data packets back into the
XML format of the source document after applying updates. These two
TXMLTransform components can be accessed using the TransformRead and
TransformWrite properties, respectively.

When using TXMLTransformProvider, you must specify the transformations that these
two TXMLTransform components use to translate between data packets and the
source XML document. You do this by setting the TXMLTransform component’s
TransformationFile or TransformationDocument property, just as when using a stand-
alone TXMLTransform component.

In addition, if the transformation includes any user-defined nodes, you must supply
an OnTranslate event handler to the internal TXMLTransform components.

You do not need to specify the source document on the TXMLTransform components
that are the values of TransformRead and TransformWrite. For TransformRead, the
source is the file specified by the provider’s XMLDataFile property (although, if you
set XMLDataFile to an empty string, you can supply the source document using
TransformRead->XmlSource or TransformRead->XmlSourceDocument). For
TransformWrite, the source is generated internally by the provider when it applies
updates.

U s i n g X M L i n d a t a b a s e a p p l i c a t i o n s 30-9

U s i n g a n X M L d o c u m e n t a s t h e c l i e n t o f a p r o v i d e r

Using an XML document as the client of a provider
The TXMLTransformClient component acts as an adapter to let you use an XML
document (or set of documents) as the client for an application server (or simply as
the client of a dataset to which it connects via a TDataSetProvider component). That is,
TXMLTransform client lets you publish database data as an XML document and to
make use of update requests (insertions or deletions) from an external application
that supplies them in the form of XML documents.

To specify the provider from which the TXMLTransformClient object fetches data and
to which it applies updates, set the ProviderName property. As with the ProviderName
property of a client dataset, ProviderName can be the name of a provider on a remote
application server or it can be a local provider in the same form or data module as the
TXMLTransformClient object. For information about providers, see Chapter 28,
“Using provider components.”

If the provider is on a remote application server, you must use a DataSnap
connection component to connect to that application server. Specify the connection
component using the RemoteServer property. For information on DataSnap
connection components, see “Connecting to the application server” on page 29-22.

Fetching an XML document from a provider

TXMLTransformClient uses an internal TXMLTransform component to translate data
packets from the provider into an XML document. You can access this
TXMLTransform component as the value of the TransformGetData property.

Before you can create an XML document that represents the data from a provider,
you must specify the transformation file that TransformGetData uses to translate the
data packet into the appropriate XML format. You do this by setting the
TXMLTransform component’s TransformationFile or TransformationDocument property,
just as when using a stand-alone TXMLTransform component. If that transformation
includes any user-defined nodes, you will want to supply TransformGetData with an
OnTranslate event handler as well.

There is no need to specify the source document for TransformGetData,
TXMLTransformClient fetches that from the provider. However, if the provider
expects any input parameters, you may want to set them before fetching the data.
Use the SetParams method to supply these input parameters before you fetch data
from the provider. SetParams takes two arguments: a string of XML from which to
extract parameter values, and the name of a transformation file to translate that XML
into a data packet. SetParams uses the transformation file to convert the string of XML
into a data packet, and then extracts the parameter values from that data packet.

Note You can override either of these arguments if you want to specify the parameter
document or transformation in another way. Simply set one of the properties on
TransformSetParams property to indicate the document that contains the parameters
or the transformation to use when converting them, and then set the argument you
want to override to an empty string when you call SetParams. For details on the

30-10 D e v e l o p e r ’ s G u i d e

U s i n g a n X M L d o c u m e n t a s t h e c l i e n t o f a p r o v i d e r

properties you can use, see “Converting XML documents into data packets” on
page 30-6.

Once you have configured TransformGetData and supplied any input parameters, you
can call the GetDataAsXml method to fetch the XML. GetDataAsXml sends the current
parameter values to the provider, fetches a data packet, converts it into an XML
document, and returns that document as a string. You can save this string to a file:

XMLTransformClient1->ProviderName = "Provider1";
XMLTransformClient1->TransformGetData->TransformationFile = "CustTableToCustXML.xtr";
XMLTransformClient1->TransFormSetParams->SourceXmlFile = "InputParams.xml";
XMLTransformClient1->SetParams("", "InputParamsToDP.xtr");
AnsiString XML = XMLTransformClient1->GetDataAsXml();
TFileStream pXMLDoc = new TFileStream("Customers.xml", fmCreate || fmOpenWrite);
__try
{

pXMLDoc->Write(XML.c_str(), XML.Length());
}
__finally
{

delete pXMLDoc;
}

Applying updates from an XML document to a provider

TXMLTransformClient also lets you insert all of the data from an XML document into
the provider’s dataset or to delete all of the records in an XML document from the
provider’s dataset. To perform these updates, call the ApplyUpdates method, passing
in

• A string whose value is the contents of the XML document with the data to insert
or delete.

• The name of a transformation file that can convert that XML data into an insert or
delete delta packet. (When you define the transformation file using the XML
mapper utility, you specify whether the transformation is for an insert or delete
delta packet.)

• The number of update errors that can be tolerated before the update operation is
aborted. If fewer than the specified number of records can’t be inserted or deleted,
ApplyUpdates returns the number of actual failures. If more than the specified
number of records can’t be inserted or deleted, the entire update operation is
rolled back, and no update is performed.

The following call transforms the XML document Customers.xml into a delta packet
and applies all updates regardless of the number of errors:

StringList1->LoadFromFile("Customers.xml");
nErrors = ApplyUpdates(StringList1->Text, "CustXMLToInsert.xtr", -1);

W r i t i n g I n t e r n e t a p p l i c a t i o n s

P a r t

III
Part IIIWriting Internet applications

The chapters in “Writing Internet applications” present concepts and skills necessary
for building applications that are distributed over the Internet.

Note The components described in this section are not available in all editions of
C++Builder.

W r i t i n g C O R B A a p p l i c a t i o n s 31-1

C h a p t e r

31
Chapter31Writing CORBA applications

 CORBA (Common Object Request Broker Architecture) is a specification adopted by
the Object Management Group (OMG) to address the complexity of developing
distributed object applications.

As its name implies, CORBA provides an object-oriented approach to writing
distributed applications. This is in contrast to a message-oriented approach such as
the one described for HTTP applications in Chapter 32, “Creating Internet server
applications.” Under CORBA, server applications implement objects that can be used
remotely by client applications, through well-defined interfaces.

Note COM provides another object-oriented approach to distributed applications. For
more information about COM, see Chapter 38, “Overview of COM technologies.”
Unlike COM, however, CORBA is a standard that applies to platforms other than
Windows. This means you can write CORBA clients or servers using C++Builder that
can communicate with CORBA-enabled applications running on other platforms.

The CORBA specification defines how client applications communicate with objects
that are implemented on a server. This communication is handled by an Object
Request Broker (ORB). C++Builder is tightly integrated with Borland’s VisiBroker
ORB (Version 4.5) to make your CORBA development easier.

In addition to the basic ORB technology, which enables clients to communicate with
objects on server machines, the CORBA standard defines a number of standard
services. Because these services use well-defined interfaces, developers can write
clients that use these services even if the servers are written by different vendors.

Overview of a CORBA application
If you are already doing object-oriented programming, CORBA makes writing
distributed applications easy, because it lets you use remote objects almost as if they
were local. This is because the design of a CORBA application is much like any other
object-oriented application, except that it includes an additional layer for handling

31-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f a C O R B A a p p l i c a t i o n

network communication when an object resides on a different machine. This
additional layer is handled by special objects called stubs and skeletons.

Figure 31.1 Structure of a CORBA application

On CORBA clients, the stub acts as a proxy for an object that may be implemented by
the same process, another process, or on another (server) machine. The client
interacts with the stub as it would with any other object.

However, unlike most objects, the stub handles interface calls by calling into the ORB
software that is installed on the client machine. The VisiBroker ORB uses a Smart
Agent (osagent) that is running somewhere on the local area network. The Smart
Agent is a dynamic, distributed directory service that locates an available server
which provides the real object implementation.

On the CORBA server, the ORB software passes interface calls to an automatically-
generated skeleton. The skeleton communicates with the ORB software through the
Basic Object Adaptor (BOA). Using the BOA, the skeleton registers the object with
the Smart Agent, indicates the scope of the object (whether it can be used on remote
machines), and indicates when objects are instantiated and ready to respond to
clients.

Understanding stubs and skeletons

The basis of a distributed object under CORBA is its interface. The interface is much
like a class definition, except that it includes no implementation information. You
define interfaces using the CORBA interface definition language (IDL). You can then
add the interface definition to your project as an IDL file. For more information about
IDL files, stubs, and skeletons, see the VisiBroker Programmer’s Guide. For more
information on working with IDL files in C++Builder, see “Defining object
interfaces” on page 31-5.

When you compile the IDL file, C++Builder builds two .cpp files for you. One, the
client file, contains the implementation of the stub class. The other, the server file,
contains the implementation of the skeleton class. Stubs and skeletons provide the
mechanism that allows CORBA applications to marshal interface calls. Marshaling

• Takes an object instance in the server’s process and makes it available to code in
the client process.

Client
Application

Stub

ORB
Smart
Agent

Object
Implementation

Skeleton

ORB Basic Object
Adaptor

W r i t i n g C O R B A a p p l i c a t i o n s 31-3

O v e r v i e w o f a C O R B A a p p l i c a t i o n

• Transfers the arguments of an interface call as passed from the client and places
the arguments into the remote object’s process space.

When the client application calls the method of a CORBA object, it pushes arguments
onto the stack and calls the stub object. The stub writes the arguments into a
marshaling buffer and transmits the call in a structure to the remote object. The
server skeleton unpacks this structure, pushes the arguments onto the stack, and calls
the object’s implementation. In essence, the skeleton recreates the client’s call in its
own address space.

Using Smart Agent

The Smart Agent (osagent) is a dynamic, distributed directory service that locates an
available server that implements an object. If there are multiple servers to choose
from, the Smart Agent provides load balancing. It also protects against server failures
by attempting to restart the server when a connection fails, or, if necessary, locating a
server on another host.

A Smart Agent must be started on at least one host in your local network, where local
network refers to a network within which a broadcast message can be sent. The ORB
locates a Smart Agent by using a broadcast message. If the network includes multiple
Smart Agents, the ORB uses the first one that responds. Once the Smart Agent is
located, the ORB uses a point-to-point UDP protocol to communicate with the Smart
Agent. The UDP protocol consumes fewer network resources than a TCP connection.

When a network includes multiple Smart Agents, each Smart Agent recognizes a
subset of the objects available, and communicates with other Smart Agents to locate
objects it can’t recognize directly. If one Smart Agent terminates unexpectedly, the
objects it keeps track of are automatically reregistered with another available Smart
Agent.

For details about configuring and using Smart Agents on your local networks, see the
VisiBroker Installation and Administration Guide.

Activating server applications

When the server application starts, it informs the ORB (through the Basic Object
Adaptor) of the objects that can accept client calls. This code, which initializes the
ORB and informs it that the server is up and ready, is added to your application
automatically by the wizard you use to start your CORBA server application.

Typically, CORBA server applications are started manually. However, you can use
the Object Activation Daemon (OAD) to start your servers or instantiate their objects
only when clients need to use them.

To use the OAD, you must register your objects with it. Registering your objects with
the OAD stores the association between your objects and the server application that
implements them in a database called the Implementation Repository.

Once there is an entry for your object in the Implementation Repository, the OAD
simulates your application to the ORB. When a client requests the object, the ORB

31-4 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

contacts the OAD as if it were the server application. The OAD then forwards the
client request to the real server, launching the application if necessary.

For details about registering your objects with the OAD, see the VisiBroker
Programmer’s Guide.

Binding interface calls dynamically

Typically, CORBA clients use static binding when calling the interfaces of objects on
the server. This approach has many advantages, including faster performance and
compile-time type checking. However, there are times when you can’t know until
runtime what interface you want to use. For these cases, C++Builder lets you bind to
interfaces dynamically at runtime.

When using dynamic binding, it helps to register your interfaces with the Interface
Repository.

For details on how to use dynamic binding in your CORBA client applications, see
the information on the Dynamic Invocation Interface (DII) in the VisiBroker
Programmer’s Guide.

Writing CORBA servers
C++Builder includes several wizards to ease the process of developing CORBA
servers. The following steps describe how to create a CORBA server using
C++Builder:

1 Define your object interfaces. These interfaces define how client applications
interact with your server. They also are the basis from which C++Builder creates
your stub and skeleton implementations.

2 Use the CORBA server wizard to create a new CORBA server application that
includes the code to initialize the CORBA BOA and ORB at startup.

3 Compile the IDL files that contain your interface definitions into skeleton classes
(and stub classes).

4 Use the CORBA object wizard to define (and instantiate) your implementation
classes.

5 Implement your CORBA objects by completing the classes created in step 5.

6 If necessary, change your CORBA interfaces and fold those changes into your
implementation classes.

In addition to the steps listed above, you may choose to register your IDL files with
the Interface Repository and Object Activation Daemon.

W r i t i n g C O R B A a p p l i c a t i o n s 31-5

W r i t i n g C O R B A s e r v e r s

Defining object interfaces

CORBA object interfaces are defined using the CORBA Interface Definition
Language (IDL). IDL has a syntax similar to C++, so an IDL file looks similar to a C++
header file. The IDL file acts much like a header file also, declaring the interfaces that
can be shared, just the way a header file declares the classes that can be shared.
However, in CORBA, the interfaces (classes) are shared with other applications
rather than (or in addition to) other modules in the same application.

Note The term IDL is used in different contexts to refer to similar, but not identical,
interface definition languages. There is a CORBA IDL (defined by OMG), a Microsoft
IDL (used for COM) and a DCE IDL. For details on the CORBA IDL, see the online
help.

To define a new IDL file from within C++Builder, choose File|New|Other and select
CORBA IDL File from the Multitier page of the New Items dialog. This opens the
code editor with a blank IDL file and adds the IDL file to your current project.

If you already have an IDL file defining your objects, you can simply add this file to
your project by choosing Project|Add to Project, selecting IDL files as a file type, and
selecting your existing IDL file.

Using the CORBA Server Wizard

To start a new CORBA Server project, choose File|New|Other and from the
Multitier page of the New Items dialog, choose the icon labeled CORBA Server. The
CORBA Server wizard lets you indicate whether you want to create a console
application or a windows application.

If you are creating a console application, you can specify whether your server will
use the VCL classes. If you do not check the VCL checkbox, all generated code can be
ported to other platforms.

In addition to choosing the type of application, you can include any existing IDL files
to your project, or specify that you want to include a new, blank IDL file. Your server
project must eventually include one or more IDL files, which define the interfaces
clients use to communicate with your server.

Note If you do not add the IDL files when you start a CORBA server project, you can
always add them later by choosing Project|Add to Project (for existing IDL files) or
choosing CORBA IDL file from the Multitier page of the New Items dialog (to define
a new IDL file).

When you indicate the type of server you want and click OK, the CORBA Server
wizard creates a new server project of the specified type, adding the CORBA libraries
to the project file and startup code to initialize the ORB (Object Request Broker) and
BOA (Basic Object Adaptor).

The automatically generated code declares two variables, orb and boa, that you can
use to communicate with the ORB and BOA:

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
CORBA::BOA_var boa = orb->BOA_init(argc, argv);

31-6 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

If you specified a console application, you will also see the following line:

boa->impl_is_ready();

This call allows your application to receive messages from the BOA, much the way a
Windows message loop allows a Windows application to receive messages from
Windows. (Windows applications use the Windows message loop for CORBA
messages as well).

For more information about the ORB and BOA, see your VisiBroker documentation.

Generating stubs and skeletons from an IDL file

Once you have added the IDL file that describes your CORBA interfaces to a CORBA
project, you are ready to generate the stub and skeleton classes that handle the
communication between your server and its client applications.

To generate the stub and skeleton classes, simply compile the IDL file. You can
compile this file by choosing Project|Compile Unit when the IDL file is displayed in
the code editor, or right-click on the IDL file in the project manager and choose
Compile. The IDL compiler generates two new files, which appear in the code editor
and project manager. These are

• The server file (xxx_s.cpp). This file contains the implementation of the skeleton
classes.

• The client file (xxx_c.cpp). This file contains the implementation of the stub
classes.

The CORBA page of the project options dialog allows you to influence how the stub
and skeleton classes are generated from you IDL file. For example, you can specify
that you only want to include the generated server unit in your project, or specify
that you want to include Tie classes if your server uses the delegation model
(described in “Using the delegation model” on page 31-8). These options affect the
compilation of all IDL files included in the current project.

Using the CORBA Object Implementation Wizard

To implement the CORBA objects defined in your IDL file, you must create
implementation classes that correspond to every skeleton class. To do this, choose
File|New|Other, and from the Multitier page of the New Items dialog, choose
CORBA Object Implementation. This brings up the CORBA Object Implementation
Wizard.

The CORBA Object Implementation Wizard lists all the interfaces that are defined in
the IDL files included in your project. Choose an IDL file and from that IDL file select
the interface that you want to implement. Provide a name for the implementation
class and specify the unit name for the .h and .cpp files that will contain the object
definition and implementation.

W r i t i n g C O R B A a p p l i c a t i o n s 31-7

W r i t i n g C O R B A s e r v e r s

In the Wizard, indicate whether your implementation classes should be descendants
of the automatically generated skeleton classes, or whether you are using a
delegation model (tie classes). If you are using the delegation model (and your server
application is VCL-enabled), you can also tell the Wizard to make your
implementation class a data module. This allows you to add components to the
implementation data module that you want to use when writing the implementation.

You can tell the wizard to add code to instantiate your CORBA objects when the
application starts up, so that they are available to receive client requests. If you
instantiate objects at start-up, you must supply them with a name so that they can be
located by clients. This name is passed to the constructor as a parameter, it is not the
name of the variable that references the instance. When client applications bind to
your CORBA object, they use this name to indicate the object they want.

When you click OK, the CORBA Object Implementation Wizard generates the
definition for your implementation class and generates an implementation where
every method has an empty body. It may also add code to instantiate your objects if
you indicated that was what you wanted.

Before these changes are added to your project, you can view and edit them. To do
so, check the box labeled Show Updates before clicking OK. After you have viewed
the changes and edited them, they are added to your project. If you do not choose to
view and edit the changes when you exit the wizard, you can edit them later in the
code editor.

To implement multiple interfaces, you must invoke the CORBA Object
Implementation Wizard several times, once for each interface. However, you can tell
the Wizard to generate multiple instances of a single implementation class by
providing multiple names.

Instantiating CORBA objects
For every CORBA object, you must decide how it is to be instantiated. There are two
choices:

• The object is instantiated when the server application starts. In this case, the object
is available to client applications whenever the server is.

• The object is instantiated in response to a client request (a method call on an
existing object). In this case, the server application instantiates the object within
the implementation of an interface method, and returns a reference to the object
from that method.

If the object is instantiated when the application starts, check the box labeled
Instantiate in main in the CORBA Object Wizard. The wizard adds the code to
instantiate your implementation class directly to your project’s source file. You can
see this code by choosing Project|View Source. After the lines that the CORBA
Server Wizard inserted to call ORB_init and BOA_init, and before the call to
impl_is_ready(), you will find the code that instantiates your implementation class
and inform the boa that the object can take requests:

MyObjImpl MyObject_TheObject("TheObject"); // create the object instance
boa->obj_is_ready(&MyObject_TheObject); // inform the boa it can take requests

31-8 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

You can add initialization code between the constructor and the call to obj_is_ready:

MyObjImpl MyObject_TheObject("TheObject"); // create the object instance
MyObject_TheObject.Initialize(50000);
boa->obj_is_ready(&MyObject_TheObject); // inform the boa it can take requests

Note If you are using tie classes (see below), there will also be a call to instantiate the tie
class.

If you do not instantiate your objects at startup, then can call the constructor (and, if
necessary, the constructor for the tie class) from a method and return a reference to
the object instance. It is good practice to add a call to the BOA’s obj_is_ready method
as well.

Objects that accept calls from CORBA clients must be given a name, or the clients
can’t find them. Transient objects (objects created in response to client calls and
returned as references) do not need to be given names.

Using the delegation model
By default, CORBA objects are descendants of skeleton classes that are created when
you compile an IDL file. This means that the object classes inherit all the code that
marshals interface calls and interacts with the BOA. However, if you want to expose
objects in your CORBA server that have already been written, that descend from
VCL classes (which do not permit multiple inheritance), or that you want to share
with other, non-CORBA applications, it is possible to use server classes that have no
dependence on CORBA or the generated server files.

To expose objects that do not descend from a skeleton class, your application must
use a delegation model. A delegation model is one where the instances of the
skeleton classes do not directly implement the CORBA objects, but rather pass
interface class on to a completely separate implementation class. That is, the
implementation class is not a descendant of the skeleton, but rather, is called by the
skeleton.

To use the delegation model, you must generate tie classes when you compile the
IDL files. Before compiling the IDL files, choose Project|Options, and on the IDL
page of the project options dialog, check the box for generating tie classes.

When the IDL file is compiled, the server file contains a special tie class in addition to
the skeleton class. This tie class acts as a proxy for your implementation class, and for
its method implementations, it delegates (passes the call on) to your implementation
class.

When you use the CORBA Object Wizard to define your implementation class,
choose the Delegation (Tie) radio button, so that the implementation class is not
created as a descendant of the skeleton class. The CORBA Object Wizard adds a
comment next to the class declaration. Do not remove this comment: it is used by
C++Builder to identify the class as a CORBA implementation class.

In addition to changing the way the CORBA Object Wizard generates the
implementation class, choosing Tie also affects any automatically generated code that
instantiates the object.

W r i t i n g C O R B A a p p l i c a t i o n s 31-9

W r i t i n g C O R B A s e r v e r s

When your server application instantiates the implementation class, it must
immediately afterward instantiate the associated tie class, passing the
implementation class instance as an argument to the constructor. If your
implementation class is instantiated at start-up, the code to do this is generated
automatically by the CORBA Object Wizard. However, if you are instantiating your
CORBA object dynamically at runtime, you must add this code yourself. For
example:

MyObjImpl myobj(); // instantiate implementation object
_tie_MyObj<MyObjImpl> tieobj(myobj, "InstanceName");

Viewing and editing changes
Before adding any changes to your project, it is a good idea to preview and edit those
changes. This serves two purposes:

• You are aware of all changes made to your project. No automatically generated
code will appear that creates behavior you don’t know about.

• You can customize those changes without having to search through your
implementation files. This is especially helpful if you are adding changes to a file
that already has a lot of code.

To view and edit changes, use the Project Updates dialog box. This dialog box
appears when you check Show Updates in any of the CORBA wizards or when you
choose Edit|CORBA Refresh.

The Project Updates dialog lists the changes in a pane on the left. You can reject any
change by unchecking the box that appears to its left. If you reject a change, it is not
committed to your project, and you must write the analogous code yourself.

Note The changes are listed in the order in which they are made. Removing one change
may remove other changes that depend on that change. For example, unchecking the
creation of a new file will uncheck the changes that represent code added to that file.

As you scroll through the list of changes, you will see the code that is added in the
code pane. The file that is changed to contain that code is listed at the bottom of the
code pane.

You can edit the code pane if you want to customize a change. For example, you may
want to add an additional ancestor class to your implementation class so that inherits
the behavior of one of your existing classes. You can also add code to implement
methods, filling in the automatically generated empty method bodies.

When you have finished viewing and editing the automatically generated changes,
click OK, and they are added to your project, including any edits you made. If you do
not want to accept any of the changes, cancel the dialog.

Implementing CORBA Objects

If you are not using a delegation model, the implementation class is a descendant of
the skeleton class that was generated when you compiled the IDL file. Otherwise,
there are no explicit ancestors to your implementation classes. You can change this

31-10 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

class definition so that it inherits from another class in your server application, but do
not remove any existing inheritance from a skeleton class.

Consider the following declaration from an IDL file, account.idl:

interface Account {
float balance();

};

When the IDL file is compiled (without tie classes), the generated server header
(account_s.hh) includes the declaration of a skeleton class with pure virtual methods
for every method in your interface.

The CORBA Object Wizard creates an implementation unit that derives an
implementation class from the skeleton class (_sk_Account). It’s header file looks like
the following:

#ifndef Interface1ServerH
#define Interface1ServerH
#include "account_s.hh"
//---
class AccountImpl: public _sk_Account
{
 protected:
 public:
 AccountImpl(const char *object_name=NULL);
 CORBA::float balance();
};

#endif

You may want to add additional data members or methods to this class definition
that you need for your implementation. For example:

#ifndef Interface1ServerH
#define Interface1ServerH
#include "account_s.hh"
//---
class AccountImpl: public _sk_Account
{
 protected:

CORBA::float _bal;
 public:

void Initialize(CORBA::float startbal); // not available to clients
 AccountImpl(const char *object_name=NULL);
 CORBA::float balance();
};

#endif

These additional methods and properties are available from the server application
but are not exposed to clients.

W r i t i n g C O R B A a p p l i c a t i o n s 31-11

W r i t i n g C O R B A s e r v e r s

In the generated .cpp file, fill in the body of the implementation class so that you
have a working CORBA object:

AccountImpl::AccountImpl(const char *object_name):
 _sk_Account(object_name)
{
}

CORBA::float AccountImpl::balance()
{

return _bal;
};

void Initialize(CORBA::float startbal) // not available to clients
{

_bal = startbal;
}

Note From your CORBA server, you can write code that interacts with the BOA. For
example, using the BOA, you can temporarily hide, or deactivate, server objects and
later reactivate them. See the VisiBroker Programmer’s Guide for details on how to
write code that interacts with the BOA.

Guarding against thread conflicts
By default, CORBA applications are multi-threaded. This means that you must guard
against thread conflicts when implementing your CORBA objects.

Unless you specify otherwise, the BOA pools client threads, meaning that client
requests can use any available thread. You can, however, ensure that each client
always uses the same thread by starting the BOA with a per-session threading policy.
When each client always uses the same thread, you can store persistent client
information in thread variables. See the VisiBroker Programmer’s Guide for information
about how to set the threading policy when you start the BOA.

The VisiBroker library includes classes that can help you guard your code against
thread conflicts. These are defined in the header file vthread.h, which is installed in
the VisiBroker include directory. The VisiBroker thread support classes include a
mutex (VisMutex), a condition variable (VISCondition), and a read/write lock that
works like the VCL’s multi-read exclusive-write synchronizer (VISRWLock). One
advantage to using these classes is that they are portable across all platforms
supported by VisiBroker.

For example, you can protect instance data by adding a VisMutex field to your
implementation class:

class A {
VISMutex _mtx;
...

}

31-12 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A s e r v e r s

Then, when you need to synchronize access to instance data, you can lock the mutex
within any method that accesses the instance data:

void A::AccessSharedMemory(...)
{

VISMutex_var lock(_mtx); // acquires a lock that is released on exit
// add code here to access the instance data
}

Note that the mutex is released when AccessSharedMemory completes execution,
even if an exception is thrown within the body of the method.

If you are using the VCL in your server application, C++Builder includes a number of
classes that can help you guard against thread conflicts. See Chapter 11, “Writing
multi-threaded applications” for more information about them.

Changing CORBA interfaces

If you make changes to the interfaces in your IDL files after you have generated
implementation classes for them using the CORBA Object Wizard, C++Builder lets
you automatically update your server project to reflect those changes without losing
the work you have already invested in writing the implementation classes.

After you have changed the IDL files, choose Edit|CORBA Refresh. This command
recompiles your IDL files so that the automatically generated client and server files
reflect the new interface definitions and current compiler options. If the IDL files
successfully compile, you can preview and edit the changes that C++Builder makes,
using the Project Updates dialog.

Note If C++Builder does not find the interface that corresponds to an existing
implementation class, it asks if you have renamed the interface. If you say yes, you
will be prompted to indicate how your interfaces were renamed, so that the
implementation classes can be correctly matched to interfaces.

When you use the CORBA Refresh command, new methods are added to your
implementation classes and declarations are updated to reflect changes to existing
methods and attributes. However, certain changes do not lead to updates. In
particular, if you delete a method or attribute, the code for it is not deleted. Instead,
deleted methods remain a part of the class, but are no longer available to CORBA
clients. Similarly, if you rename a method or attribute, this is treated like a deletion
and an addition, so the old method or attribute remains, and code is generated for a
new method or attribute.

Registering server interfaces

While it is not necessary to register your server interfaces if you are only using static
binding of client calls into your server objects, registering your interfaces is
recommended. There are two utilities with which you can register your interfaces:

• The Interface Repository. By registering with the Interface Repository, clients can
programmatically obtain information about your interfaces when they use the
dynamic invocation interface (DII). For more information about using DII, see

W r i t i n g C O R B A a p p l i c a t i o n s 31-13

W r i t i n g C O R B A c l i e n t s

“Using the dynamic invocation interface” on page 31-15. Registering with the
Interface Repository is also a convenient way to allow other developers to view
your interfaces when they write client applications.

You can register your interfaces with the interface repository by choosing Tools|
IDL Repository.

• The Object Activation Daemon. By registering with the Object Activation
Daemon (OAD), your server need not be launched or your objects instantiated
until they are needed by clients. This conserves resources on your server system.

Writing CORBA clients
When you write a CORBA client, the first step is to ensure that the client application
can talk to the ORB software on the client machine. To do this, use the CORBA Client
wizard. Choose File|New|Other, and from the Multitier page of the New Items
dialog, choose the icon labeled CORBA Client. The CORBA Client wizard lets you
indicate whether you want to create a console application or a windows application.

As with a CORBA server application, you can specify whether your CORBA client
application will use the VCL classes. If you do not check the VCL checkbox, all
generated code can be ported to other platforms.

In the CORBA Client wizard, include any existing IDL files that define the interfaces
of server objects you want to use. While it is possible to create a CORBA client
application without including any IDL files (by explicitly adding a generated client
unit to the project), this is not the preferred approach. When the project includes the
IDL files for server interfaces, you can use the Use CORBA Object wizard to bind to
objects on the server.

Note If you do not add the IDL files when you start a CORBA client project, you can
always add them later by choosing Project|Add to Project.

The CORBA Client wizard always creates a new client project of the specified type,
adding the CORBA libraries to the project file and adds the following startup code to
initialize the ORB (Object Request Broker).

CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

If you intend to pass callback interfaces to the CORBA server, you will need to
initialize the BOA (Basic Object Adaptor) in your client application as well. To do
this, simply check the appropriate box in the wizard.

Next, proceed with writing your application in the same way you write any other
application in C++Builder. However, when you want to use objects that are defined
in the server application, you do not work directly with an object instance. Instead,
you obtain a reference to a CORBA object and work with that. You can obtain the
CORBA object reference in one of two ways, depending on whether you want to use
static or dynamic binding.

To use static binding, you can invoke the Use CORBA Object wizard by choosing
Edit|Use CORBA Object. Using static binding is faster than using dynamic binding,

31-14 D e v e l o p e r ’ s G u i d e

W r i t i n g C O R B A c l i e n t s

and provides additional benefits such as compile-time type checking and code-
completion.

However, there are times when you do not know until runtime what object or
interface you want to use. For these cases, you can use dynamic binding. Dynamic
binding uses a generic CORBA object, which passes requests to the server using a
special CORBA type called an Any.

Using stubs

Stub classes are generated automatically when you Compile the IDL file. They are
defined in the generated client files, which have names of the form BaseName_c.cpp
and BaseName_c.hh.

Note You can tell C++Builder to build only the client (stub) files and not the server files
using the CORBA page of the Project Options dialog.

When writing a CORBA client, you do not edit the code in the generated client files.
Instead, instantiate the stub classes where they are used. To do this, choose Edit|Use
CORBA Object to bring up the Use CORBA Object wizard.

In the Use CORBA Object wizard, specify the IDL file that contains the interface you
want to access, and select the interface you will use. If you want to bind only to a
specific named instance of the CORBA object, you can optionally supply a name for
the CORBA Object.

The Use CORBA Object wizard lets you choose from several mechanisms for binding
to a server object.

• If your client application is a VCL-enabled Windows application, it can create a
property on your application’s form that holds an instance of your CORBA
object’s stub class. You can then use this property like an instance of the CORBA
server object.

• If you are creating a console application, the wizard can instantiate the stub class
as a variable in your application’s main() function. Similarly, it can instantiate the
stub class as a variable in the WinMain() function if you are creating a Windows
application.

• Whether you are creating a Windows application or a console application, the
wizard can add a property to an existing class in any unit you specify, or start a
new class for you that includes a property for the stub instance.

No matter which mechanism you choose, the wizard adds any necessary header files
and generates code that binds a stub variable or property to the CORBA server
object. For example, the following code instantiates the stub for a server interface
named MyServerObj in the main() function of a console application:

#include <corba.h>
#include <condefs.h>
#include “MyServerObj_c.hh”
#pragma argsused
int main(int argc, char* argv[])
{

W r i t i n g C O R B A a p p l i c a t i o n s 31-15

W r i t i n g C O R B A c l i e n t s

try
{

// Initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);
MyServerObj_var TheObject = MyServerObj::_bind("InstanceName");

}
catch(const CORBA::Exception& e)
{

cerr << e << endl;
return(1);

}
return 0;

}

Warning If you copy the code that binds to a sever object to another portion of your
application, be sure that the stub variable is a local variable or the data member of a
class. Global stub variables are tricky because they may not release their CORBA
reference count before the orb variable is released. If you must use a global stub
variable, be sure to unbind by setting the variable to NULL before the orb is released.

If your client application includes only the generated client unit (BaseName_c), you
can’t use the CORBA Object wizard to bind to server objects. Instead, you must
generate this code yourself. You may also want to write your own bind code to take
advantage of VisiBroker’s bind options. (For example, you may want to specify a
specific server, disable the feature that automatically tries to rebind to a server if the
CORBA connection is lost, and so on.) For more information about writing code that
binds to server objects, see the VisiBroker documentation.

 Using the dynamic invocation interface

The dynamic invocation interface (DII) allows client applications to call server objects
without using a stub class that explicitly marshals interface calls. Because DII must
encode all type information before the client sends a request and then decode that
information on the server, it is slower than using a stub class.

 To use DII in a client application, you must

1 Create a generic CORBA object, which works like a stub object, except that its
implementation does not include the code for marshaling requests. You must
supply the repository ID of the object to indicate what object should receive DII
requests:

CORBA::Object_var diiObj;
try
{

diiObj = orb->bind("IDL:ServerObj:1.0");
} catch (const CORBA::Exception& E)
{

// handle the bind exception.
}

31-16 D e v e l o p e r ’ s G u i d e

T e s t i n g C O R B A s e r v e r s

2 Next, use the generic CORBA object to create a request object for a specific method
of the object represented by the generic CORBA object:

CORBA::Request_var req = diiObj->_request("methodName");

3 Next, add any arguments that the method takes. The arguments are added to a list
on the request of type CORBA::NVList_ptr. Each argument is of the CORBA::Any
type, which is similar to a Variant. The CORBA::Any type is required because a
named value list (CORBA::NVList) must handle any argument list, which may
include values of any type.

CORBA::Any arg;
arg <<= (const char *)"argvalue";
CORBA::NVList_ptr arguments = req->arguments();
arguments->add_value("arg1", arg, CORBA::ARG_IN);

4 Now the request can be invoked:

req->invoke();

5 Finally, check for errors, and retrieve the result:

if (req->env()->exception())
// handle exception

else
{

CORBA::Any_ptr pRetVal = req->result()->value();
CORBA::float val;
Any_ptr >>= val;

}

For more details on using the dynamic invocation interface, see the VisiBroker
Programmer’s Guide.

Testing CORBA servers
C++Builder includes a CORBATest demo, that builds a universal client which allows
you to test your server interfaces. CORBATest records and runs scripts that exercise
the objects in your CORBA server application.

Note If you plan to use CORBATest to test many servers, you may find it convenient to
install this application on your Tools menu. To do this, Choose Tools|Configure
Tools, and add CorbaTest.exe using the Tools Options dialog box.

Setting up the testing tool

Before you can use CORBATest to test a CORBA application, the interface for your
server must be registered with a running Interface Repository. To do this:

1 Make sure that the VisiBroker SmartAgent is running by choosing Tools|
VisiBroker SmartAgent if the menu item is not checked.

2 Run the server application you wish to test.

W r i t i n g C O R B A a p p l i c a t i o n s 31-17

T e s t i n g C O R B A s e r v e r s

3 Choose Tools|IDL Repository to add the .idl files for your server application to
the Interface Repository. While you can use any running interface repository, you
will probably want to use a dedicated testing repository so that your testing does
not interfere with other uses of the interface repository. To start a dedicated testing
repository, click the Add IREP button in the Update IDL Repository dialog that
appears when you choose Tools|IDL Repository.

4 Start the testing tool by running CORBATest.exe, which can be built from the
demo code in the corbatest directory (..\examples\corba\corbatest).

Recording and running test scripts

A test script is simply a set CORBA object methods to be called, along with any
parameters to be passed to those methods. A single script can contain several calls to
the same method (for example, to test the method with different parameter values).

Build up a script by adding commands to the commands pane in the upper middle
pane of the testing tool. To add a command

1 If the object whose method you want to call does not have a tabbed page in the
objects pane (upper left), choose Edit|Add Object. The New Objects dialog
appears, where you can select an object by its repository ID. The repository ID for
an object is a string of the form “IDL:MyInterface1:1.0”, where “MyInterface” is
the interface name as declared in the .idl file. When you select an object, assign it a
name.

2 In the upper left pane, select the tab for the object whose method you want to add.
Each tab is labeled with an object name, which you assign when you add the object
(step 1). Each tabbed page lists the operations (methods) of the object that can be
tested.

3 Add commands to the script by dragging an operation from the object pane into
the commands pane in the upper middle of the testing tool.

4 When you select a method in the commands pane, its input parameters appear in
the details pane at the upper right. Supply values for the input parameters. The
status bar indicates the type of value required for the current input parameter.

Repeat these steps to add as many commands as you like for as many objects as you
like. When your script contains all the commands you want, choose Edit|Save Script
As (or click the Save Script button) to save your script and give it a name. You can
then begin a new script by choosing File|New Script (or clicking the New Script
button).

Note You can remove objects or commands that you have added to a script by selecting the
object or command and choosing Edit|Remove Object or Edit|Remove Command.

You can run your script by choosing Run|Run, or clicking the Run Script button.
When the script is run, the testing tool uses the dynamic invocation interface to call
the CORBA server, passing the indicated parameter values. The return value (if any)
and any return parameters for all methods are then displayed in the results section of
the testing tool (or in a results file for automated testing).

31-18 D e v e l o p e r ’ s G u i d e

T e s t i n g C O R B A s e r v e r s

The results section displays the results of all commands in the script on the results
tab. These same results also appear on the other pages of the results sections, divided
into categories so that you can more easily locate the information you want. The
other pages of the results section include return values, input parameter values,
output parameter values, and errors that occurred when running the script.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 32-1

C h a p t e r

32
Chapter32Creating Internet server applications

Web server applications extend the functionality and capability of existing Web
servers. A Web server application receives HTTP request messages from the Web
server, performs any actions requested in those messages, and formulates responses
that it passes back to the Web server. Many operations that you can perform with a
C++Builder application can be incorporated into a Web server application.

C++Builder provides two different architectures for developing Web server
applications: Web Broker and WebSnap. Although these two architectures are
different, WebSnap and Web Broker have many common elements. The WebSnap
architecture acts as a superset of Web Broker. It provides additional components and
new features like the Preview tab, which allows the content of a page to be displayed
without the developer having to run the application. Applications developed with
WebSnap can include Web Broker components, whereas applications developed
with Web Broker cannot include WebSnap components.

This chapter describes the features of the Web Broker and WebSnap technologies and
provides general information on Internet-based client/server applications.

About Web Broker and WebSnap
Part of the function of any application is to make data accessible to the user. In a
standard C++Builder application you accomplish this by creating traditional front
end elements, like dialogs and scrolling windows. Developers can specify the exact
layout of these objects using familiar C++Builder form design tools. Web server
applications must be designed differently, however. All information passed to users
must be in the form of HTML pages which are transferred through HTTP. Pages are
generally interpreted on the client machine by a Web browser application, which
displays the pages in a form appropriate for the user's particular system in its present
state.

32-2 D e v e l o p e r ’ s G u i d e

A b o u t W e b B r o k e r a n d W e b S n a p

The first step in building a Web server application is choosing which architecture you
want to use, Web Broker or WebSnap. Both approaches provide many of the same
features, including

• Support for CGI and Apache DSO Web server application types. These are
described in “Types of Web server applications” on page 32-6.

• Multithreading support so that incoming client requests are handled on separate
threads.

• Caching of Web modules for quicker responses.

• Cross-platform development. You can easily port your Web server application
between the Windows and Linux operating systems. Your source code will
compile on either platform.

Both the Web Broker and WebSnap components handle all of the mechanics of page
transfer. WebSnap uses Web Broker as its foundation, so it incorporates all of the
functionality of Web Broker’s architecture. WebSnap offers a much more powerful
set of tools for generating pages, however. Also, WebSnap applications allow you to
use server-side scripting to help generate pages at runtime. Web Broker does not
have this scripting capability. The tools offered in Web Broker are not nearly as
complete as those in WebSnap, and are much less intuitive. If you are developing a
new Web server application, WebSnap is probably a better choice of architecture than
Web Broker.

The major differences between these two approaches are outlined in the following
table:

Table 32.1 Web Broker versus WebSnap

Web Broker WebSnap

Backward compatible Although WebSnap applications can use any Web
Broker components that produce content, the Web
modules and dispatcher that contain these are
new.

Only one Web module allowed in an
application.

Multiple Web modules can partition the
application into units, allowing multiple
developers to work on the same project with fewer
conflicts.

Only one Web dispatcher allowed in the
application.

Multiple, special-purpose dispatchers handle
different types of requests.

Specialized components for creating content
include page producers, InternetExpress
components, and Web Services components.

Supports all the content producers that can appear
in Web Broker applications, plus many others
designed to let you quickly build complex data-
driven Web pages.

No scripting support. Support for server-side scripting allows HTML
generation logic to be separated from the business
logic.

No built-in support for named pages. Named pages can be automatically retrieved by a
page dispatcher and addressed from server-side
scripts.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 32-3

T e r m i n o l o g y a n d s t a n d a r d s

For more information on Web Broker, see Chapter 33, “Using Web Broker.” For more
information on WebSnap, see Chapter 34, “Creating Web Server applications using
WebSnap.”

Terminology and standards
Many of the protocols that control activity on the Internet are defined in Request for
Comment (RFC) documents that are created, updated, and maintained by the
Internet Engineering Task Force (IETF), the protocol engineering and development
arm of the Internet. There are several important RFCs that you will find useful when
writing Internet applications:

• RFC822, “Standard for the format of ARPA Internet text messages,” describes the
structure and content of message headers.

• RFC1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of Internet Message Bodies,” describes
the method used to encapsulate and transport multipart and multiformat
messages.

• RFC1945, “Hypertext Transfer Protocol — HTTP/1.0,” describes a transfer
mechanism used to distribute collaborative hypermedia documents.

The IETF maintains a library of the RFCs on their Web site, www.ietf.cnri.reston.va.us

Parts of a Uniform Resource Locator

The Uniform Resource Locator (URL) is a complete description of the location of a
resource that is available over the net. It is composed of several parts that may be
accessed by an application. These parts are illustrated in Figure 32.1:

Figure 32.1 Parts of a Uniform Resource Locator

No session support. Sessions store information about an end user that
is needed for a short period of time. This can be
used for such tasks as login/logout support.

Every request must be explicitly handled,
using either an action item or an auto-
dispatching component.

Dispatch components automatically respond to a
variety of requests.

Only a few specialized components provide
previews of the content they produce. Most
development is not visual.

WebSnaplets you build Web pages more visually
and view the results at design time. Previews are
available for all components.

Table 32.1 Web Broker versus WebSnap (continued)

Web Broker WebSnap

Host ScriptName PathInfo Query

Query Field Query Field

http://www.Tsite.com/art/gallery.dll/mammals?animal=dog&color=black

32-4 D e v e l o p e r ’ s G u i d e

T e r m i n o l o g y a n d s t a n d a r d s

The first portion (not technically part of the URL) identifies the protocol (http). This
portion can specify other protocols such as https (secure http), ftp, and so on.

The Host portion identifies the machine that runs the Web server and Web server
application. Although it is not shown in the preceding picture, this portion can
override the port that receives messages. Usually, there is no need to specify a port,
because the port number is implied by the protocol.

The ScriptName portion specifies the name of the Web server application. This is the
application to which the Web server passes messages.

Following the script name is the pathinfo. This identifies the destination of the
message within the Web server application. Path info values may refer to directories
on the host machine, the names of components that respond to specific messages, or
any other mechanism the Web server application uses to divide the processing of
incoming messages.

The Query portion contains a set a named values. These values and their names are
defined by the Web server application.

URI vs. URL
The URL is a subset of the Uniform Resource Identifier (URI) defined in the HTTP
standard, RFC1945. Web server applications frequently produce content from many
sources where the final result does not reside in a particular location, but is created as
necessary. URIs can describe resources that are not location-specific.

HTTP request header information

HTTP request messages contain many headers that describe information about the
client, the target of the request, the way the request should be handled, and any
content sent with the request. Each header is identified by a name, such as “Host”
followed by a string value. For example, consider the following HTTP request:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

The first line identifies the request as a GET. A GET request message asks the Web
server application to return the content associated with the URI that follows the word
GET (in this case /art/gallery.dll/animals?animal=doc&color=black). The last part
of the first line indicates that the client is using the HTTP 1.0 standard.

The second line is the Connection header, and indicates that the connection should
not be closed once the request is serviced. The third line is the User-Agent header,
and provides information about the program generating the request. The next line is
the Host header, and provides the Host name and port on the server that is contacted
to form the connection. The final line is the Accept header, which lists the media
types the client can accept as valid responses.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 32-5

H T T P s e r v e r a c t i v i t y

HTTP server activity
The client/server nature of Web browsers is deceptively simple. To most users,
retrieving information on the World Wide Web is a simple procedure: click on a link,
and the information appears on the screen. More knowledgeable users have some
understanding of the nature of HTML syntax and the client/server nature of the
protocols used. This is usually sufficient for the production of simple, page-oriented
Web site content. Authors of more complex Web pages have a wide variety of
options to automate the collection and presentation of information using HTML.

Before building a Web server application, it is useful to understand how the client
issues a request and how the server responds to client requests.

Composing client requests

When an HTML hypertext link is selected (or the user otherwise specifies a URL), the
browser collects information about the protocol, the specified domain, the path to the
information, the date and time, the operating environment, the browser itself, and
other content information. It then composes a request.

For example, to display a page of images based on criteria selected by clicking
buttons on a form, the client might construct this URL:

http://www.TSite.com/art/gallery.dll/animals?animal=dog&color=black

which specifies an HTTP server in the www.TSite.com domain. The client contacts
www.TSite.com, connects to the HTTP server, and passes it a request. The request
might look something like this:

GET /art/gallery.dll/animals?animal=dog&color=black HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/3.0b4Gold (WinNT; I)
Host: www.TSite.com:1024
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Serving client requests

The Web server receives a client request and can perform any number of actions,
based on its configuration. If the server is configured to recognize the /gallery.dll
portion of the request as a program, it passes information about the request to that
program. The way information about the request is passed to the program depends
on the type of Web server application:

• If the program is a Common Gateway Interface (CGI) program, the server passes
the information contained in the request directly to the CGI program. The server
waits while the program executes. When the CGI program exits, it passes the
content directly back to the server.

• If the program is WinCGI, the server opens a file and writes out the request
information. It then executes the Win-CGI program, passing the location of the file
containing the client information and the location of a file that the Win-CGI

32-6 D e v e l o p e r ’ s G u i d e

T y p e s o f W e b s e r v e r a p p l i c a t i o n s

program should use to create content. The server waits while the program
executes. When the program exits, the server reads the data from the content file
written by the Win-CGI program.

• If the program is a dynamic-link library (DLL), the server loads the DLL (if
necessary) and passes the information contained in the request to the DLL as a
structure. The server waits while the program executes. When the DLL exits, it
passes the content directly back to the server.

In all cases, the program acts on the request of and performs actions specified by the
programmer: accessing databases, doing simple table lookups or calculations,
constructing or selecting HTML documents, and so on.

Responding to client requests

When a Web server application finishes with a client request, it constructs a page of
HTML code or other MIME content, and passes it back (via the server) to the client
for display. The way the response is sent also differs based on the type of program:

• When a Win-CGI script finishes it constructs a page of HTML, writes it to a file,
writes any response information to another file, and passes the locations of both
files back to the server. The server opens both files and passes the HTML page
back to the client.

• When a DLL finishes, it passes the HTML page and any response information
directly back to the server, which passes them back to the client.

Creating a Web server application as a DLL reduces system load and resource use by
reducing the number of processes and disk accesses necessary to service an
individual request.

Types of Web server applications
Whether you use Web Broker or WebSnap, you can create five standard types of Web
server applications. In addition, you can create a Web Application Debugger
executable, which integrates the Web server into your application so that you can
debug your application logic. The Web Application Debugger executable is intended
only for debugging. When you deploy your application, you should migrate to one of
the other five types.

ISAPI and NSAPI
An ISAPI or NSAPI Web server application is a DLL that is loaded by the Web server.
Client request information is passed to the DLL as a structure and evaluated by the
ISAPI/NSAPI application, which creates appropriate request and response objects.
Each request message is automatically handled in a separate execution thread.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 32-7

T y p e s o f W e b s e r v e r a p p l i c a t i o n s

CGI stand-alone
A CGI stand-alone Web server application is a console application that receives client
request information on standard input and passes the results back to the server on
standard output. This data is evaluated by the CGI application, which creates
appropriate request and response objects. Each request message is handled by a
separate instance of the application.

Win-CGI stand-alone
A Win-CGI stand-alone Web server application is a Windows application that
receives client request information from a configuration settings (INI) file written by
the server and writes the results to a file that the server passes back to the client. The
INI file is evaluated by the Web server application, which creates appropriate request
and response objects. Each request message is handled by a separate instance of the
application.

Apache
An Apache Web server application is a DLL that is loaded by the Web server. Client
request information is passed to the DLL as a structure and evaluated by the Apache
Web server application, which creates appropriate request and response objects.
Each request message is automatically handled in a separate execution thread.

When you deploy your Apache Web server application, you will need to specify
some application-specific information in the Apache configuration files. The default
module name is the project name with _module appended to the end. For example, a
project named Project1 would have Project1_module as its module name. Similarly, the
default content type is the project name with -content appended, and the default
handler type is the project name with-handler appended.

These definitions can be changed in the project (.bpr) file when necessary. For
example, when you create your project a default module name is stored in the project
file. Here is a common example:

extern "C"
{
 Httpd::module __declspec(dllexport) Project1_module;
}

Note When you rename the project during the save process, that name isn’t changed
automatically. Whenever you rename your project, you must change the module
name in your project file to match your project name. The content and handler
definitions should change automatically once the module name is changed.

For information on using module, content, and handler definitions in your Apache
configuration files, see the documentation on the Apache Web site httpd.apache.org.

Web App Debugger
The server types mentioned above have their advantages and disadvantages for
production environments, but none of them is well-suited for debugging. Deploying
your application and configuring the debugger can make Web server application
debugging far more tedious than debugging other application types.

32-8 D e v e l o p e r ’ s G u i d e

T y p e s o f W e b s e r v e r a p p l i c a t i o n s

Fortunately, Web server application debugging doesn’t need to be that complicated.
C++Builder includes a Web App Debugger which makes debugging simple. The
Web App Debugger acts like a Web server on your development machine. If you
build your Web server application as a Web App Debugger executable, deployment
happens automatically during the build process. To debug your application, start it
using Run|Run. Next, select Tools|Web App Debugger, click the default URL and
select your application in the Web browser which appears. Your application will
launch in the browser window, and you can use the IDE to set breakpoints and
obtain debugging information.

When your application is ready to be tested or deployed in a production
environment, you can convert your Web App Debugger project to one of the other
target types using the steps given below.

Note When you create a Web App Debugger project, you will need to provide a CoClass
Name for your project. This is simply a name used by the Web App Debugger to
refer to your application. Most developers use the application’s name as the CoClass
Name.

Converting Web server application target types

One powerful feature of Web Broker and WebSnap is that they offer several different
target server types. C++Builder allows you to easily convert from one target type to
another.

Because Web Broker and WebSnap have slightly different design philosophies, you
must use a different conversion method for each architecture. To convert your Web
Broker application target type, use the following steps:

1 Right-click the Web module and choose Add To Repository.

2 In the Add To Repository dialog box, give your Web module a title, text
description, Repository page (probably Data Modules), author name, and icon.

3 Choose OK to save your Web module as a template.

4 From the main menu, choose File|New and select Web Server Application. In the
New Web Server Application dialog box, choose the appropriate target type.

5 Delete the automatically generated Web module.

6 From the main menu, choose File|New and select the template you saved in step
3. This will be on the page you specified in step 2.

To convert a WebSnap application’s target type:

1 Open your project in the IDE.

2 Display the Project Manager using View|Project Manager. Expand your project so
all of its units are visible.

3 In the Project Manager, click the New button to create a new Web server
application project. Double-click the WebSnap Application item in the WebSnap
tab. Select the appropriate options for your project, including the server type you
want to use, then click OK.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 32-9

D e b u g g i n g s e r v e r a p p l i c a t i o n s

4 Expand the new project in the Project Manager. Select any files appearing there
and delete them.

5 One at a time, select each file in your project (except for the form file in a Web App
Debugger project) and drag it to the new project. When a dialog appears asking if
you want to add that file to your new project, click Yes.

Debugging server applications
Debugging Web server applications presents some unique problems, because they
run in response to messages from a Web server. You can not simply launch your
application from the IDE, because that leaves the Web server out of the loop, and
your application will not find the request message it is expecting.

The following topics describe techniques you can use to debug Web server
applications.

Using the Web Application Debugger

The Web Application Debugger provides an easy way to monitor HTTP requests,
responses, and response times. The Web Application Debugger takes the place of the
Web server. Once you have debugged your application, you can convert it to one of
the supported types of Web application and install it with a commercial Web server.

To use the Web Application Debugger, you must first create your Web application as
a Web Application Debugger executable. Whether you are using Web Broker or
WebSnap, the wizard that creates your Web server application includes this as an
option when you first begin the application. This creates a Web server application
that is also a COM server.

For information on how to write this Web server application using Web Broker, see
Chapter 33, “Using Web Broker.” For more information on using WebSnap, see
Chapter 34, “Creating Web Server applications using WebSnap.”

Launching your application with the Web Application Debugger
Once you have developed your Web server application, you can run and debug it as
follows:

1 With your project loaded in the IDE, set any breakpoints so that you can debug
your application just like any other executable.

2 Choose Run|Run. This displays the console window of the COM server that is
your Web server application. The first time you run your application, it registers
your COM server so that the Web App debugger can access it.

3 Select Tools|Web App Debugger.

4 Click the Start button. This displays the ServerInfo page in your default Browser.

32-10 D e v e l o p e r ’ s G u i d e

D e b u g g i n g s e r v e r a p p l i c a t i o n s

5 The ServerInfo page provides a drop-down list of all registered Web Application
Debugger executables. Select your application from the drop-down list. If you do
not find your application in this drop-down list, try running your application as
an executable. Your application must be run once so that it can register itself. If
you still do not find your application in the drop-down list, try refreshing the Web
page. (Sometimes the Web browser caches this page, preventing you from seeing
the most recent changes.)

6 Once you have selected your application in the drop-down list, press the Go
button. This launches your application in the Web Application Debugger, which
provides you with details on request and response messages that pass between
your application and the Web Application Debugger.

Converting your application to another type of Web server application
When you have finished debugging your Web server application with the Web
Application Debugger, you will need to convert it to another type that can be
installed on a commercial Web server. To learn more about converting your
application, see “Converting Web server application target types” on page 32-8.

Debugging Web applications that are DLLs

ISAPI, NSAPI, and Apache applications are actually DLLs that contain predefined
entry points. The Web server passes request messages to the application by making
calls to these entry points. Because these applications are DLLs, you can debug them
by setting your application’s run parameters to launch the server.

To set up your application’s run parameters, choose Run|Parameters and set the
Host Application and Run Parameters to specify the executable for the Web server
and any parameters it requires when you launch it. For details about these values on
your Web server, see the documentation provided by you Web server vendor.

Note Some Web Servers require additional changes before you have the rights to launch
the Host Application in this way. See your Web server vendor for details.

Tip If you are using Windows 2000 with IIS 5, details on all of the changes you need to
make to set up your rights properly are described at the following Web site:

http://community.borland.com/article/0,1410,23024,00.html

Once you have set the Host Application and Run Parameters, you can set up your
breakpoints so that when the server passes a request message to your DLL, you hit
one of your breakpoints, and can debug normally.

Note Before launching the Web server using your application’s run parameters, make sure
that the server is not already running.

C r e a t i n g I n t e r n e t s e r v e r a p p l i c a t i o n s 32-11

D e b u g g i n g s e r v e r a p p l i c a t i o n s

User rights necessary for DLL debugging
Under Windows, you must have the correct user rights to debug a DLL. You can
obtain these rights as follows:

1 In the Administrative Tools portion of the Control Panel, click on Local Security
Policy. Expand Local Policies and double-click User Rights Assignment. Double-
click Act as part of the operating system in the right-hand panel.

2 Select Add to add a user to the list. Add your current user.

3 Reboot so the changes take effect.

32-12 D e v e l o p e r ’ s G u i d e

U s i n g W e b B r o k e r 33-1

C h a p t e r

33
Chapter33Using Web Broker

Web Broker components (located on the Internet tab of the component palette)
enable you to create event handlers that are associated with a specific Uniform
Resource Identifier (URI). When processing is complete, You can programmatically
construct HTML or XML documents and transfer them to the client. You can use Web
Broker components for cross-platform application development.

Frequently, the content of Web pages is drawn from databases. You can use Internet
components to automatically manage connections to databases, allowing a single
DLL to handle numerous simultaneous, thread-safe database connections.

The following sections in this chapter explain how you use the Web Broker
components to create a Web server application.

Creating Web server applications with Web Broker
To create a new Web server application using the Web Broker architecture:

1 Select File|New|Other.

2 In the New Items dialog box, select the New tab and choose Web Server
Application.

3 A dialog box appears, where you can select one of the Web server application
types:

• ISAPI and NSAPI: Selecting this type of application sets up your project as a DLL,
with the exported methods expected by the Web server. It also includes the
appropriate header files for generating your application.

• Apache: Selecting this type of application sets up your project as a DLL, with the
exported methods expected by the Apache Web server. It also includes the
appropriate header files for generating your application.

33-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b B r o k e r

• CGI stand-alone: Selecting this type of application sets up your project as a console
application, and includes the appropriate header files.

• Win-CGI stand-alone: Selecting this type of application sets up your project as a
Windows application, and includes the appropriate header files.

• Web Application Debugger stand-alone executable: Selecting this type of
application sets up an environment for developing and testing Web server
applications. This type of application is not intended for deployment.

Choose the type of Web Server Application that communicates with the type of Web
Server your application will use. This creates a new project configured to use Internet
components and containing an empty Web Module.

The Web module

The Web module (TWebModule) is a descendant of TDataModule and may be used in
the same way: to provide centralized control for business rules and non-visual
components in the Web application.

Add any content producers that your application uses to generate response
messages. These can be the built-in content producers such as TPageProducer,
TDataSetPageProducer, TDataSetTableProducer, TQueryTableProducer and
TInetXPageProducer, or descendants of TCustomContentProducer that you have written
yourself. If your application generates response messages that include material
drawn from databases, you can add data access components or special components
for writing a Web server that acts as a client in a multi-tiered database application.

In addition to storing non-visual components and business rules, the Web module
also acts as a dispatcher, matching incoming HTTP request messages to action items
that generate the responses to those requests.

You may have a data module already that is set up with many of the non-visual
components and business rules that you want to use in your Web application. You
can replace the Web module with your pre-existing data module. Simply delete the
automatically generated Web module and replace it with your data module. Then,
add a TWebDispatcher component to your data module, so that it can dispatch request
messages to action items, the way a Web module can. If you want to change the way
action items are chosen to respond to incoming HTTP request messages, derive a
new dispatcher component from TCustomWebDispatcher, and add that to the data
module instead.

Your project can contain only one dispatcher. This can either be the Web module that
is automatically generated when you create the project, or the TWebDispatcher
component that you add to a data module that replaces the Web module. If a second
data module containing a dispatcher is created during execution, the Web server
application generates a runtime error.

Note The Web module that you set up at design time is actually a template. In ISAPI and
NSAPI applications, each request message spawns a separate thread, and separate
instances of the Web module and its contents are created dynamically for each
thread.

U s i n g W e b B r o k e r 33-3

T h e s t r u c t u r e o f a W e b B r o k e r a p p l i c a t i o n

Warning The Web module in a DLL-based Web server application is cached for later reuse to
increase response time. The state of the dispatcher and its action list is not
reinitialized between requests. Enabling or disabling action items during execution
may cause unexpected results when that module is used for subsequent client
requests.

The Web Application object

The project that is set up for your Web application contains a global variable named
Application. Application is a descendant of TWebApplication (either TISAPIApplication,
TApacheApplication, or TCGIApplication) that is appropriate to the type of application
you are creating. It runs in response to HTTP request messages received by the Web
server.

Warning Do not include Forms.hpp after the include statement for CGIApp.hpp or
ISAPIApp.hpp in the project file. Forms.hpp also declares a global variable named
Application, and if it appears after CGIApp.hpp or ISAPIApp.hpp, Application will be
initialized to an object of the wrong type.

The structure of a Web Broker application
When the Web application receives an HTTP request message, it creates a
TWebRequest object to represent the HTTP request message, and a TWebResponse
object to represent the response that should be returned. The application then passes
these objects to the Web dispatcher (either the Web module or a TWebDispatcher
component).

The Web dispatcher controls the flow of the Web server application. The dispatcher
maintains a collection of action items (TWebActionItem) that know how to handle
certain types of HTTP request messages. The dispatcher identifies the appropriate
action items or auto-dispatching components to handle the HTTP request message,
and passes the request and response objects to the identified handler so that it can
perform any requested actions or formulate a response message. It is described more
fully in the section “The Web dispatcher” on page 33-4.

Figure 33.1 Structure of a Server Application

Web Module (Dispatcher)

Web
Server

Action
Item

Content
Producer

Web
Application

Web
Response

Action
Item

Content
Producer

Content
Producer

Web
Request

33-4 D e v e l o p e r ’ s G u i d e

T h e W e b d i s p a t c h e r

The action items are responsible for reading the request and assembling a response
message. Specialized content producer components aid the action items in
dynamically generating the content of response messages, which can include custom
HTML code or other MIME content. The content producers can make use of other
content producers or descendants of THTMLTagAttributes, to help them create the
content of the response message. For more information on content producers, see
“Generating the content of response messages” on page 33-13.

If you are creating the Web Client in a multi-tiered database application, your Web
server application may include additional, auto-dispatching components that
represent database information encoded in XML and database manipulation classes
encoded in javascript. If you are creating a server that implements a Web Service,
your Web server application may include an auto-dispatching component that passes
SOAP-based messages on to an invoker that interprets and executes them. The
dispatcher calls on these auto-dispatching components to handle the request message
after it has tried all of its action items.

When all action items (or auto-dispatching components) have finished creating the
response by filling out the TWebResponse object, the dispatcher passes the result back
to the Web application. The application sends the response on to the client via the
Web server.

The Web dispatcher
If you are using a Web module, it acts as a Web dispatcher. If you are using a pre-
existing data module, you must add a single dispatcher component (TWebDispatcher)
to that data module. The dispatcher maintains a collection of action items that know
how to handle certain kinds of request messages. When the Web application passes a
request object and a response object to the dispatcher, it chooses one or more action
items to respond to the request.

Adding actions to the dispatcher

Open the action editor from the Object Inspector by clicking the ellipsis on the Actions
property of the dispatcher. Action items can be added to the dispatcher by clicking
the Add button in the action editor.

Add actions to the dispatcher to respond to different request methods or target URIs.
You can set up your action items in a variety of ways. You can start with action items
that preprocess requests, and end with a default action that checks whether the
response is complete and either sends the response or returns an error code. Or, you
can add a separate action item for every type of request, where each action item
completely handles the request.

Action items are discussed in further detail in “Action items” on page 33-5.

U s i n g W e b B r o k e r 33-5

A c t i o n i t e m s

Dispatching request messages

When the dispatcher receives the client request, it generates a BeforeDispatch event.
This provides your application with a chance to preprocess the request message
before it is seen by any of the action items.

Next, the dispatcher iterates over its list of action items, looking for an entry that
matches the PathInfo portion of the request message’s target URL and that also
provides the service specified as the method of the request message. It does this by
comparing the PathInfo and MethodType properties of the TWebRequest object with the
properties of the same name on the action item.

When the dispatcher finds an appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response or signals that the request is
completely handled.

• Adds to the response and then allows other action items to complete the job.

• Defers the request to other action items.

After checking all its action items, if the message is not handled the dispatcher checks
any specially registered auto-dispatching components that do not use action items.
These components are specific to multi-tiered database applications, which are
described in “Building Web applications using InternetExpress” on page 29-31

If, after checking all the action items and any specially registered auto-dispatching
components, the request message has still not been fully handled, the dispatcher calls
the default action item. The default action item does not need to match either the
target URL or the method of the request.

If the dispatcher reaches the end of the action list (including the default action, if any)
and no actions have been triggered, nothing is passed back to the server. The server
simply drops the connection to the client.

If the request is handled by the action items, the dispatcher generates an
AfterDispatch event. This provides a final opportunity for your application to check
the response that was generated, and make any last minute changes.

Action items
Each action item (TWebActionItem) performs a specific task in response to a given
type of request message.

Action items can completely respond to a request or perform part of the response and
allow other action items to complete the job. Action items can send the HTTP
response message for the request, or simply set up part of the response for other
action items to complete. If a response is completed by the action items but not sent,
the Web server application sends the response message.

33-6 D e v e l o p e r ’ s G u i d e

A c t i o n i t e m s

Determining when action items fire

Most properties of the action item determine when the dispatcher selects it to handle
an HTTP request message. To set the properties of an action item, you must first
bring up the action editor: select the Actions property of the dispatcher in the Object
Inspector and click on the ellipsis. When an action is selected in the action editor, its
properties can be modified in the Object Inspector.

The target URL
The dispatcher compares the PathInfo property of an action item to the PathInfo of the
request message. The value of this property should be the path information portion
of the URL for all requests that the action item is prepared to handle. For example,
given this URL,

http://www.TSite.com/art/gallery.dll/mammals?animal=dog&color=black

and assuming that the /gallery.dll part indicates the Web server application, the
path information portion is

/mammals

Use path information to indicate where your Web application should look for
information when servicing requests, or to divide you Web application into logical
subservices.

The request method type
The MethodType property of an action item indicates what type of request messages it
can process. The dispatcher compares the MethodType property of an action item to
the MethodType of the request message. MethodType can take one of the following
values:

Enabling and disabling action items
Each action item has an Enabled property that can be used to enable or disable that
action item. By setting Enabled to false, you disable the action item so that it is not
considered by the dispatcher when it looks for an action item to handle a request.

Table 33.1 MethodType values

Value Meaning

mtGet The request is asking for the information associated with the target URI to be
returned in a response message.

mtHead The request is asking for the header properties of a response, as if servicing an
mtGet request, but omitting the content of the response.

mtPost The request is providing information to be posted to the Web application.

mtPut The request asks that the resource associated with the target URI be replaced by the
content of the request message.

mtAny Matches any request method type, including mtGet, mtHead, mtPut, and mtPost.

U s i n g W e b B r o k e r 33-7

A c t i o n i t e m s

A BeforeDispatch event handler can control which action items should process a
request by changing the Enabled property of the action items before the dispatcher
begins matching them to the request message.

Caution Changing the Enabled property of an action during execution may cause unexpected
results for subsequent requests. If the Web server application is a DLL that caches
Web modules, the initial state will not be reinitialized for the next request. Use the
BeforeDispatch event to ensure that all action items are correctly initialized to their
appropriate starting states.

Choosing a default action item
Only one of the action items can be the default action item. The default action item is
selected by setting its Default property to true. When the Default property of an action
item is set to true, the Default property for the previous default action item (if any) is
set to false.

When the dispatcher searches its list of action items to choose one to handle a
request, it stores the name of the default action item. If the request has not been fully
handled when the dispatcher reaches the end of its list of action items, it executes the
default action item.

The dispatcher does not check the PathInfo or MethodType of the default action item.
The dispatcher does not even check the Enabled property of the default action item.
Thus, you can make sure the default action item is only called at the very end by
setting its Enabled property to false.

The default action item should be prepared to handle any request that is
encountered, even if it is only to return an error code indicating an invalid URI or
MethodType. If the default action item does not handle the request, no response is sent
to the Web client.

Caution Changing the Default property of an action during execution may cause unexpected
results for the current request. If the Default property of an action that has already
been triggered is set to true, that action will not be reevaluated and the dispatcher
will not trigger that action when it reaches the end of the action list.

Responding to request messages with action items

The real work of the Web server application is performed by action items when they
execute. When the Web dispatcher fires an action item, that action item can respond
to the current request message in two ways:

• If the action item has an associated producer component as the value of its
Producer property, that producer automatically assigns the Content of the response
message using its Content method. The Internet page of the component palette
includes a number of content producer components that can help construct an
HTML page for the content of the response message.

• After the producer has assigned any response content (if there is an associated
producer), the action item receives an OnAction event. The OnAction event handler
is passed the TWebRequest object that represents the HTTP request message and a
TWebResponse object to fill with any response information.

33-8 D e v e l o p e r ’ s G u i d e

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

If the action item’s content can be generated by a single content producer, it is
simplest to assign the content producer as the action item’s Producer property.
However, you can always access any content producer from the OnAction event
handler as well. The OnAction event handler allows more flexibility, so that you can
use multiple content producers, assign response message properties, and so on.

Both the content-producer component and the OnAction event handler can use any
objects or runtime library methods to respond to request messages. They can access
databases, perform calculations, construct or select HTML documents, and so on. For
more information about generating response content using content-producer
components, see “Generating the content of response messages” on page 33-13.

Sending the response
An OnAction event handler can send the response back to the Web client by using the
methods of the TWebResponse object. However, if no action item sends the response to
the client, it will still get sent by the Web server application as long as the last action
item to look at the request indicates that the request was handled.

Using multiple action items
You can respond to a request from a single action item, or divide the work up among
several action items. If the action item does not completely finish setting up the
response message, it must signal this state in the OnAction event handler by setting
the Handled parameter to false.

If many action items divide up the work of responding to request messages, each
setting Handled to false so that others can continue, make sure the default action item
leaves the Handled parameter set to true. Otherwise, no response will be sent to the
Web client.

When dividing the work among several action items, either the OnAction event
handler of the default action item or the AfterDispatch event handler of the dispatcher
should check whether all the work was done and set an appropriate error code if it is
not.

Accessing client request information
When an HTTP request message is received by the Web server application, the
headers of the client request are loaded into the properties of a TWebRequest object. In
NSAPI and ISAPI applications, the request message is encapsulated by a
TISAPIRequest object. Console CGI applications use TCGIRequest objects, and
Windows CGI applications use TWinCGIRequest objects.

The properties of the request object are read-only. You can use them to gather all of
the information available in the client request.

U s i n g W e b B r o k e r 33-9

A c c e s s i n g c l i e n t r e q u e s t i n f o r m a t i o n

Properties that contain request header information

Most properties in a request object contain information about the request that comes
from the HTTP request header. Not every request supplies a value for every one of
these properties. Also, some requests may include header fields that are not surfaced
in a property of the request object, especially as the HTTP standard continues to
evolve. To obtain the value of a request header field that is not surfaced as one of the
properties of the request object, use the GetFieldByName method.

Properties that identify the target
The full target of the request message is given by the URL property. Usually, this is a
URL that can be broken down into the protocol (HTTP), Host (server system),
ScriptName (server application), PathInfo (location on the host), and Query.

Each of these pieces is surfaced in its own property. The protocol is always HTTP,
and the Host and ScriptName identify the Web server application. The dispatcher uses
the PathInfo portion when matching action items to request messages. The Query is
used by some requests to specify the details of the requested information. Its value is
also parsed for you as the QueryFields property.

Properties that describe the Web client
The request also includes several properties that provide information about where
the request originated. These include everything from the e-mail address of the
sender (the From property), to the URI where the message originated (the Referer or
RemoteHost property). If the request contains any content, and that content does not
arise from the same URI as the request, the source of the content is given by the
DerivedFrom property. You can also determine the IP address of the client (the
RemoteAddr property), and the name and version of the application that sent the
request (the UserAgent property).

Properties that identify the purpose of the request
The Method property is a string describing what the request message is asking the
server application to do. The HTTP 1.1 standard defines the following methods:

Value What the message requests

OPTIONS Information about available communication options.

GET Information identified by the URL property.

HEAD Header information from an equivalent GET message, without the content of the
response.

POST The server application to post the data included in the Content property, as
appropriate.

PUT The server application to replace the resource indicated by the URL property
with the data included in the Content property.

DELETE The server application to delete or hide the resource identified by the URL
property.

TRACE The server application to send a loop-back to confirm receipt of the request.

33-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

The Method property may indicate any other method that the Web client requests of
the server.

The Web server application does not need to provide a response for every possible
value of Method. The HTTP standard does require that it service both GET and HEAD
requests, however.

The MethodType property indicates whether the value of Method is GET (mtGet),
HEAD (mtHead), POST (mtPost), PUT (mtPut) or some other string (mtAny). The
dispatcher matches the value of the MethodType property with the MethodType of each
action item.

Properties that describe the expected response
The Accept property indicates the media types the Web client will accept as the
content of the response message. The IfModifiedSince property specifies whether the
client only wants information that has changed recently. The Cookie property
includes state information (usually added previously by your application) that can
modify the response.

Properties that describe the content
Most requests do not include any content, as they are requests for information.
However, some requests, such as POST requests, provide content that the Web server
application is expected to use. The media type of the content is given in the
ContentType property, and its length in the ContentLength property. If the content of
the message was encoded (for example, for data compression), this information is in
the ContentEncoding property. The name and version number of the application that
produced the content is specified by the ContentVersion property. The Title property
may also provide information about the content.

The content of HTTP request messages

In addition to the header fields, some request messages include a content portion that
the Web server application should process in some way. For example, a POST
request might include information that should be added to a database accessed by
the Web server application.

The unprocessed value of the content is given by the Content property. If the content
can be parsed into fields separated by ampersands (&), a parsed version is available
in the ContentFields property.

Creating HTTP response messages
When the Web server application creates a TWebRequest object for an incoming HTTP
request message, it also creates a corresponding TWebResponse object to represent the
response message that will be sent in return. In NSAPI and ISAPI applications, the
response message is encapsulated by a TISAPIResponse object. Console CGI
applications use TCGIResponse objects, and Windows CGI applications use
TWinCGIResponse objects.

U s i n g W e b B r o k e r 33-11

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

The action items that generate the response to a Web client request fill in the
properties of the response object. In some cases, this may be as simple as returning an
error code or redirecting the request to another URI. In other cases, this may involve
complicated calculations that require the action item to fetch information from other
sources and assemble it into a finished form. Most request messages require some
response, even if it is only the acknowledgment that a requested action was carried
out.

Filling in the response header

Most of the properties of the TWebResponse object represent the header information of
the HTTP response message that is sent back to the Web client. An action item sets
these properties from its OnAction event handler.

Not every response message needs to specify a value for every one of the header
properties. The properties that should be set depend on the nature of the request and
the status of the response.

Indicating the response status
Every response message must include a status code that indicates the status of the
response. You can specify the status code by setting the StatusCode property. The
HTTP standard defines a number of standard status codes with predefined
meanings. In addition, you can define your own status codes using any of the unused
possible values.

Each status code is a three-digit number where the most significant digit indicates the
class of the response, as follows:

• 1xx: Informational (The request was received but has not been fully processed).

• 2xx: Success (The request was received, understood, and accepted).

• 3xx: Redirection (Further action by the client is needed to complete the request).

• 4xx: Client Error (The request cannot be understood or cannot be serviced).

• 5xx: Server Error (The request was valid but the server could not handle it).

Associated with each status code is a string that explains the meaning of the status
code. This is given by the ReasonString property. For predefined status codes, you do
not need to set the ReasonString property. If you define your own status codes, you
should also set the ReasonString property.

Indicating the need for client action
When the status code is in the 300-399 range, the client must perform further action
before the Web server application can complete its request. If you need to redirect the
client to another URI, or indicate that a new URI was created to handle the request,
set the Location property. If the client must provide a password before you can
proceed, set the WWWAuthenticate property.

33-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g H T T P r e s p o n s e m e s s a g e s

Describing the server application
Some of the response header properties describe the capabilities of the Web server
application. The Allow property indicates the methods to which the application can
respond. The Server property gives the name and version number of the application
used to generate the response. The Cookies property can hold state information about
the client’s use of the server application which is included in subsequent request
messages.

Describing the content
Several properties describe the content of the response. ContentType gives the media
type of the response, and ContentVersion is the version number for that media type.
ContentLength gives the length of the response. If the content is encoded (such as for
data compression), indicate this with the ContentEncoding property. If the content
came from another URI, this should be indicated in the DerivedFrom property. If the
value of the content is time-sensitive, the LastModified property and the Expires
property indicate whether the value is still valid. The Title property can provide
descriptive information about the content.

Setting the response content

For some requests, the response to the request message is entirely contained in the
header properties of the response. In most cases, however, action item assigns some
content to the response message. This content may be static information stored in a
file, or information that was dynamically produced by the action item or its content
producer.

You can set the content of the response message by using either the Content property
or the ContentStream property.

The Content property is an AnsiString. AnsiStrings are not limited to text values, so
the value of the Content property can be a string of HTML commands, graphics
content such as a bit-stream, or any other MIME content type.

Use the ContentStream property if the content for the response message can be read
from a stream. For example, if the response message should send the contents of a
file, use a TFileStream object for the ContentStream property. As with the Content
property, ContentStream can provide a string of HTML commands or other MIME
content type. If you use the ContentStream property, do not free the stream yourself.
The Web response object automatically frees it for you.

Note If the value of the ContentStream property is not NULL, the Content property is
ignored.

Sending the response

If you are sure there is no more work to be done in response to a request message,
you can send a response directly from an OnAction event handler. The response
object provides two methods for sending a response: SendResponse and SendRedirect.
Call SendResponse to send the response using the specified content and all the header

U s i n g W e b B r o k e r 33-13

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

properties of the TWebResponse object. If you only need to redirect the Web client to
another URI, the SendRedirect method is more efficient.

If none of the event handlers send the response, the Web application object sends it
after the dispatcher finishes. However, if none of the action items indicate that they
have handled the response, the application will close the connection to the Web client
without sending any response.

Generating the content of response messages
C++Builder provides a number of objects to assist your action items in producing
content for HTTP response messages. You can use these objects to generate strings of
HTML commands that are saved in a file or sent directly back to the Web client. You
can write your own content producers, deriving them from TCustomContentProducer
or one of its descendants.

TCustomContentProducer provides a generic interface for creating any MIME type as
the content of an HTTP response message. Its descendants include page producers
and table producers:

• Page producers scan HTML documents for special tags that they replace with
customized HTML code. They are described in the following section.

• Table producers create HTML commands based on the information in a dataset.
They are described in “Using database information in responses” on page 33-17.

Using page producer components

Page producers (TPageProducer and its descendants) take an HTML template and
convert it by replacing special HTML-transparent tags with customized HTML code.
You can store a set of standard response templates that are filled in by page
producers when you need to generate the response to an HTTP request message. You
can chain page producers together to iteratively build up an HTML document by
successive refinement of the HTML-transparent tags.

HTML templates
An HTML template is a sequence of HTML commands and HTML-transparent tags.
An HTML-transparent tag has the form

<#TagName Param1=Value1 Param2=Value2 ...>

The angle brackets (< and >) define the entire scope of the tag. A pound sign (#)
immediately follows the opening angle bracket (<) with no spaces separating it from
the angle bracket. The pound sign identifies the string to the page producer as an
HTML-transparent tag. The tag name immediately follows the pound sign with no
spaces separating it from the pound sign. The tag name can be any valid identifier
and identifies the type of conversion the tag represents.

Following the tag name, the HTML-transparent tag can optionally include
parameters that specify details of the conversion to be performed. Each parameter is

33-14 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

of the form ParamName=Value, where there is no space between the parameter name,
the equals symbol (=) and the value. The parameters are separated by whitespace.

The angle brackets (< and >) make the tag transparent to HTML browsers that do not
recognize the #TagName construct.

While you can create your own HTML-transparent tags to represent any kind of
information processed by your page producer, there are several predefined tag
names associated with values of the TTag data type. These predefined tag names
correspond to HTML commands that are likely to vary over response messages. They
are listed in the following table:

Any other tag name is associated with tgCustom. The page producer supplies no
built-in processing of the predefined tag names. They are simply provided to help
applications organize the conversion process into many of the more common tasks.

Note The predefined tag names are case insensitive.

Specifying the HTML template
Page producers provide you with many choices in how to specify the HTML
template. You can set the HTMLFile property to the name of a file that contains the
HTML template. You can set the HTMLDoc property to a TStrings object that contains
the HTML template. If you use either the HTMLFile property or the HTMLDoc
property to specify the template, you can generate the converted HTML commands
by calling the Content method.

In addition, you can call the ContentFromString method to directly convert an HTML
template that is a single AnsiString which is passed in as a parameter. You can also
call the ContentFromStream method to read the HTML template from a stream. Thus,
for example, you could store all your HTML templates in a memo field in a database,
and use the ContentFromStream method to obtain the converted HTML commands,
reading the template directly from a TBlobStream object.

Tag Name TTag value What the tag should be converted to

Link tgLink A hypertext link. The result is an HTML sequence beginning
with an <A> tag and ending with an tag.

Image tgImage A graphic image. The result is an HTML tag.

Table tgTable An HTML table. The result is an HTML sequence beginning
with a <TABLE> tag and ending with a </TABLE> tag.

ImageMap tgImageMap A graphic image with associated hot zones. The result is an
HTML sequence beginning with a <MAP> tag and ending
with a </MAP> tag.

Object tgObject An embedded ActiveX object. The result is an HTML
sequence beginning with an <OBJECT> tag and ending with
an </OBJECT> tag.

Embed tgEmbed A Netscape-compliant add-in DLL. The result is an HTML
sequence beginning with an <EMBED> tag and ending with
an </EMBED> tag.

U s i n g W e b B r o k e r 33-15

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Converting HTML-transparent tags
The page producer converts the HTML template when you call one of its Content
methods. When the Content method encounters an HTML-transparent tag, it triggers
the OnHTMLTag event. You must write an event handler to determine the type of tag
encountered, and to replace it with customized content.

If you do not create an OnHTMLTag event handler for the page producer, HTML-
transparent tags are replaced with an empty string.

Using page producers from an action item
A typical use of a page producer component uses the HTMLFile property to specify a
file containing an HTML template. The OnAction event handler calls the Content
method to convert the template into a final HTML sequence:

void __fastcall WebModule1::MyActionEventHandler(TObject *Sender,
TWebRequest *Request, TWebResponse *Response, bool &Handled)

{
PageProducer1->HTMLFile = “Greeting.html”;
Response->Content = PageProducer1->Content();

}

Greeting.html is a file that contains this HTML template:

<HTML>
<HEAD><TITLE>Our Brand New Web Site</TITLE></HEAD>
<BODY>
Hello <#UserName>! Welcome to our Web site.
</BODY>
</HTML>

The OnHTMLTag event handler replaces the custom tag (<#UserName>) in the HTML
during execution:

void __fastcall WebModule1::HTMLTagHandler(TObject *Sender, TTag Tag,
const AnsiString TagString, TStrings *TagParams, AnsiString &ReplaceText)

{
if (CompareText(TagString,”UserName”) == 0)

ReplaceText = ((TPageProducer *)Sender)->Dispatcher->Request->Content;
}

If the content of the request message was the string Mr. Ed, the value of
Response->Content would be

<HTML>
<HEAD><TITLE>Our Brand New Web Site</TITLE></HEAD>
<BODY>
Hello Mr. Ed! Welcome to our Web site.
</BODY>
</HTML>

Note This example uses an OnAction event handler to call the content producer and assign
the content of the response message. You do not need to write an OnAction event
handler if you assign the page producer’s HTMLFile property at design time. In that
case, you can simply assign PageProducer1 as the value of the action item’s Producer
property to accomplish the same effect as the OnAction event handler above.

33-16 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g t h e c o n t e n t o f r e s p o n s e m e s s a g e s

Chaining page producers together
The replacement text from an OnHTMLTag event handler need not be the final
HTML sequence you want to use in the HTTP response message. You may want to
use several page producers, where the output from one page producer is the input
for the next.

The simplest way is to chain the page producers together is to associate each page
producer with a separate action item, where all action items have the same PathInfo
and MethodType. The first action item sets the content of the Web response message
from its content producer, but its OnAction event handler makes sure the message is
not considered handled. The next action item uses the ContentFromString method of
its associated producer to manipulate the content of the Web response message, and
so on. Action items after the first one use an OnAction event handler such as the
following:

void __fastcall WebModule1::Action2Action(TObject *Sender,
TWebRequest *Request, TWebResponse *Response, bool &Handled)

{
Response->Content = PageProducer2->ContentFromString(Response->Content);

}

For example, consider an application that returns calendar pages in response to
request messages that specify the month and year of the desired page. Each calendar
page contains a picture, followed by the name and year of the month between small
images of the previous month and next months, followed by the actual calendar. The
resulting image looks something like this:

The general form of the calendar is stored in a template file. It looks like this:

<HTML>
<Head></HEAD>
<BODY>
<#MonthlyImage> <#TitleLine><#MainBody>
</BODY>
</HTML>

The OnHTMLTag event handler of the first page producer looks up the month and
year from the request message. Using that information and the template file, it does
the following:

• Replaces <#MonthlyImage> with <#Image Month=January Year=2000>.

• Replaces <#TitleLine> with <#Calendar Month=December Year=1999
Size=Small> January 2000 <#Calendar Month=February Year=2000 Size=Small>.

• Replaces <#MainBody> with <#Calendar Month=January Year=2000 Size=Large>.

U s i n g W e b B r o k e r 33-17

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

The OnHTMLTag event handler of the next page producer uses the content produced
by the first page producer, and replaces the <#Image Month=January Year=2000> tag
with the appropriate HTML tag. Yet another page producer resolves the
#Calendar tags with appropriate HTML tables.

Using database information in responses
The response to an HTTP request message may include information taken from a
database. Specialized content producers on the Internet palette page can generate the
HTML to represent the records from a database in an HTML table.

As an alternate approach, special components on the InternetExpress page of the
component palette let you build Web servers that are part of a multi-tiered database
application. See “Building Web applications using InternetExpress” on page 29-31
for details.

Adding a session to the Web module

Both console CGI applications and Win-CGI applications are launched in response to
HTTP request messages. When working with databases in these types of
applications, you can use the default session to manage your database connections,
because each request message has its own instance of the application. Each instance
of the application has its own distinct, default session.

When writing an ISAPI application or an NSAPI application, however, each request
message is handled in a separate thread of a single application instance. To prevent
the database connections from different threads from interfering with each other, you
must give each thread its own session.

Each request message in an ISAPI or NSAPI application spawns a new thread. The
Web module for that thread is generated dynamically at runtime. Add a TSession
object to the Web module to handle the database connections for the thread that
contains the Web module.

Separate instances of the Web module are generated for each thread at runtime. Each
of those modules contains the session object. Each of those sessions must have a
separate name, so that the threads that handle separate request messages do not
interfere with each other’s database connections. To cause the session objects in each
module to dynamically generate unique names for themselves, set the
AutoSessionName property of the session object. Each session object will dynamically
generate a unique name for itself and set the SessionName property of all datasets in
the module to refer to that unique name. This allows all interaction with the database
for each request thread to proceed without interfering with any of the other request
messages. For more information on sessions, see “Managing database sessions” on
page 24-16.

33-18 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Representing database information in HTML

Specialized Content producer components on the Internet palette page supply
HTML commands based on the records of a dataset. There are two types of data-
aware content producers:

• The dataset page producer, which formats the fields of a dataset into the text of an
HTML document.

• Table producers, which format the records of a dataset as an HTML table.

Using dataset page producers
Dataset page producers work like other page producer components: they convert a
template that includes HTML-transparent tags into a final HTML representation.
They include the special ability, however, of converting tags that have a tag name
which matches the name of a field in a dataset into the current value of that field. For
more information about using page producers in general, see “Using page producer
components” on page 33-13.

To use a dataset page producer, add a TDataSetPageProducer component to your Web
module and set its DataSet property to the dataset whose field values should be
displayed in the HTML content. Create an HTML template that describes the output
of your dataset page producer. For every field value you want to display, include a
tag of the form

<#FieldName>

in the HTML template, where FieldName specifies the name of the field in the dataset
whose value should be displayed.

When your application calls the Content, ContentFromString, or ContentFromStream
method, the dataset page producer substitutes the current field values for the tags
that represent fields.

Using table producers
The Internet palette page includes two components that create an HTML table to
represent the records of a dataset:

• Dataset table producers, which format the fields of a dataset into the text of an
HTML document.

• Query table producers, which runs a query after setting parameters supplied by
the request message and formats the resulting dataset as an HTML table.

Using either of the two table producers, you can customize the appearance of a
resulting HTML table by specifying properties for the table’s color, border, separator
thickness, and so on. To set the properties of a table producer at design time, double-
click the table producer component to display the Response Editor dialog.

Specifying the table attributes
Table producers use the THTMLTableAttributes object to describe the visual
appearance of the HTML table that displays the records from the dataset. The

U s i n g W e b B r o k e r 33-19

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

THTMLTableAttributes object includes properties for the table’s width and spacing
within the HTML document, and for its background color, border thickness, cell
padding, and cell spacing. These properties are all turned into options on the HTML
<TABLE> tag created by the table producer.

At design time, specify these properties using the Object Inspector. Select the table
producer object in the Object Inspector and expand the TableAttributes property to
access the display properties of the THTMLTableAttributes object.

You can also specify these properties programmatically at runtime.

Specifying the row attributes
Similar to the table attributes, you can specify the alignment and background color of
cells in the rows of the table that display data. The RowAttributes property is a
THTMLTableRowAttributes object.

At design time, specify these properties using the Object Inspector by expanding the
RowAttributes property. You can also specify these properties programmatically at
runtime.

You can also adjust the number of rows shown in the HTML table by setting the
MaxRows property.

Specifying the columns
If you know the dataset for the table at design time, you can use the Columns editor
to customize the columns’ field bindings and display attributes. Select the table
producer component, and right-click. From the context menu, choose the Columns
editor. This lets you add, delete, or rearrange the columns in the table. You can set the
field bindings and display properties of individual columns in the Object Inspector
after selecting them in the Columns editor.

If you are getting the name of the dataset from the HTTP request message, you can’t
bind the fields in the Columns editor at design time. However, you can still
customize the columns programmatically at runtime, by setting up the appropriate
THTMLTableColumn objects and using the methods of the Columns property to add
them to the table. If you do not set up the Columns property, the table producer
creates a default set of columns that match the fields of the dataset and specify no
special display characteristics.

Embedding tables in HTML documents
You can embed the HTML table that represents your dataset in a larger document by
using the Header and Footer properties of the table producer. Use Header to specify
everything that comes before the table, and Footer to specify everything that comes
after the table.

You may want to use another content producer (such as a page producer) to create
the values for the Header and Footer properties.

If you embed your table in a larger document, you may want to add a caption to the
table. Use the Caption and CaptionAlignment properties to give your table a caption.

33-20 D e v e l o p e r ’ s G u i d e

U s i n g d a t a b a s e i n f o r m a t i o n i n r e s p o n s e s

Setting up a dataset table producer
TDataSetTableProducer is a table producer that creates an HTML table for a dataset.
Set the DataSet property of TDataSetTableProducer to specify the dataset that contains
the records you want to display. You do not set the DataSource property, as you
would for most data-aware objects in a conventional database application. This is
because TDataSetTableProducer generates its own data source internally.

You can set the value of DataSet at design time if your Web application always
displays records from the same dataset. You must set the DataSet property at runtime
if you are basing the dataset on the information in the HTTP request message.

Setting up a query table producer
You can produce an HTML table to display the results of a query, where the
parameters of the query come from the HTTP request message. Specify the TQuery
object that uses those parameters as the Query property of a TQueryTableProducer
component.

If the request message is a GET request, the parameters of the query come from the
Query fields of the URL that was given as the target of the HTTP request message. If
the request message is a POST request, the parameters of the query come from the
content of the request message.

When you call the Content method of TQueryTableProducer, it runs the query, using
the parameters it finds in the request object. It then formats an HTML table to display
the records in the resulting dataset.

As with any table producer, you can customize the display properties or column
bindings of the HTML table, or embed the table in a larger HTML document.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-1

C h a p t e r

34
Chapter34Creating Web Server applications

using WebSnap
WebSnap augments Web Broker with additional components, wizards, and views—
making it easier to build Web server applications that deliver complex, data-driven
Web pages. WebSnap's support for multiple modules and for server-side scripting
makes development and maintenance easier for teams of C++Builder developers and
Web designers.

WebSnap allows HTML design experts on your team to make a more effective
contribution to Web server development and maintenance. The final product of the
WebSnap development process includes a series of scriptable HTML page templates.
These pages can be changed using HTML editors that support embedded script tags,
like Microsoft FrontPage, or even a simple text editor. Changes can be made to the
templates as needed, even after the application is deployed. There is no need to
modify the project source code at all, which saves valuable development time. Also,
WebSnap’s multiple module support can be used to partition your application into
smaller pieces during the coding phases of your project. C++Builder developers can
work more independently.

The dispatcher components automatically handle requests for page content, HTML
form submissions, and requests for dynamic images. WebSnap components called
adapters provide a means to define a scriptable interface to the business rules of your
application. For example, the TDataSetAdapter object is used to make dataset
components scriptable. You can use WebSnap producer components to quickly build
complex, data-driven forms and tables, or to use XSL to generate a page. You can use
the session component to keep track of end users. You can use the user list
component to provide access to user names, passwords, and access rights.

The Web application wizard allows you to quickly build an application that is
customized with the components that you will need. The Web page module wizard
allows you to create a module that defines a new page in your application. Or use the
Web data module wizard to create a container for components that are shared across
your Web application.

34-2 D e v e l o p e r ’ s G u i d e

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

The page module views show the result of server-side scripting without running the
application. You can view the generated HTML in an embedded browser using the
Preview tab, or in text form using the HTML Result tab. The HTML Script tab shows
the page with server-side scripting, which is used to generate HTML for the page.

The following sections of this chapter explain how you use the WebSnap components
to create a Web server application.

Fundamental WebSnap components
Before you can build Web server applications using WebSnap, you must first
understand the fundamental components used in WebSnap development. They fall into
three categories:

• Web modules, which contain the components that make up the application and
define pages

• Adapters, which provide an interface between HTML pages and the Web server
application itself

• Page producers, which contain the routines that create the HTML pages to be
served to the end user

The following sections examine each type of component in more detail.

Web modules

Web modules are the basic building block of WebSnap applications. Every WebSnap
server application must have at least one Web module. More can be added as needed.
There are four Web module types:

• Web application page modules (TWebAppPageModule objects)

• Web application data modules (TWebAppDataModule objects)

• Web page modules (TWebPageModule objects)

• Web data modules (TWebDataModule objects)

Web page modules and Web application page modules provide content for Web
pages. Web data modules and Web application data modules act as containers for
components shared across your application; they serve the same purpose in
WebSnap applications that ordinary data modules serve in regular C++ Builder
applications. You can include any number of Web page or data modules in your
server application.

You may be wondering how many Web modules your application needs. Every
WebSnap application needs one (and only one) Web application module of some
type. Beyond that, you can add as many Web page or data modules as you need.

For Web page modules, a good rule of thumb is one per page style. If you intend to
implement a page that can use the format of an existing page, you may not need a
new Web page module. Modifications to an existing page module may suffice. If the

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-3

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

page is very different from your existing modules, you will probably want to create a
new module. For example, let’s say you are trying to build a server to handle online
catalog sales. Pages which describe available products might all share the same Web
page module, since the pages can all contain the same basic information types using
the same layout. An order form, however, would probably require a different Web
page module, since the format and function of an order form is different from that of
an item description page.

The rules are different for Web data modules. Components that can be shared by
many different Web modules should be placed in a Web data module to simplify
shared access. You will also want to place components that can be used by many
different Web applications in their own Web data module. That way you can easily
share those items among applications. Of course, if neither of these circumstances
applies you might choose not to use Web data modules at all. Use them the same way
you would use regular data modules, and let your own judgment and experience be
your guide.

Web application module types
Web application modules provide centralized control for business rules and non-
visual components in the Web application. The two types of Web application
modules are tabulated below.

Web application modules act as containers for components that perform functions
for the application as a whole—such as dispatching requests, managing sessions, and
maintaining user lists. If you are already familiar with the Web Broker architecture,
you can think of Web application modules as being similar to TWebApplication
objects. Web application modules also contain the functionality of a regular Web
module, either page or data, depending on the Web application module type. Your
project can contain only one Web application module. You will never need more than
one anyway; you can add regular Web modules to your server to provide whatever
extra features you want.

Use the Web application module to contain the most basic features of your server
application. If your server will maintain a home page of some sort, you may want to
make your Web application module a TWebAppPageModule instead of a
TWebAppDataModule, so you don’t have to create an extra Web page module for that
page.

Table 34.1 Web application module types

Web application
module type Description

Page Creates a content page. The page module contains a page producer
which is responsible for generating the content of a page. The page
producer displays its associated page when the HTTP request
pathinfo matches the page name. The page can act as the default page
when the pathinfo is blank.

Data Used as a container for components shared by other modules, such as
database components used by multiple Web page modules.

34-4 D e v e l o p e r ’ s G u i d e

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

Web page modules
Each Web page module has a page producer associated with it. When a request is
received, the page dispatcher analyzes the request and calls the appropriate page
module to process the request and return the content of the page.

Like Web data modules, Web page modules are containers for components. A Web
page module is more than a mere container, however. A Web page module is used
specifically to produce a Web page.

All web page modules have an editor view, called Preview, that allows you to
preview the page as you are building it. You can take full advantage of the visual
application development environment offered by C++Builder.

Page producer component
Web page modules have a property that identifies the page producer component
responsible for generating content for the page. (To learn more about page
producers, see “Page producers” on page 34-6.) The WebSnap page module wizard
automatically adds a producer when creating a Web page module. You can change
the page producer component later by dropping in a different producer from the
WebSnap palette. However, if the page module has a template file, be sure that the
content of this file is compatible with the replacement producer component.

Page name
Web page modules have a page name that can be used to reference the page in an
HTTP request or within the application's logic. A factory in the Web page module’s
unit specifies the page name for the Web page module.

Producer template
Most page producers use a template. HTML templates typically contain some static
HTML mixed in with transparent tags or server-side scripting. When page producers
create their content, they replace the transparent tags with appropriate values and
execute the server-side script to produce the HTML that is displayed by a client
browser. (The XSLPageProducer is an exception to this. It uses XSL templates, which
contain XSL rather than HTML. The XSL templates do not support transparent tags
or server-side script.)

Web page modules may have an associated template file that is managed as part of
the unit. A managed template file appears in the Project Manager and has the same
base file name and location as the unit service file. If the Web page module does not
have an associated template file, the properties of the page producer component
specify the template.

Web data modules
Like standard data modules, Web data modules are a container for components from
the palette. Data modules provide a design surface for adding, removing, and
selecting components. The Web data module differs from a standard data module in
the structure of the unit and the interfaces that the Web data module implements.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-5

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

Use the Web data module as a container for components that are shared across your
application. For example, you can put a dataset component in a data module and
access the dataset from both:

• a page module that displays a grid, and
• a page module that displays an input form.

You can also use Web data modules to contain sets of components that can be used
by several different Web server applications.

Structure of a Web data module unit
Standard data modules have a variable called a form variable, which is used to access
the data module object. Web data modules replace the variable with a function,
which is defined in a Web data module’s unit and has the same name as the Web data
module. The function’s purpose is the same as that of the variable it replaces.
WebSnap applications may be multi-threaded and may have multiple instances of a
particular module to service multiple requests concurrently. Therefore, the function
is used to return the correct instance.

The Web data module unit also registers a factory to specify how the module should
be managed by the WebSnap application. For example, flags indicate whether to
cache the module and reuse it for other requests or to destroy the module after a
request has been serviced.

Adapters

Adapters define a script interface to your server application. They allow you to insert
scripting languages into a page and retrieve information by making calls from your
script code to the adapters. For example, you can use an adapter to define data fields
to be displayed on an HTML page. A scripted HTML page can then contain HTML
content and script statements that retrieve the values of those data fields. This is
similar to the transparent tags used in Web Broker applications. Adapters also
support actions that execute commands. For example, clicking on a hyperlink or
submitting an HTML form can initiate adapter actions.

Adapters simplify the task of creating HTML pages dynamically. By using adapters
in your application, you can include object-oriented script that supports conditional
logic and looping. Without adapters and server-side scripting, you must write more
of your HTML generation logic in C++ event handlers. Using adapters can
significantly reduce development time.

See “Server-side scripting in WebSnap” on page 34-30 and “Dispatching requests
and responses” on page 34-33 for more details about scripting.

Four types of adapter components can be used to create page content: fields, actions,
errors and records.

Fields
Fields are components that the page producer uses to retrieve data from your
application and to display the content on a Web page. Fields can also be used to

34-6 D e v e l o p e r ’ s G u i d e

F u n d a m e n t a l W e b S n a p c o m p o n e n t s

retrieve an image. In this case, the field returns the address of the image written to
the Web page. When a page displays its content, a request is sent to the Web server
application, which invokes the adapter dispatcher to retrieve the actual image from
the field component.

Actions
Actions are components that execute commands on behalf of the adapter. When a
page producer generates its page, the scripting language calls adapter action
components to return the name of the action along with any parameters necessary to
execute the command. For example, consider clicking a button on an HTML form to
delete a row from a table. This returns, in the HTTP request, the action name
associated with the button and a parameter indicating the row number. The adapter
dispatcher locates the named action component and passes the row number as a
parameter to the action.

Errors
Adapters keep a list of errors that occur while executing an action. Page producers
can access this list of errors and display them in the Web page that the application
returns to the end user.

Records
Some adapter components, such as TDataSetAdapter, represent multiple records. The
adapter provides a scripting interface which allows iteration through the records.
Some adapters support paging and iterate only through the records on the current
page.

Page producers

Page producers to generate content on behalf of a Web page module. Page producers
provide the following functionality:

• They generate HTML content.

• They can reference an external file using the HTMLFile property, or the internal
string using the HTMLDoc property.

• When the producers are used with a Web page module, the template can be a file
associated with a unit.

• Producers dynamically generate HTML that can be inserted into the template
using transparent tags or active scripting. Transparent tags can be used in the
same way as WebBroker applications. To learn more about using transparent tags,
see “Converting HTML-transparent tags” on page 33-15. Active scripting support
allows you to embed JScript or VBScript inside the HTML page.

The standard WebSnap method for using page producers is as follows. When you
create a Web page module, you must choose a page producer type in the Web Page
Module wizard. You have many choices, but most WebSnap developers prototype
their pages by using an adapter page producer, TAdapterPageProducer. The adapter

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-7

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

page producer lets you build a prototype Web page using a process analogous to the
standard component model. You add a type of form, an adapter form, to the adapter
page producer. As you need them, you can add adapter components (such as adapter
grids) to the adapter form. Using adapter page producers, you can create Web pages
in a way that is similar to the standard C++Builder technique for building user
interfaces.

There are some circumstances where switching from an adapter page producer to a
regular page producer is more appropriate. For example, part of the function of an
adapter page producer is to dynamically generate script in a page template at
runtime. You may decide that static script would help optimize your server. Also,
users who are experienced with script may want to make changes to the script
directly. In this case, a regular page producer must be used to avoid conflicts
between dynamic and static script. To learn how to change to a regular page
producer, see “Advanced HTML design” on page 34-23.

You can also use page producers the same way you would use them in Web Broker
applications, by associating the producer with a Web dispatcher action item. The
advantages of using the Web page module are

• the ability to preview the page’s layout without running the application, and

• the ability to associate a page name with the module, so that the page dispatcher
can call the page producer automatically.

Creating Web server applications with WebSnap
If you look at the source code for WebSnap, you will discover that WebSnap
comprises hundreds of objects. In fact, WebSnap is so rich in objects and features that
you could spend a long time studying its architecture in detail before understanding
it completely. Fortunately, you really don’t need to understand the whole WebSnap
system before you start developing your server application.

Here you will learn more about how WebSnap works by creating a new Web server
application.

To create a new Web server application using the WebSnap architecture:

1 Choose File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap
Application.

A dialog box appears (as shown in Figure 34.1).

3 Specify the correct server type.

4 Use the components button to specify application module components.

5 Use the Page Options button to select application module options.

34-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

Figure 34.1 New WebSnap application dialog box

Selecting a server type

Select one of the following types of Web server application, depending on your
application’s type of Web server.

Specifying application module components

Application components provide the Web application’s functionality. For example,
including an adapter dispatcher component automatically handles HTML form
submissions and the return of dynamically generated images. Including a page
dispatcher automatically displays the content of a page when the HTTP request
pathinfo contains the name of the page.

Selecting the Components button on the new WebSnap application dialog (see Figure
34.1) displays another dialog that allows you to select one or more of the Web

Table 34.2 Web server application types

Server type Description

ISAPI and NSAPI Sets up your project as a DLL with the exported methods
expected by the Web server.

Apache Sets up your project as a DLL with the exported methods
expected by the Apache Web server.

CGI stand-alone Sets up your project as a console application which conforms to
the Common Gateway Interface (CGI) standard.

Win-CGI stand-alone Sets up your project as a Windows CGI application, a variant of
the CGI standard adapted for Windows.

Web App Debugger
executable

Creates an environment for developing and testing Web server
applications. This type of application is not intended for
deployment.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-9

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

application module components. The dialog, which is called the Web App
Components dialog, is shown in Figure 34.2.

Figure 34.2 Web App Components dialog

The following table contains a brief explanation of the available components:

Table 34.3 Web application components

Component type Description

Application Adapter Contains information about the application, such as the title. The
default type is TApplicationAdapter.

End User Adapter Contains information about the user, such as their name, access
rights, and whether they are logged in. The default type is
TEndUserAdapter. TEndUserSessionAdapter may also be selected.

Page Dispatcher Examines the HTTP request’s pathinfo and calls the appropriate
page module to return the content of a page. The default type is
TPageDispatcher.

Adapter Dispatcher Automatically handles HTML form submissions and requests for
dynamic images by calling adapter action and field components.
The default type is TAdapterDispatcher.

Dispatch Actions Allows you to define a collection of action items to handle requests
based on pathinfo and method type. Action items call user-defined
events or request the content of page-producer components. The
default type is TWebDispatcher.

Locate File Service Provides control over the loading of template files, and script
include files, when the Web application is running. The default
type is TLocateFileService.

Sessions Service Stores information about end users that is needed for a short
period of time. For example, you can use sessions to keep track of
logged-in users and to automatically log a user out after a period
of inactivity. The default type is TSessionsService.

User List Service Keeps track of authorized users, their passwords, and their access
rights. The default type is TWebUserList.

34-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g W e b s e r v e r a p p l i c a t i o n s w i t h W e b S n a p

For each of the above components, the component types listed are the default types
shipped with C++Builder. Users can create their own component types or use third-
party component types.

Selecting Web application module options

If the selected application module type is a page module, you can associate a name
with the page by entering a name in the Page Name field in the New WebSnap
Application dialog box. At runtime, the instance of this module can be either kept in
cache or removed from memory when the request has been serviced. Select either of
the options from the Caching field. You can select more page module options by
choosing the Page Options button. The Application Module Page Options dialog is
displayed and provides the following categories:

• Producer: The producer type for the page can be set to one of AdapterPageProducer,
DataSetPageProducer, InetXPageProducer, PageProducer, or XSLPageProducer. If the
selected page producer supports scripting, then use the Script Engine drop-down
list to select the language used to script the page.

Note The AdapterPageProducer supports only JScript.

• HTML: When the selected producer uses an HTML template this group will be
visible.

• XSL: When the selected producer uses an XSL template, such as
TXSLPageProducer, this group will be visible.

• New File: Check New File if you want a template file to be created and managed
as part of the unit. A managed template file appears in the Project Manager and
has the same file name and location as the unit source file. Uncheck New File if
you want to use the properties of the producer component (typically the
HTMLDoc or HTMLFile property).

• Template: When New File is checked, choose the default content for the template
file from the Template drop-down. The standard template displays the title of the
application, the title of the page, and hyperlinks to published pages. The blank
template creates a blank page.

• Page: Enter a page name and title for the page module. The page name is used to
reference the page in an HTTP request or within the application's logic, whereas
the title is the name that the end user will see when the page is displayed in a
browser.

• Published: Check Published to allow the page to automatically respond to HTTP
requests where the page name matches the pathinfo in the request message.

• Login Required: Check Login Required to require the user to log on before the
page can be accessed.

You have now learned how to begin creating a WebSnap server application. The
WebSnap tutorial in the next section describes how to develop a more complete
application.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-11

W e b S n a p t u t o r i a l

WebSnap tutorial
This tutorial provides step-by-step instructions on building a WebSnap application.
The WebSnap application demonstrates how to use WebSnap HTML components to
build an application that edits the content of a table. Follow the instructions from
beginning to end. If you need a break, you can use File|Save All at any time to save
your project.

Create a new application

This topic describes how to create a new WebSnap application called Country
Tutorial. It displays a table of information about various countries to users on the
Web. Users can add and delete countries and edit information about existing
countries.

Step 1. Start the WebSnap application wizard
1 Run C++Builder and choose File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap
Application.

3 In the New WebSnap Application dialog box:

• Select Web App Debugger executable.

• In the CoClass Name edit control, type CountryTutorial.

• Select Page Module as the component type.

• In the Page Name field, type Home.

4 Click OK.

Step 2. Save the generated files and project
To save the Pascal unit file and project:

1 Select File|Save All.

2 In the Save dialog, change to an appropriate directory where you can save all of
the files in the Country Tutorial project.

3 In the File name field enter HomeU.cpp and click Save.

4 In the File name field enter CountryU.cpp and click Save.

5 In the File name field enter CountryTutorial.bpr and click Save.

Note Save the units and the project in the same directory because the application looks for
the HomeU.html file in the same directory as the executable.

34-12 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

Step 3. Specify the application title
The application title is the name displayed to the end user. To specify the application
title:

1 Choose View|Project Manager.

2 In the Project Manager expand CountryTutorial.exe and double-click the HomeU
entry.

3 In the top line of the Object Inspector window, select ApplicationAdapter from the
pull-down list.

4 In the Properties tab, enter Country Tutorial for the ApplicationTitle property.

5 Click the Preview tab in the editor window. The application title is displayed at
the top of the page with the page name, Home.

This page is very basic. You can improve it by editing the HomeU.html file, either by
using the HomeU.html editor tab or by using an external editor. For more
information on how to edit the page template, see “Advanced HTML design” on
page 34-23.

Create a CountryTable page

A Web page module defines a published page, and it also acts as a container for data
components. Whenever a Web page needs to be returned to the end user, the Web
page module extracts the necessary information from the data components it
contains and uses that information to help create a page.

Here you will add a new page module to the WebSnap application. The page module
will add a second viewable page to the Country Tutorial application. The first page,
Home, was defined when you created the application. The second page, called
CountryTable, shows the table of country information.

Step 1. Add a new Web page module
To add a new page module:

1 Choose File|New|Other.

2 In the New Items dialog box, select the WebSnap tab, choose WebSnap Page
Module, and click OK.

3 In the dialog box, set the Producer Type to AdapterPageProducer.

4 In the Page Name field enter CountryTable. Notice that the Title also changes as
you type.

5 Leave the rest of the fields with their default values.

The dialog should appear as shown in Figure 34.3.

6 Click OK.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-13

W e b S n a p t u t o r i a l

Figure 34.3 New WebSnap Page Module dialog box for the CountryTable page

The CountryTable module should now appear in the IDE. After saving the module,
you will add new components to the CountryTable module.

Step 2. Save the new Web page module
Save the unit to the directory of the project file. When the application runs, it searches
for the CountryTableU.html file in the same directory as the executable.

1 Choose File|Save.

2 In the File name field, enter CountryTableU.cpp and click Save.

Add data components to the CountryTable module

TTable and TDataSetAdapter are data-aware components; they provide access to data.
TTable provides the data for the HTML table. TDataSetAdapter allows server-side
script to access the TTable component. Here we will add these data-aware
components to your application.

Steps 1 and 2 below assume some basic familiarity with database programming, but
you don’t need it in order to complete this tutorial. WebSnap acts only as an interface
(through adapter components) to database components. To learn more about
database programming, you can refer to Part II of this manual.

Step 1. Add data-aware components
1 Choose View|Project Manager.

2 In the Project Manager expand CountryTutorial.exe and double-click the
CountryTableU entry.

3 Choose View|Object TreeView. The Object TreeView window becomes active.

4 Select the BDE tab on the component palette.

34-14 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

5 Select a Table component and add it to the CountryTable Web page module.

6 Select a Session component and add it to the CountryTable Web page module. The
Session component is required because you are using a BDE component (TTable)
in a multi-threaded application.

7 Select the Session component, named Session1 by default, in the Web page module
or the Object TreeView. This displays the Session component values in the Object
Inspector.

8 In the Object Inspector, set the AutoSessionName property to true.

9 Select the Table component in the Web page module or the Object TreeView. This
displays the Table component values in the Object Inspector.

10 In the Object Inspector, change the following properties:

• Set the DatabaseName property to DBDEMOS .

• In the Name property, type Country.

• Set the TableName property to country.db.

• Set the Active property to true.

Step 2. Specify a key field
The key field is used to identify records within a table. This becomes important when
you add an edit page to the application. To specify a key field:

1 In the Object TreeView, expand the Session and DBDemos node, then select the
country.db node. This node is the Country Table component.

2 Right-click the country.db node and select Fields Editor.

3 Right-click on the CountryTable->Country editor window and choose Add All
Fields.

4 Select the Name field from the list of added fields.

5 In the Object Inspector, expand the ProviderFlags property.

6 Set the pfInKey property to true.

Step 3. Add an adapter component
You are finished adding database components. Now, to expose the data in the TTable
through server-side scripting, you must include a dataset adapter (TDataSetAdapter)
component. To add a dataset adapter:

1 Choose the DataSetAdapter component from the WebSnap tab of the component
palette. Add it to the CountryTable Web module.

2 Change the following properties in the Object Inspector:

• Set the DataSet property to Country.

• Set the Name property to Adapter.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-15

W e b S n a p t u t o r i a l

When you are finished, the CountryTable Web page module should look similar
to what is shown in Figure 34.4.

Figure 34.4 CountryTable Web page module

Since the elements in the module aren’t visual, it doesn’t matter where they appear in
the module. What matters is that your module contains the same components as
shown in the figure.

Create a grid to display the data

Step 1. Add a grid
Now, add a grid to display the data from the country table database:

1 Choose View|Project Manager.

2 In the Project Manager, expand CountryTutorial.exe and double-click the
CountryTableU entry.

3 Choose View|Object TreeView or click on the Object TreeView.

4 Expand the AdapterPageProducer component. This component generates server-
side script to quickly build an HTML table.

5 Right-click the WebPageItems entry and choose New Component.

6 In the Add Web Component dialog box, select AdapterForm, then click OK. An
AdapterForm1 component appears in the Object TreeView.

7 Right-click AdapterForm1 and select New Component.

8 In the Add Web Component window, select AdapterGrid then click OK. An
AdapterGrid1 component appears in the Object TreeView.

9 In the Object Inspector window, set the Adapter property to Adapter.

To preview the page, select the CountryTableU tab at the top of the code editor, then
select the Preview tab at the bottom. If the Preview tab is not shown, use the right
arrow at the bottom to scroll through the tabs. The preview should appear similar to
Figure 34.5.

34-16 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

Figure 34.5 CountryTable Preview tab

The Preview tab shows you what the final, static HTML page looks like in a Web
browser. That page is generated from a dynamic HTML page that includes script. To
see a text representation showing the script commands, select the HTML Script tab at
the bottom of the editor window (see Figure 34.6).

Figure 34.6 CountryTable HTML Script tab

The HTML Script tab shows a mixture of HTML and script. HTML and script are
differentiated in the editor by font color and attributes. By default, HTML tags
appear in boldfaced black text, while HTML attribute names appear in black and
HTML attribute values appear in blue. Script, which appears between the script
brackets <% %>, is colored green. You can change the default font colors and attributes
for these items in the Color tab of the Editor Properties dialog, which can be
displayed by right-clicking on the editor and selecting Properties.

There are two other HTML-related editor tabs. The HTML Result tab shows the raw
HTML contents of the preview. Note that the HTML Result, HTML Script, and

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-17

W e b S n a p t u t o r i a l

Preview views are all read-only. You can use the last HTML-related editor tab,
CountryTable.html, for editing.

If you want to improve the look of this page, you can add HTML using either the
CountryTable.html tab or an external editor at any time. For more information on
how to edit the page template, see “Advanced HTML design” on page 34-23.

Step 2. Add editing commands to the grid
Users may need to update the content of the table by deleting, inserting or editing a
row. To allow users to make such updates, add command components.

To add command components:

1 In the Object TreeView for the CountryTable, expand the AdapterPageProducer
component and all its branches.

2 Right-click the AdapterGrid1 component and choose Add All Columns. Five
columns are added to the adapter group.

3 Right-click the AdapterGrid1 component again and choose New Component.

4 Select AdapterCommandColumn and then click OK. An
AdapterCommandColumn1 entry is added to the AdapterGrid1 component.

5 Right-click AdapterCommandColumn1 and choose Add Commands.

6 Multi-select the DeleteRow, EditRow, and NewRow commands, then click OK.

7 To preview the page, click the Preview tab at the bottom of the code editor. There
are now three new buttons (DeleteRow, EditRow, and NewRow) at the end of
each row in the table, as shown in Figure 34.7. When the application is running,
pressing one of these buttons performs the associated action.

Figure 34.7 CountryTable Preview after editing commands have been added

Click the Save All button to save the application before continuing.

34-18 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

Add an edit form

You can now create a Web page module to handle the Edit form for the country table.
Users will be able to change data in the CountryTutorial application through the Edit
form. Specifically, when the user presses the EditRow or NewRow buttons, an Edit
form appears. When the user is finished with the Edit form, the modified information
automatically appears in the table.

Step 1. Add a new Web page module
To add a new Web page module:

1 Choose File|New|Other.

2 In the New Items dialog box, select the WebSnap tab and choose WebSnap Page
Module.

3 In the dialog box, set the Producer Type to AdapterPageProducer.

4 Set the Page Name field to CountryForm.

5 Uncheck the Published box, so this page does not appear in a list of available
pages on this site. The Edit form is accessed through the Edit button, and its
contents depend on which row of the country table is to be modified.

6 Leave the rest of the fields and selections set to their default values. Click OK.

Step 2. Save the new module
Save the module in the same directory as the project file. When the application runs,
it looks for the CountryFormU.html file in the same directory as the executable.

1 Choose File|Save.

2 In the File name field enter CountryFormU.cpp and click OK.

Step 3. Make CountryTableU accessible to the new module
Add CountryTableU unit to the include directives to allow the module access to the
Adapter component.

1 Choose File|Include Unit Hdr.

2 Choose CountryTableU from the list then click OK.

3 Choose File|Save.

Step 4. Add input fields
Add components to the AdapterPageProducer component to generate data entry
fields in the HTML form.

To add input fields:

1 Choose View|Project Manager.

2 In the Project Manager window, expand CountryTutorial.exe and double-click the
CountryFormU entry.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-19

W e b S n a p t u t o r i a l

3 In the Object TreeView expand the AdapterPageProducer component, right-click
WebPageItems, and select New Component.

4 Select AdapterForm, then click OK. An AdapterForm1 entry appears in the Object
TreeView.

5 Right-click AdapterForm1 and select New Component.

6 Select AdapterFieldGroup then click OK. An AdapterFieldGroup1 entry appears
in the Object TreeView.

7 In the Object Inspector window, set the Adapter property to CountryTable-
>Adapter. Set the AdapterMode property to Edit.

8 To preview the Page, click the Preview tab at the bottom of the code editor. Your
preview should resemble the one shown in Figure 34.8.

Figure 34.8 Previewing the CountryForm

Step 5. Add buttons
Add components to the AdapterPageProducer component to generate the submit
buttons in the HTML form. To add components:

1 In the Object TreeView, expand the AdapterPageProducer component and all its
branches.

2 Right-click AdapterForm1 and choose New Component.

3 Select AdapterCommandGroup then click OK. An AdapterCommandGroup1
entry appears in the Object TreeView.

4 In the Object Inspector, set the DisplayComponent property to
AdapterFieldGroup1.

5 Right-click AdapterCommandGroup1 entry and choose Add Commands.

6 Multi-select the Cancel, Apply, and Refresh Row commands, then click OK.

34-20 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

7 To preview the page, click the Preview tab at the bottom of the code editor
window. If the preview does not show the country form, click the Code tab and
then click the Preview tab again. Your preview should resemble the one shown in
Figure 34.9.

Figure 34.9 CountryForm with submit buttons

Step 6. Link form actions to the grid page
When the user clicks a button, an adapter action is executed which in turn carries out
the described action. To specify which page to display after an adapter action is
executed:

1 In the Object TreeView, expand AdapterCommandGroup1 to show the
CmdCancel, CmdApply, and CmdRefreshRow entries.

2 Select CmdCancel. In the Object Inspector window, type CountryTable in the
PageName property.

3 Select CmdApply. In the Object Inspector window, type CountryTable in the
PageName property.

Step 7. Link grid actions to the form page
An adapter action is executed by pushing a button in the grid. To specify which page
is displayed in response to the adapter action:

1 Choose View|Project Manager.

2 In the Project Manager, expand CountryTutorial.exe and double-click the
CountryTableU entry.

3 In the Object TreeView, expand the AdapterPageProducer component and all its
branches to show the CmdNewRow, CmdEditRow, and CmdDeleteRow entries.
These entries appear under the AdapterCommandColumn1 entry.

4 Select CmdNewRow. In the Object Inspector, type CountryForm in the PageName
property.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-21

W e b S n a p t u t o r i a l

5 Select CmdEditRow. In the Object Inspector, type CountryForm in the PageName
property.

To verify that the application is working and that all buttons perform some action,
run the application. To learn how to run the application, see “Run the completed
application” on page 34-21. When you run the application, you are running a server.
To check that the application is working, you must view it in a Web browser. You can
do this by launching it from the Web Application debugger.

Note There will be no indication of database errors, such as an invalid type. For example,
try adding a new country with an invalid value (for example, 'abc') in the Area field.

Run the completed application

To run the completed application:

1 Choose Run|Run. A form is displayed. Web App Debugger executable Web
applications are COM servers, and the form you see is the console window for the
COM server. The first time you run the project, it registers the COM object that the
Web App Debugger can access directly.

2 Choose Tools|Web App Debugger.

3 Click the default URL link to display the ServerInfo page. The ServerInfo page
displays the names of all registered Web Application Debugger executables.

4 Choose CountryTutorial in the drop-down list and click on the Go button.

Your browser now shows the Country Tutorial application. Click on the
CountryTable link to see the CountryTable page.

Add error reporting

Right now, your application won’t show any errors to the user. For example, if
someone types letters into the Area field of a country record, that user will receive no
notification that an error occurred. You will now add an AdapterErrorList component
to display errors that occur while executing adapter actions which edit the country
table.

Step 1. Add error support to the grid
To add error support to the grid:

1 In the Object TreeView for CountryTable, expand the AdapterPageProducer
component and all its branches to show AdapterForm1.

2 Right-click AdapterForm1 and choose New Component.

3 Select AdapterErrorList from the list, then click OK. An AdapterErrorList1 entry
appears in the Object TreeView.

4 Move AdapterErrorList1 above AdapterGrid1 (either by dragging it or by using
the upward-pointing arrow in the Object TreeView toolbar).

34-22 D e v e l o p e r ’ s G u i d e

W e b S n a p t u t o r i a l

5 In the Object Inspector, set the Adapter property to Adapter.

Step 2. Add error support to the form
To add error support to the form:

1 In the Object TreeView for CountryForm, expand the AdapterPageProducer
component and all its branches to show AdapterForm1.

2 Right-click AdapterForm1 and choose New Component.

3 Select AdapterErrorList from the list, then click OK. An AdapterErrorList1 entry
appears in the Object TreeView.

4 Move AdapterErrorList1 above AdapterFieldGroup1 (either by dragging it or by
using the upward-pointing arrow in the Object TreeView toolbar).

5 In the Object Inspector, set the Adapter property to CountryTable->Adapter.

Step 3. Test the error-reporting mechanism
To observe the error-reporting mechanism, you must first make a small change to the
C++Builder IDE. Select Tools|Debbugger Options. In the Language Exceptions tab,
make sure the Stop on Delphi Exceptions checkbox is unchecked, which will allow
the application to proceed when exceptions are detected. Now, to test for grid errors:

1 Run the application and browse to the CountryTable page using the Web
Application Debugger. For information on how to do this, see “Run the completed
application” on page 34-21.

2 Open another browser window and browse to the CountryTable page.

3 Click the DeleteRow button on the first row in the grid.

4 Without refreshing the second browser, click the DeleteRow button on the first
row in the grid.

An error message, “Row not found in Country,” is displayed above the grid.

To test for form errors:

1 Run the application, and browse to the CountryTable page using the Web
Application debugger.

2 Click on the EditRow Button. The CountryForm page is displayed.

3 Change the area field to 'abc', and click the Apply Button.

An error message (“Invalid value for field ‘Area’”) will be displayed above the first
field.

You have now completed the WebSnap tutorial. You might want to recheck the Stop
on Delphi Exceptions checkbox before continuing. Also, save the application by
choosing File|Save All so your completed application is available for future
reference.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-23

A d v a n c e d H T M L d e s i g n

Advanced HTML design
Using adapters and adapter page producers, WebSnap makes it easy to create
scripted HTML pages in your Web server application. You can create a Web front
end for your application data using WebSnap tools that may suit all of your needs.
One powerful feature of WebSnap, however, is the ability to incorporate Web design
expertise from other sources into your application. This section discusses some
strategies for expanding the Web server design and maintenance process to include
other tools and non-programmer team members.

The end products of WebSnap development are your server application and HTML
templates for the pages that the server produces. The templates include a mixture of
scripting and HTML. Once they have been generated initially, they can be edited at
any time using any HTML tool you like. (It would be best to use a tool that supports
embedded script tags, like Microsoft FrontPage, to ensure that the editor doesn’t
accidentally damage the script.) The ability to edit template pages outside of the IDE
can be used many ways.

For example, C++ Builder developers can edit the HTML templates at design time
using any external editor they prefer. This allows them to use advanced formatting
and scripting features that may be present in an external HTML editor but not in C++
Builder. To enable an external HTML editor from the IDE, use the following steps:

1 From the main menu, select Tools|Environment Options. In the Environment
Options dialog, click on the Internet tab.

2 In the Internet File Types box, select HTML and click the Edit button to display the
Edit Type dialog box.

3 In the Edit Action box, select an action associated with your HTML editor. For
example, to select the default HTML editor on your system, choose Edit from the
drop-down list. Click OK twice to close the Edit Type and Environment Options
dialog boxes.

To edit an HTML template, open the unit which contains that template. In the Edit
window, right-click and select html Editor from the context menu. The HTML editor
displays the template for editing in a separate window. The editor runs independent
of the IDE; save the template and close the editor when you’re finished.

After the product has been deployed, you may wish to change the look of the final
HTML pages. Perhaps your software development team is not even responsible for
the final page layout. That duty may belong to a dedicated Web page designer in
your organization, for example. Your page designers may not have any experience
with C++ Builder development. Fortunately, they don’t have to. They can edit the
page templates at any point in the product development and maintenance cycle,
without ever changing the source code. Thus, WebSnap HTML templates can make
server development and maintenance more efficient.

34-24 D e v e l o p e r ’ s G u i d e

L o g i n s u p p o r t

Manipulating server-side script in HTML files

HTML in page templates can be modified at any time in the development cycle.
Server-side scripting can be a different matter, however. It is always possible to
manipulate the server-side script in the templates outside of C++ Builder, but it is not
recommended for pages generated by an adapter page producer. The adapter page
producer is different from ordinary page producers in that it can change the server-
side scripting in the page templates at runtime. It can be difficult to predict how your
script will act if other script is added dynamically. If you want to manipulate script
directly, make sure that your Web page module contains a page producer instead of
an adapter page producer.

If you have a Web page module that uses an adapter page producer, you can convert
it to use a regular page producer instead by using the following steps:

1 In the module you want to convert (let’s call it ModuleName), copy all of the
information from the HTML Script tab to the ModuleName.html tab, replacing all
of the information that it contained previously.

2 Drop a page producer (located on the Internet tab of the component palette) onto
your Web page module.

3 Set the page producer’s ScriptEngine property to match that of the adapter page
producer it replaces.

4 Change the page producer in the Web page module from the adapter page
producer to the new page producer. Click on the Preview tab to verify that the
page contents are unchanged.

5 The adapter page producer has now been bypassed. You may now delete it from
the Web page module.

Login support
Many Web server applications require login support. For example, a server
application may require a user to login before granting access to some parts of a Web
site. Pages may have a different appearance for different users; logins may be
necessary to enable the Web server to send the right pages. Also, because servers
have physical limitations on memory and processor cycles, server applications
sometimes need the ability to limit the number of users at any given time.

With WebSnap, incorporating login support into your Web server application is
fairly simple and straightforward. In this section, you will learn how you can add
login support, either by designing it in from the beginning of your development
process or by retrofitting it onto an existing application.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-25

L o g i n s u p p o r t

Adding login support

In order to implement login support, you need to make sure your Web application
module has the following components:

• A user list service (an object of type TWebUserList), which contains the usernames,
passwords and permissions for server users

• A sessions service (TSessionsService), which stores information about users currently
logged in to the server

• An end user adapter (TEndUserSessionAdapter) which handles actions associated
with logging in

When you first create your Web server application, you can add these components
using the New WebSnap Application dialog box. Click the Components button on
that dialog to display the New Web App Components dialog box. Check the End
User Adapter, Sessions Service and Web User List boxes. Select
TEndUserSessionAdapter on the drop down menu next to the End User Adapter box to
select the end user adapter type. (The default choice, TEndUserAdapter, is not
appropriate for login support because it cannot track the current user.) When you’re
finished, your dialog should look like the one shown below. Click OK twice to
dismiss the dialog boxes. Your Web application module now has the necessary
components for login support.

Figure 34.10 Web App Components dialog with options for login support selected

If you are adding login support to an existing Web application module, you can drop
these components directly into your module from the WebSnap tab of the component
palette. The Web application module will configure itself automatically.

The sessions service and the end user adapter may not require your attention during
your design phase, but the Web user list probably will. You can add default users
and set their read/modify permissions through the WebUserList component editor.
Double-click on the component to display an editor which lets you set usernames,
passwords and access rights. For more information on how to set up access rights,
see “User access rights” on page 34-28.

34-26 D e v e l o p e r ’ s G u i d e

L o g i n s u p p o r t

Using the sessions service

The sessions service, which is an object of type TSessionsService, keeps track of the
users who are logged into your Web server application. The sessions service is
responsible for assigning a different session for each user and for associating name/
value pairs (such as a username) with a user.

Information contained in a sessions service is stored in the application’s memory.
Therefore, the Web server application must keep running between requests for the
sessions service to work. Some server application types, such as CGI, terminate
between requests.

Note If you want your application to support logins, be sure to use a server type that does
not terminate between requests. If your project produces a Web App debugger
executable, you must have the application running in the background before it
receives a page request. Otherwise it will terminate after each page request, and
users will never be able to get past the login page.

There are two important properties in the sessions service which you can use to
change default server behavior. The MaxSessions property specifies how many users
can be logged into the system at any given time. The default value for MaxSessions is
-1, which places no software limitation on the number of allowed users. Of course,
your server hardware can still run short of memory or processor cycles for new users,
which can adversely affect system performance. If you are concerned that excessive
numbers of users might overwhelm your server, be sure to set MaxSessions to an
appropriate value.

The DefaultTimeout property specifies the defaut time-out period in minutes. After
DefaultTimeout minutes have passed without any user activity, the session is
automatically terminated. If the user had logged in, all login information is lost.. The
default value is 20. You can override the default value in any given session by
changing its TimeoutMinutes property.

Login pages

Of course, your application also needs a login page. Users enter their username and
password for authentication, either while trying to access a restricted page or prior to
such an attempt. The user can also specify which page they receive when
authentication is completed. If the username and password match a user in the Web
user list, the user acquires the appropriate access rights and is forwarded to the page
specified on the login page. If the user isn’t authenticated, the login page may be
redisplayed (the default action) or some other action may occur.

Fortunately, WebSnap makes it easy to create a simple login page using a Web page
module and the adapter page producer. To create a login page, start by creating a
new Web page module. Select File|New|Other to display the New Items dialog box,
then select WebSnap Page Module from the WebSnap tab. Select
AdapterPageProducer as the page producer type. Fill in the other options however
you like. Login tends to be a good name for the login page.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-27

L o g i n s u p p o r t

Now you should add the most basic login page fields: a username field, a password
field, a selection box for selecting which page the user receives after logging in, and a
Login button which submits the page and authenticates the user. To add these fields:

1 Add a LoginFormAdapter component (which you can find on the WebSnap tab of
the component palette) to the Web page module you just created.

2 Double-click the AdapterPageProducer component to display a Web page editor
window.

3 Right-click the AdapterPageProducer in the top left pane and select New
Component. In the Add Web Component dialog box, select AdapterForm and click
OK.

4 Add an AdapterFieldGroup to the AdapterForm. (Right-click the AdapterForm in the
top left pane and select New Component. In the Add Web Component dialog box,
select AdapterFieldGroup and click OK.)

5 Now go to the Object Inspector and set the Adapter property of your
AdapterFieldGroup to your LoginFormAdapter. The UserName, Password and
NextPage fields should appear automatically in the Browser tab of the Web page
editor.

So, WebSnap takes care of most of the work in a few simple steps. The login page is
still missing a Login button, which submits the information on the form for
authentication. To add a Login button:

1 Add an AdapterCommandGroup to the AdapterForm.

2 Add an AdapterActionButton to the AdapterCommandGroup.

3 Click on the AdapterActionButton (listed in the upper right pane of the Web page
editor) and change its ActionName property to Login using the Object Inspector.
You can see a preview of your login page in the Web page editor’s Browser tab.

 Your Web page editor should look similar to the one shown below.

Figure 34.11 An example of a login page as seen from a Web page editor

34-28 D e v e l o p e r ’ s G u i d e

L o g i n s u p p o r t

If the button doesn’t appear below the AdapterFieldGroup, make sure that the
AdapterCommandGroup is listed below the AdapterFieldGroup on the Web page editor.
If it appears above, select the AdapterCommandGroup and click the down arrow on the
Web page editor. (In general, Web page elements appear vertically in the same order
as they appear in the Web page editor.)

There is one more step necessary before your login page becomes functional. You
need to specify which of your pages is the login page in your end user session
adapter. To do so, select the EndUserSessionAdapter component in your Web
application module. In the Object Inspector, change the LoginPage property to the
name of your login page. Your login page is now enabled for all the pages in your
Web server application.

Setting pages to require logins

Once you have a working login page, you must require logins for those pages which
need controlled access. The easiest way to have a page require logins is to design that
requirement into the page. When you first create a Web page module, check the
Login Required box in the Page section of the New WebSnap Page Module dialog
box.

If you create a page without requiring logins, you can change your mind later. To
require logins after a Web page module has been created:

1 Open the source code file associated with the Web page module in the editor.

2 Scroll down to the declaration of the static WebInit function.

3 Uncomment the wpLoginRequired portion of the parameter list by removing the /*
and */ symbols surrounding it. The WebInit function should resemble the one
shown below:

static TWebPageInit WebInit(__classid(TAdapterPageProducerPage3), crOnDemand, caCache,
PageAccess << wpPublished << wpLoginRequired, ".html", "", "", "", "");

To remove the login requirement from a page, reverse the process and recomment
the wpLoginRequired portion of the declaration.

Note You can use the same process to make the page published or not. Simply add or
remove comment marks around the wpPublished portion as needed.

User access rights

User access rights are an important part of any Web server application. You need to
be able to control who can view and modify the information your server provides.
For example, let’s say you are building a server application to handle online retail
sales. It makes sense to allow users to view items in your catalog, but you don’t want
them to be able to change your prices! Clearly, access rights are an important issue.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-29

L o g i n s u p p o r t

Fortunately, WebSnap offers you several ways to control access to pages and server
content. In previous sections, you saw how you can control page access by requiring
logins. You have other options as well. For example:

• You can show data fields in an edit box to users with appropriate modify access
rights; other users will see the field contents, but not have the ability to edit them.

• You can hide specific fields from users who don’t have the correct view access
rights.

• You can prevent unauthorized users from receiving specific pages.

Descriptions for implementing these behaviors are included in this section.

Dynamically displaying fields as edit or text boxes
If you use the adapter page producer, you can change the appearance of page
elements for users with different access rights. For example, the Biolife demo (found
in the WebSnap subdirectory of the Demos directory) contains a form page which
shows all the information for a given species. The form appears when the user clicks
a Details button on the grid. A user logged in as Will sees data displayed as plain
text. Will is not allowed to modify the data, so the form doesn’t give him a
mechanism to do so. User Ellen does have modify permissions, so when Ellen views
the form page, she sees a series of edit boxes which allow her to change field
contents. Using access rights in this manner can save you from creating extra pages.

The appearance of some page elements, such as TAdapterDisplayField and
TAdapterDisplayColumn, is determined by its ViewMode property. If ViewMode is set to
vmToggleOnAccess, the page element will appear as an edit box to users with modify
access. Users without modify access will see plain text. Set the ViewMode property to
vmToggleOnAccess to allow the page element’s appearance and function to be
determined dynamically.

A Web user list is a list of TWebUserListItem objects, one for each user who can login
to the system. Permissions for users are stored in their Web user list item’s
AccessRights property. AccessRights is a text string, so you are free to specify
permissions any way you like. Create a name for every kind of access right you want
in your server application. If you want a user to have multiple access rights, separate
items in the list with a space, semicolon or comma.

Access rights for fields are controlled by their ViewAccess and ModifyAccess
properties. ViewAccess stores the name of the access rights needed to view a given
field. ModifyAccess dictates what access rights are needed to modify field data. These
properties appear in two places: in each field and in the adapter object that contains
them.

Checking access rights is a two-step process. When deciding the appearance of a field
in a page, the application first checks the field’s own access rights. If the value is an
empty string, the application then checks the access rights for the adapter which
contains the field. If the adapter property is empty as well, the application will follow
its default behavior. For modify access, the default behavior is to allow modifications
by any user in the Web user list who has a non-empty AccessRights property. For
view access, permission is automatically granted when no view access rights are
specified.

34-30 D e v e l o p e r ’ s G u i d e

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

Hiding fields and their contents
You can hide the contents of a field from users who don’t have appropriate view
permissions. First set the ViewAccess property for the field to match the permission
you want users to have. Next, make sure that the ViewAccess for the field’s page
element is set to vmToggleOnAccess. The field caption will appear, but the value of the
field won’t.

Of course, it is often best to hide all references to the field when a user doesn’t have
view permissions. To do so, set the HideOptions for the field’s page element to include
hoHideOnNoDisplayAccess. Neither the caption nor the contents of the field will be
displayed.

Preventing page access
You may decide that certain pages should not be accessible to unauthorized users. To
grant check access rights before displaying pages, alter your declaration of the
module’s WebInit function. This funciton appears in the source code for your
module.

The WebInit function takes up to 9 arguments. WebSnap usually leaves four of them
set to default values (empty strings), so the call generally looks like this:

static TWebPageInit WebInit(__classid(TAdapterPageProducerPage3), crOnDemand, caCache,
PageAccess << wpPublished /* << wpLoginRequired */, ".html", "", "", "", "");

To check permissions before granting access, you need to supply the string for the
necessary permission in the ninth parameter. For example, let’s say that the
permission is called Access. This is how you could modify the WebInit function:

static TWebPageInit WebInit(__classid(TAdapterPageProducerPage3), crOnDemand, caCache,
PageAccess << wpPublished /* << wpLoginRequired */, ".html", "", "", "", "Access");

Access to the page will now be denied to anyone who lacks Access permission.

Server-side scripting in WebSnap
Page producer templates can include scripting languages such as JScript or VBScript.
The page producer executes the script in response to a request for the producer's
content. Because the Web server application evaluates the script, it is called server-
side script, as opposed to client-side script (which is evaluated by the browser).

This section provides a conceptual overview of server-side scripting and how it is
used by WebSnap applications. The ”WebSnap server-side scripting
reference”appendix has much more detailed information about script objects and
their properties and methods. You can think of it as an API reference for server-side
scripting, similar to the object descriptions for C++Builder found in the help files.
The appendix also contains detailed script examples which show you exactly how
script can be used to generate HTML pages.

Although server-side scripting is a valuable part of WebSnap, it is not essential that
you use scripting in your WebSnap applications. Scripting is used for HTML
generation and nothing else. It allows you to insert application data into an HTML
page. In fact, almost all of the properties exposed by adapters and other script-

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-31

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

enabled objects are read-only. Server-side script isn’t used to change application
data, which is still managed by components and event handlers written in Pascal or
C++.

There are other ways to insert application data into an HTML page. You can use Web
Broker’s transparent tags or some other tag-based solution, if you prefer. For
example, several projects in the C++ Builder Examples\WebSnap folder use XML
and XSL instead of scripting. Without scripting, however, you will be forced to write
most of your HTML generation logic in C++, which will increase your development
time.

The scripting used in WebSnap is object-oriented and supports conditional logic and
looping, which can greatly simplify your page generation tasks. For example, your
pages may include a data field that can be edited by some users but not others. With
scripting, conditional logic can be placed in your template pages which displays an
edit box for authorized users and simple text for others. With a tag-based approach,
you must program such decision-making into your HTML generating source code.

Active scripting

WebSnap relies on active scripting to implement server-side script. Active scripting is
a technology created by Microsoft to allow a scripting language to be used with
application objects through COM interfaces. Microsoft ships two active scripting
languages, VBScript and JScript. Support for other languages is available through
third parties.

Script engine

The page producer’s ScriptEngine property identifies the active scripting engine that
evaluates the script within a template. It is set to support JScript by default, but it can
also support other scripting languages (such as VBScript).

Note WebSnap’s adapters are designed to produce JScript. You will need to provide your
own script generation logic for other scripting languages.

Script blocks

Script blocks, which appear in HTML templates, are delimited by <% and %>. The
script engine evaluates any text inside script blocks. The result becomes part of the
page producer's content. The page producer writes text outside of a script block after
translating any embedded transparent tags. Script blocks can also enclose text,
allowing conditional logic and loops to dictate the output of text. For example, the
following JScript block generates a list of five numbered lines:

<% for (i=0;i<5;i++) { %>
 Item <%=i %>
<% } %>

(The <%= delimiter is short for Response.Write.)

34-32 D e v e l o p e r ’ s G u i d e

S e r v e r - s i d e s c r i p t i n g i n W e b S n a p

Creating script

Developers can take advantage of WebSnap features to automatically generate script.

Wizard templates
When creating a new WebSnap application or page module, WebSnap wizards
provide a template field that is used to select the initial content for the page module
template. For example, the Default template generates JScript which, in turn,
displays the application title, page name, and links to published pages.

TAdapterPageProducer
The TAdapterPageProducer builds forms and tables by generating HTML and JScript.
The generated JScript calls adapter objects to retrieve field values, field image
parameters, and action parameters.

Editing and viewing script

Use the HTML Result tab to view the HTML resulting from the executed script. Use
the Preview tab to view the result in a browser. The HTML Script tab is available
when the Web Page module uses TAdapterPageProducer. The HTML Script tab
displays the HTML and JScript generated by the TAdapterPageProducer object.
Consult this view to see how to write script that builds HTML forms to display
adapter fields and execute adapter actions.

Including script in a page

A template can include script from a file or from another page. To include script from
a file, use the following code statement:

<!-- #include file="filename.html" -->

When the template includes script from another page, the script is evaluated by the
including page. Use the following code statement to include the unevaluated content
of page1.

<!-- #include page="page1" -- >

Script objects

Script objects are objects that script commands can reference. You make objects
available for scripting by registering an IDispatch interface to the object with the

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-33

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

active scripting engine. The following objects are available for scripting:

Script objects on the current page, which all use the same adapter, can be referenced
without qualification. Script objects on other pages are part of another page module
and have a different adapter object. They can be accessed by starting the script object
reference with the name of the adapter object. For example,

<%= FirstName %>

displays the contents of the FirstName property of the current page’s adapter. The
following script line displays the FirstName property of Adapter1, which is in another
page module:

<%= Adapter1.FirstName %>

For more complete descriptions of script objects, see Appendix B, “WebSnap server-
side scripting reference.”

Dispatching requests and responses
One reason to use WebSnap for your Web server application development is that
WebSnap components automatically handle HTML requests and responses. Instead
of writing event handlers for common page transfer chores, you can focus your
efforts on your business logic and server design. Still, it can be helpful to understand
how WebSnap applications handle HTML requests and responses. This section gives
you an overview of that process.

Before handling any requests, the Web application module initializes the Web
context object (of type TWebContext). The Web context object, which is accessed by
calling the global WebContext function, provides global access to variables used by
components servicing the request. For example, the Web context contains the
TWebRequest and TWebResponse objects to represent the HTTP request message and
the response that should be returned.

Table 34.4 Script objects

Script object Description

Application Provides access to the application adapter of the Web Application module.

EndUser Provides access to the end user adapter of the Web Application module.

Session Provides access to the session object of the Web Application module.

Pages Provides access to the application pages.

Modules Provides access to the application modules.

Page Provides access to the current page

Producer Provides access to the page producer of the Web Page module.

Response Provides access to the WebResponse. Use this object when tag replacement
is not desired.

Request Provides access to the WebRequest.

Adapter objects All of the adapter components on the current page can be referenced
without qualification. Adapters in other modules must be qualified using
the Modules objects.

34-34 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Dispatcher components

The dispatcher components in the Web application module control the flow of the
application. The dispatchers determine how to handle certain types of HTTP request
messages by examining the HTTP request.

The adapter dispatcher component (TAdapterDispatcher) looks for a content field, or a
query field, that identifies an adapter action component or an adapter image field
component. If the adapter dispatcher finds a component, it passes control to that
component.

The Web dispatcher component (TWebDispatcher) maintains a collection of action
items (of type TWebActionItem) that know how to handle certain types of HTTP
request messages. The Web dispatcher looks for an action item that matches the
request. If it finds one, it passes control to that action item. The Web dispatcher also
looks for auto-dispatching components that can handle the request.

The page dispatcher component (TPageDispatcher) examines the PathInfo property of
the TWebRequest object, looking for the name of a registered Web page module. If the
dispatcher finds a Web page module name, it passes control to that module.

Adapter dispatcher operation

The adapter dispatcher component (TAdapterDispatcher) automatically handles
HTML form submissions, and requests for dynamic images, by calling adapter action
and field components.

Using adapter components to generate content
For WebSnap applications to automatically execute adapter actions and retrieve
dynamic images from adapter fields, the HTML content must be properly
constructed. If the HTML content is not properly constructed, the resulting HTTP
request will not contain the information that the adapter dispatcher needs to call
adapter action and field components.

To reduce errors in constructing the HTML page, adapter components indicate the
names and values of HTML elements. Adapter components have methods that
retrieve the names and values of hidden fields that must appear on an HTML form
designed to update adapter fields. Typically, page producers use server-side
scripting to retrieve names and values from adapter components and then uses this
information to generate HTML. For example, the following script constructs an
 element that references the field called Graphic from Adapter1:

<img src="<%=Adapter1.Graphic.Image.AsHREF%>" alt="<%=Adapter1.Graphic.DisplayText%>">

When the Web application evaluates the script, the HTML src attribute will contain
the information necessary to identify the field and any parameters that the field
component needs to retrieve the image. The resulting HTML might look like this:

When the browser sends an HTTP request to retrieve this image to the Web
application, the adapter dispatcher will be able to determine that the Graphic field of

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-35

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Adapter1, in the module DM, should be called with the parameter “Species
No=90090”. The adapter dispatcher will call the Graphic field to write an appropriate
HTTP response.

The following script constructs an <A> element referencing the EditRow action of
Adapter1 and creates a hyperlink to a page called Details:

<a href="<%=Adapter1.EditRow.LinkToPage("Details", Page.Name).AsHREF%>">Edit...

The resulting HTML might look like this:

Edit...

The end user clicks this hyperlink, and the browser sends an HTTP request. The
adapter dispatcher can determine that the EditRow action of Adapter1, in the module
DM, should be called with the parameter Species No=903010. The adapter dispatcher
also displays the Edit page if the action executes successfully, and displays the Grid
page if action execution fails. It then calls the EditRow action to locate the row to be
edited, and the page named Edit is called to generate an HTTP response. Figure 34.12
shows how adapter components are used to generate content.

Figure 34.12 Generating content flow

Receiving adapter requests and generating responses
When the adapter dispatcher receives a client request, the adapter dispatcher creates
adapter request and adapter response objects to hold information about that HTTP
request. The adapter request and adapter response objects are stored in the Web
context to allow access during the processing of the request.

The adapter dispatcher creates two types of adapter request objects: action and
image. It creates the action request object when executing an adapter action. It creates
the image request object when retrieving an image from an adapter field.

The adapter response object is used by the adapter component to indicate the
response to an adapter action or adapter image request. There are two types of
adapter response objects, action and image.

WebSnap Application

Web Application Module

Web
Response

Page
Producer

Script
Engine

Adapter

Server

Template

34-36 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Action requests
Action request objects are responsible for breaking the HTTP request down into
information needed to execute an adapter action. The types of information needed
for executing an adapter action may include the following request information:

Generating action responses
Action response objects generate an HTTP response on behalf of an adapter action
component. The adapter action indicates the type of response by setting properties
within the object, or by calling methods in the action response object. The properties
include:

• RedirectOptions—The redirect options indicate whether to perform an HTTP
redirect instead of returning HTML content.

• ExecutionStatus—Setting the status to success causes the default action response to
be the content of the success page identified in the Action Request.

The action response methods include:

• RespondWithPage —The adapter action calls this method when a particular Web
page module should generate the response.

• RespondWithComponent—The adapter action calls this method when the response
should come from the Web page module containing this component.

• RespondWithURL—The adapter action calls this method when the response is a
redirect to a specified URL.

When responding with a page, the action response object attempts to use the page
dispatcher to generate page content. If it does not find the page dispatcher, it calls the
Web page module directly.

Table 34.5 Request information found in action requests

Request informaton Description

Component name Identifies the adapter action component.

Adapter mode Defines a mode. For example, TDataSetAdapter supports Edit, Insert,
and Browse modes. An adapter action may execute differently
depending on the mode.

Success page Identifies the page displayed after successful execution of the action.

Failure page Identifies the page displayed if an error occurs during execution of
the action.

Action request parameters Identifies the parameters need by the adapter action. For example,
the TDataSetAdapter Apply action will include the key values
identifying the record to be updated.

Adapter field values Specifies values for the adapter fields passed in the HTTP request
when an HTML form is submitted. A field value can include new
values entered by the end user, the original values of the adapter
field, and uploaded files.

Record keys Specifies keys that uniquely identify each record.

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-37

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Figure 34.13 illustrates how action request and action response objects handle a
request.

Figure 34.13 Action request and response

Image request
The image request object is responsible for breaking the HTTP request down into the
information required by the adapter image field to generate an image. The types of
information represented by the Image Request include:

• Component name - Identifies the adapter field component.

• Image request parameters - Identifies the parameters needed by the adapter
image. For example, the TDataSetAdapterImageField object needs key values to
identify the record that contains the image.

Image response
The image response object contains the TWebResponse object. Adapter fields respond
to an adapter request by writing an image to the Web response object.

Figure 34.14 illustrates how adapter image fields respond to a request.

WebSnap Application

Web Application Module

Web
Request

Adapter
Dispatcher

Action
Request

Adapter
Action

Page
Dispatcher

Action
Response

Web
Response

Web Page
Module

Server

34-38 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

Figure 34.14 Image response to a request

Dispatching action items

When responding to a request, the Web dispatcher (TWebDispatcher) searches
through its list of action items for one that:

• matches the PathInfo portion of the target URL’s request message, and

• can provide the service specified as the method of the request message.

It accomplishes this by comparing the PathInfo and MethodType properties of the
TWebRequest object with the properties of the same name on the action item.

When the dispatcher finds the appropriate action item, it causes that action item to
fire. When the action item fires, it does one of the following:

• Fills in the response content and sends the response, or signals that the request has
been completely handled.

• Adds to the response, and then allows other action items to complete the job.

• Defers the request to other action items.

After the dispatcher has checked all of its action items, if the message was not
handled correctly, the dispatcher checks for specially registered auto-dispatching
components that do not use action items. (These components are specific to multi-
tiered database applications.) If the request message is still not fully handled, the
dispatcher calls the default action item. The default action item does not need to
match either the target URL or the method of the request.

Page dispatcher operation

When the page dispatcher receives a client request, it determines the page name by
checking the PathInfo portion of the target URL’s request message. If the PathInfo
portion is not blank, the page dispatcher uses the ending word of PathInfo as the
page name. If the PathInfo portion is blank, the page dispatcher tries to determine a
default page name.

WebSnap Application

Web Application Module

Web
Request

Adapter
Dispatcher

Image
Request

Adapter Image
Field

Web
Response

Server

C r e a t i n g W e b S e r v e r a p p l i c a t i o n s u s i n g W e b S n a p 34-39

D i s p a t c h i n g r e q u e s t s a n d r e s p o n s e s

If the page dispatcher’s DefaultPage property contains a page name, the page
dispatcher uses this name as the default page name. If the DefaultPage property is
blank and the Web application module is a page module, the page dispatcher uses
the name of the Web application module as the default page name.

If the page name is not blank, the page dispatcher searches for a Web page module
with a matching name. If it finds a Web page module, it calls that module to generate
a response. If the page name is blank, or if the page dispatcher does not find a Web
page module, the page dispatcher raises an exception.

Figure 34.15 shows how the page dispatcher responds to a request.

Figure 34.15 Dispatching a page

WebSnap Application

Web Application Module

Web
Request

Page Dispatcher

Web
Response

Page Module
Server

34-40 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h X M L d o c u m e n t s 35-1

C h a p t e r

35
Chapter35Working with XML documents

XML (Extensible Markup Language) is a markup language for describing structured
data. It is similar to HTML, except that the tags describe the structure of information
rather than its display characteristics. XML documents provide a simple, text-based
way to store information so that it is easily searched or edited. They are often used as
a standard, transportable format for data in Web applications, business-to-business
communication, and so on.

XML documents provide a hierarchical view of a body of data. Tags in the XML
document describe the role or meaning of each data element, as illustrated in the
following document, which describes a collection of stock holdings:

<?xml version="1.0" encoding=UTF-8 standalone="no" ?>
<!DOCTYPE StockHoldings SYSTEM "sth.dtd">
<StockHoldings>

<Stock exchange="NASDAQ">
<name>Borland</name>
<price>15.375</price>
<symbol>BORL</symbol>
<shares>100</shares>

</Stock>
<Stock exchange="NYSE">

<name>Pfizer</name>
 <price>42.75</price>

<symbol>PFE</symbol>
<shares type="preferred">25</shares>

</Stock>
</StockHoldings>

This example illustrates a number of typical elements in an XML document. The first
line is a processing instruction called an XML declaration. The XML declaration is
optional but you should include it, because it supplies useful information about the
document. In this example, the XML declaration says that the document conforms to
version 1.0 of the XML specification, that it uses UTF-8 character encoding, and that it
relies on an external file for its document type declaration (DTD).

35-2 D e v e l o p e r ’ s G u i d e

U s i n g t h e D o c u m e n t O b j e c t M o d e l

The second line, which begins with the <!DOCType> tag, is a document type
declaration. The document type declaration (DTD) is how XML defines the structure
of the document. It imposes syntax rules on the elements (tags) contained in the
document. The DTD in this example references another file (sth.dtd). In this case, the
structure is defined within an external file, rather than within the XML document
itself. Other types of files that describe the structure of an XML document include
Reduced XML Data (XDR) and XML schemas (XSD).

The remaining lines are organized into a hierarchy with a single root node (the
<StockHoldings> tag). Each node in this hierarchy contains either a set of child
nodes, or a text value. Some of the tags (the <Stock> and <shares> tags) include
attributes, which are Name=Value pairs that provide details on how to interpret the
tag.

Although it is possible to work directly with the text in an XML document, typically
applications use additional tools for parsing and editing the data. W3C defines a set
of standard interfaces for representing a parsed XML document called the Document
Object Model (DOM). A number of vendors provide XML parsers that implement the
DOM interfaces to let you interpret and edit XML documents more easily.

C++Builder provides a number of additional tools for working with XML
documents. These tools use a DOM parser that is provided by another vendor, and
make it even easier to work with XML documents. This chapter describes those tools.

Note In addition to the tools described in this chapter, C++Builder comes with tools and
components for converting XML documents to data packets that integrate into the
C++Builder database architecture. For details on tools for integrating XML
documents into database applications, see Chapter 30, “Using XML in database
applications.”

Using the Document Object Model
The Document Object Model (DOM) is a set of standard interfaces for representing a
parsed XML document. By default, you get a copy of the Microsoft DOM
implementation. In addition, there is a registration mechanism that lets you integrate
additional DOM implementations by other vendors into the XML framework.

The XMLDOM unit includes declarations for all the DOM interfaces defined in the
W3C XML DOM level 2 specification. Each DOM vendor provides an
implementation for these interfaces.

• To use the Microsoft implementation, include the MSXMLDOM unit header in
your source file. Because the Microsoft implementation is COM-based, you may
need to register the msxml.dll library as a COM server if it is not already
registered. You can use Regsvr32.exe to register this DLL.

• To use another DOM implementation, you must create a unit that defines a
descendant of the TDOMVendor class. In your descendant class, you must override
two methods: the Description method, which returns a string identifying the
vendor, and the DOMImplementation method, which returns the top-level interface
(IDOMImplementation). You should register this vendor by calling the global

W o r k i n g w i t h X M L d o c u m e n t s 35-3

W o r k i n g w i t h X M L c o m p o n e n t s

RegisterDOMVendor procedure. You can unregister the vendor by calling the
global UnRegisterDOMVendor procedure. Once you have registered your new
DOMVendor, your application has access to the DOM implementation it wraps
until you unregister the vendor.

Some vendors supply extensions to the standard DOM interfaces. To allow you to
uses these extensions, the XMLDOM unit also defines an IDOMNodeEx interface.
IDOMNodeEx is a descendant of the standard IDOMNode that includes the most
useful of these extensions.

You can work directly with the DOM interfaces to parse and edit XML documents.
Simply call the GetDOM function to obtain an IDOMImplementation interface, which
you can use as a starting point.

Note For detailed descriptions of the DOM interfaces, see the declarations in the
XMLDOM unit header, the documentation supplied by your DOM Vendor, or the
specifications provided on the W3C web site (www.w3.org).

You may find it more convenient to use special XML classes rather than working
directly with the DOM interfaces. These are described below.

Working with XML components
The VCL (or CLX) defines a number of classes and interfaces for working with XML
documents. These simplify the process of loading, editing, and saving XML
documents.

Using TXMLDocument

The starting point for working with an XML document is the TXMLDocument
component. The following steps describe how to use TXMLDocument to work
directly with an XML document:

1 Add a TXMLDocument component into your form or data module.
TXMLDocument appears on the Internet page of the Component palette.

2 Set the DOMVendor property to specify the DOM implementation you want the
component to use for parsing and editing an XML document. The Object Inspector
lists all the currently registered DOM vendors. For information on DOM
implementations, see “Using the Document Object Model” on page 35-2.

3 Depending on your implementation, you may want to set the ParseOptions
property to configure how the underlying DOM implementation parses the XML
document.

4 If you are working with an existing XML document, specify the document:

• If the XML document is stored in a file, set the FileName property to the name of
that file.

• You can specify the XML document as a string instead by using the XML
property.

35-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h X M L c o m p o n e n t s

5 Set the Active property to true.

Once you have an active TXMLDocument object, you can traverse the hierarchy of its
nodes, reading or setting their values. The root node of this hierarchy is available as
the DocumentElement property.

Working with XML nodes

Once an XML document has been parsed by a DOM implementation, the data it
represents is available as a hierarchy of nodes. Each node corresponds to a tagged
element in the document. For example, given the following XML:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<!DOCTYPE StockHoldings SYSTEM "sth.dtd">
<StockHoldings>

<Stock exchange="NASDAQ">
<name>Borland</name>
<price>15.375</price>
<symbol>BORL</symbol>
<shares>100</shares>

</Stock>
<Stock exchange="NYSE">

<name>Pfizer</name>
 <price>42.75</price>

<symbol>PFE</symbol>
<shares type="preferred">25</shares>

</Stock>
</StockHoldings>

TXMLDocument would generate a hierarchy of nodes as follows: The root of the
hierarchy would be the StockHoldings node. StockHoldings would have two child
nodes, which correspond to the two Stock tags. Each of these two child nodes would
have four child nodes of its own (name, price, symbol, and shares). Those four child
nodes would act as leaf nodes. The text they contain would appear as the value of
each of the leaf nodes.

Note This division into nodes differs slightly from the way a DOM implementation
generates nodes for an XML document. In particular, a DOM parser treats all tagged
elements as internal nodes. Additional nodes (of type text node) would be created for
the values of the name, price, symbol, and shares nodes. These text nodes would then
appear as the children of the name, price, symbol, and shares nodes.

Each node is accessed through an IXMLNode interface, starting with the root node,
which is the value of the XML document component’s DocumentElement property.

Working with a node’s value
Given an IXMLNode interface, you can check whether it represents an internal node
or a leaf node by checking the IsTextElement property.

• If it represents a leaf node, you can read or set its value using the Text property.

• If it represents an internal node, you can access its child nodes using the
ChildNodes property.

W o r k i n g w i t h X M L d o c u m e n t s 35-5

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

Thus, for example, using the XML document above, you can read the price of
Borland’s stock as follows:

_di_IXMLNode BorlandStock = XMLDocument1->DocumentElement->ChildNodes[0];
AnsiString Price = BorlandStock->ChildNodes->Nodes["price"]->Text;

Working with a node’s attributes
If the node includes any attributes, you can work with them using the Attributes
property. You can read or change an attribute value by specifying an existing
attribute name. You can add new attributes by specifying a new attribute name when
you set the Attributes property:

_di_IXMLNode BorlandStock = XMLDocument1->DocumentElement->ChildNodes[0];
BorlandStock->ChildNodes->Nodes["shares"]->Attributes["type"] = "common";

Adding and deleting child nodes
You can add child nodes using the AddChild method. AddChild creates new nodes
that correspond to tagged elements in the XML document. Such nodes are called
element nodes.

To create a new element node, specify the name that appears in the new tag and,
optionally, the position where the new node should appear. For example, the
following code adds a new stock listing to the document above:

_di_IXMLNode NewStock = XMLDocument1->DocumentElement->AddChild("stock");
NewStock->Attributes["exchange"] = "NASDAQ";
_di_IXMLNode ValueNode = NewStock->AddChild("name");
ValueNode->Text = "Cisco Systems";
ValueNode = NewStock->AddChild("price");
ValueNode->Text = "62.375";
ValueNode = NewStock->AddChild("symbol");
ValueNode->Text = "CSCO";
ValueNode = NewStock->AddChild("shares");
ValueNode->Text = "25";

An overloaded version of AddChild lets you specify the namespace URI in which the
tag name is defined.

You can delete child nodes using the methods of the ChildNodes property. ChildNodes
is an IXMLNodeList interface, which manages the children of a node. You can use its
Delete method to delete a single child node that is identified by position or by name.
For example, the following code deletes the last stock listed in the document above:

_di_IXMLNode StockList = XMLDocument1->DocumentElement;
StockList->ChildNodes->Delete(StockList->ChildNodes->Count - 1);

Abstracting XML documents with the Data Binding wizard
Although it is possible to work with an XML document using only the
TXMLDocument component and the IXMLNode interface it surfaces for the nodes in
that document, or even to work exclusively with the DOM interfaces (avoiding even

35-6 D e v e l o p e r ’ s G u i d e

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

TXMLDocument), you can write code that is much simpler and more readable by
using the XML Data Binding wizard.

The Data Binding wizard takes an XML schema or data file and generates a set of
interfaces that map on top of it. (An interface is a class that contains only pure virtual
members.) For example, given XML data that looks like the following:

<customer id=1>
<name>Mark</name>
<phone>(831) 431-1000</phone>

</customer>

The Data Binding wizard generates the following interface (along with a class to
implement it):

__interface INTERFACE_UUID("{F3729105-3DD0-1234-80e0-22A04FE7B451}") ICustomer :
public IXMLNode

{
public:

virtual int __fastcall Getid(void) = 0 ;
virtual DOMString __fastcall Getname(void) = 0 ;
virtual DOMString __fastcall Getphone(void) = 0 ;
virtual void __fastcall Setid(int Value)= 0 ;
virtual void __fastcall Setname(DOMString Value)= 0 ;
virtual void __fastcall Setphone(DOMString Value)= 0 ;
__property int id = {read=Getid, write=Setid};
__property DOMString name = {read=Getname, write=Setname};
__property DOMString phone = {read=Getphone, write=Setphone};

};

Every child node is mapped to a property whose name matches the tag name of the
child node and whose value is the interface of the child node (if the child is an
internal node) or the value of the child node (for leaf nodes). Every node attribute is
also mapped to a property, where the property name is the attribute name and the
property value is the attribute value.

In addition to creating interfaces (and their descendant implementation classes) for
each tagged element in the XML document, the wizard creates global functions for
obtaining the interface to the root node. For example, if the XML above came from a
document whose root node had the tag <Customers>, the Data Binding wizard
would create the following global routines:

extern PACKAGE _di_ICustomers __fastcall GetCustomers(TXMLDocument *XMLDoc);

extern PACKAGE _di_ICustomers __fastcall GetCustomers(_di_IXMLDocument XMLDoc);

extern PACKAGE _di_ICustomers __fastcall LoadCustomers(const WideString FileName);

extern PACKAGE _di_ICustomers __fastcall NewCustomers(void);

The Get... function takes the interface wrapper for a TXMLDocument instance (or a
pointer to that TXMLDocument instance). The Load... function dynamically creates a
TXMLDocument instance and loads the specified XML file as its value before
returning an interface pointer. The New... function creates a new (empty)
TXMLDocument instance and returns the interface to the root node.

W o r k i n g w i t h X M L d o c u m e n t s 35-7

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

Using the generated interfaces simplifies your code, because they reflect the structure
of the XML document more directly. For example, instead of writing code such as the
following:

_di_IXMLNode CustIntf = XMLDocument1->DocumentElement;
CustName = CustIntf->ChildNodes->Nodes[0]->ChildNodes->Nodes["name"]->Value;

Your code would look as follows:

_di_ICustomers CustIntf = GetCustomers(XMLDocument1);
CustName = CustIntf->Nodes[0]->Name;

Note that the interfaces generated by the Data Binding wizard all descend from
IXMLNode. This means you can still add and delete child nodes in the same way as
when you do not use the Data Binding wizard. (See “Adding and deleting child
nodes” on page 35-5.) In addition, when child nodes represent repeating elements
(when all of the children of a node are of the same type), the parent node is given two
methods, Add, and Insert, for adding additional repeats. These methods are simpler
than using AddChild, because you do not need to specify the type of node to create.

Using the XML Data Binding wizard

To use the Data Binding wizard,

1 Choose File|New|Other and select the icon labeled XML Data Binding from the
bottom of the New page.

2 The XML Data Binding wizard appears.

3 On the first page of the wizard, specify the XML document or schema for which
you want to generate interfaces. This can be a sample XML document, a Document
Type Definition (.dtd) file, a Reduced XML Data (.xdr) file, or an XML schema
(.xsd) file.

4 Click the Options button to specify the naming strategies you want the wizard to
use when generating interfaces and implementation classes and the default
mapping of types defined in the schema to native data types.

5 Move to the second page of the wizard. This page lets you provide detailed
information about every node type in the document or schema. At the left is a tree
view that shows all of the node types in the document. For complex nodes (nodes
that have children), the tree view can be expanded to display the child elements.
When you select a node in this tree view, the right-hand side of the dialog displays
information about that node and lets you specify how you want the wizard to treat
that node.

• The Source Name control displays the name of the node type in the XML
schema.

• The Source Datatype control displays the type of the node’s value, as specified
in the XML schema.

• The Documentation control lets you add comments to the schema describing
the use or purpose of the node.

35-8 D e v e l o p e r ’ s G u i d e

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

• If the wizard generates code for the selected node (that is, if it is a complex type
for which the wizard generates an interface and implementation class, or if it is
one of the child elements of a complex type for which the wizard generates a
property on the complex type’s interface), you can use the Generate Binding
check box to specify whether you want the wizard to generate code for the
node. If you uncheck Generate Binding, the wizard does not generate the
interface or implementation class for a complex type, or does not create a
property in the parent interface for a child element or attribute.

• The Binding Options section lets you influence the code that the wizard
generates for the selected element. For any node, you can specify the Identifier
Name (the name of the generated interface or property). In addition, for
interfaces, you must indicate which one represents the root node of the
document. For nodes that represent properties, you can specify the type of the
property and, if the property is not an interface, whether it is a read-only
property.

6 Once you have specified what code you want the wizard to generate for each
node, move to the third page. This page lets you choose some global options about
how the wizard generates its code and lets you preview the code that will be
generated, and lets you tell the wizard how to save your choices for future use.

• To preview the code the wizard generates, select an interface in the Binding
Summary list and view the resulting interface definition in the Code Preview
control.

• Use the Data Binding Settings to indicate how the wizard should save your
choices. You can store the settings as annotations in a schema file that is
associated with the document (the schema file specified on the first page of the
dialog), or you can name an independent schema file that is used only by the
wizard.

7 When you click Finish, the Data Binding wizard generates a new unit that defines
interfaces and implementation classes for all of the node types in your XML
document. In addition, it creates a global function that takes a TXMLDocument
object and returns the interface for the root node of the data hierarchy.

Using code that the XML Data Binding wizard generates

Once the wizard has generated a set of interfaces and implementation classes, you
can use them to work with XML documents that match the structure of the document
or schema you supplied to the wizard. Just as when you are using only the built-in
XML components, your starting point is the TXMLDocument component that appears
on the Internet page of the Component palette.

To work with an XML document, use the following steps:

1 Obtain an interface for the root node of your XML document. You can do this in
one of three ways:

• Place a TXMLDocument component in your form or data module. Bind the
TXMLDocument to an XML document by setting the FileName property. (As an

W o r k i n g w i t h X M L d o c u m e n t s 35-9

A b s t r a c t i n g X M L d o c u m e n t s w i t h t h e D a t a B i n d i n g w i z a r d

alternative approach, you can use a string of XML by setting the XML property
at runtime.) Then, In your code, call the global function that the wizard created
to obtain an interface for the root node of the XML document. For example, if
the root element of the XML document was the tag <StockList>, by default, the
wizard generates a function GetStockListType, which returns an IStockListType
interface:

XMLDocument1->FileName := "Stocks.xml";
_di_IStockListType StockList = GetStockListType(XMLDocument1);

• Call the generated Load... function to create and bind the TXMLDocument
instance and obtain its interface all in one step. For example, using the same
XML document described above:

_di_IStockListType StockList = LoadStockListType("Stocks.xml");

• Call the generated New... function to create the TXMLDocument instance for an
empty document when you want to create all the data in your application:

_di_IStockListType StockList = NewStockListType();

2 This interface has properties that correspond to the subnodes of the document’s
root element, as well as properties that correspond to that root element’s
attributes. You can use these to traverse the hierarchy of the XML document,
modify the data in the document, and so on.

3 To save any changes you make using the interfaces generated by the wizard, call
the TXMLDocument component’s SaveToFile method or read its XML property.

Tip If you set the Options property of the TXMLDocument object to include doAutoSave,
then you do not need to explicitly call the SaveToFile method.

35-10 D e v e l o p e r ’ s G u i d e

U s i n g W e b S e r v i c e s 36-1

C h a p t e r

36
Chapter36Using Web Services

Web Services are self-contained modular applications that can be published and
invoked over the Internet. Web Services provide well-defined interfaces that describe
the services provided. Unlike Web server applications that generate Web pages for
client browsers, Web Services are not designed for direct human interaction. Rather,
they are accessed programmatically by client applications.

Web Services are designed to allow a loose coupling between client and server. That
is, server implementations do not require clients to use a specific platform or
programming language. In addition to defining interfaces in a language-neutral
fashion, they are designed to allow multiple communications mechanisms as well.

C++Builder’s support for Web Services is designed to work using SOAP (Simple
Object Access Protocol). SOAP is a standard lightweight protocol for exchanging
information in a decentralized, distributed environment. It uses XML to encode
remote procedure calls and typically uses HTTP as a communications protocol. For
more information about SOAP, see the SOAP specification available at

http://www.w3.org/TR/SOAP/

Note Although the components that support Web Services are built to use SOAP and
HTTP, the framework is sufficiently general that it can be expanded to use other
encoding and communications protocols.

In addition to letting you build SOAP-based Web Service applications (servers),
C++Builder provides support for clients of Web Services that use either a SOAP
encoding or a Document Literal style. The Document Literal style is used in .Net Web
Services.

The components that support Web Services are available on both Windows and
Linux, so you can use them as the basis of cross-platform distributed applications.
There is no special client runtime software to install, as you must have when
distributing applications using CORBA. Because this technology is based on HTTP
messages, it has the advantage that it is widely available on a variety of machines.
Support for Web Services is built on the Web server application architecture (Web
Broker).

36-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

Web Service applications publish information on what interfaces are available and
how to call them using a WSDL (Web Service Definition Language) document. On
the server side, your application can publish a WSDL document that describes your
Web Service. On the client side, a wizard or command-line utility can import a
published WSDL document, providing you with the interface definitions and
connection information you need. If you already have a WSDL document that
describes the Web service you want to implement, you can generate the server-side
code as well when importing the WSDL document.

Understanding invokable interfaces
Servers that support Web Services are built using invokable interfaces. Invokable
interfaces are pure virtual classes (classes that include only pure virtual methods)
that are compiled to include runtime type information (RTTI). On the server, this
RTTI is used when interpreting incoming method calls from clients so that they can
be correctly marshaled. On clients, this RTTI is used to dynamically generate a
method table for making calls to the methods of the interface.

To create an invokable interface, you need to declare the interface class using the
_declspec keyword, using the delphirtti modifier. The descendant of any invokable
interface is also invokable. However, if an invokable interface descends from another
interface class that is not invokable, your Web Service can only use the methods
defined in the invokable interface and its descendants. Methods inherited from the
non-invokable ancestors are not compiled with type information and so can’t be used
as part of the Web Service.

Note For information about interface classes in C++Builder, see “Inheritance and
interfaces” on page 13-2.

The sysmac.h header file defines a base invokable interface, IInvokable, from which
you can derive any interface exposed to clients by a Web Service server. IInvokable is
the same as the base interface (IInterface), except that it is compiled using the
_declspec(delphirtti) option so that it and all its descendants include RTTI.

For example, the following code defines an invokable interface that contains two
methods for encoding and decoding numeric values:

__interface INTERFACE_UUID("{C527B88F-3F8E-1134-80e0-01A04F57B270}") IEncodeDecode :
public IInvokable

{
public:

virtual double __stdcall EncodeValue(int Value) = 0 ;
virtual int __stdcall DecodeValue(double Value) = 0 ;

};

Note In this example, notice the use of __interface in the declaration. This is not a true
keyword, but rather a macro that is used by convention for interfaces. It maps to the
class keyword. The INTERFACE_UUID macro assigns a globally unique identifier
(GUID) to the interface. Note that the interface class contains only pure virtual
methods.

U s i n g W e b S e r v i c e s 36-3

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

Before a Web Service application can use this invokable interface, it must be
registered with the invocation registry. On the server, the invocation registry entry
allows the invoker component (THTTPSOAPCppInvoker) to identify an
implementation class to use for executing interface calls. On client applications, an
invocation registry entry allows remote interfaced objects (THTTPRio) to look up
information that identifies the invokable interface and supplies information on how
to call it.

Typically, your Web Service client or server creates the code to define invokable
interfaces either by importing a WSDL document or using the Web Service wizard.
By default, when the WSDL importer or Web Service wizard generates an interface,
the definition is added to a header file with the same name as the Web Service. The
corresponding .cpp file contains the code to register the interface (as well as an
implementation class if you are writing a server). For the interface described above,
this registration code looks like the following:

static void RegTypes()
{

InvRegistry()->RegisterInterface(__delphirtti(IEncodeDecode), "", "");
}

#pragma startup RegTypes 32

The interfaces of Web Services must have a namespace to identify them among all the
interfaces in all possible Web Services. The previous example does not supply a
namespace for the interface. When you do not explicitly supply a namespace, the
invocation registry automatically generates one for you. This namespace is built from
a string that uniquely identifies the application (the AppNamespacePrefix variable),
the interface name, and the name of the unit in which it is defined. If you do not want
to use the automatically-generated namespace, you can specify one explicitly using a
second parameter to the RegisterInterface call.

Note Do not be tempted to use the same header file that defines an invokable interface in
both client and server applications. This can easily lead to mismatches in the
namespaces, because when the header is included in another source file, the name of
the unit changes to the including source file, changing the name of the generated
namespace. Therefore, client applications should import the Web Service using a
WSDL document.

Using nonscalar types in invokable interfaces

The Web Services architecture automatically includes support for marshaling the
following scalar types:

• bool
• char
• signed char
• unsigned char
• short
• unsigned short
• int
• unsigned int

36-4 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

• long
• unsigned long
• __int64
• unsigned __int64
• float
• double
• long double
• AnsiString
• WideString
• Currency
• Variant

You need do nothing special when you use these types on an invokable interface. If
your interface includes any properties or methods that use other types, however,
your application must register those types with the remotable type registry. For more
information on the remotable type registry, see “Registering nonscalar types” on
page 36-4.

Enumerated types and types declared using a typedef statement require a little extra
work so that the remotable type registry can extract the type information it needs
from the type definition. These are described in “Registering typedef’ed types and
enumerated types” on page 36-6.

The dynamic array types defined in sysdyn.h are automatically registered for you, so
your application does not need to add any special registration code for them. One of
these in particular, TByteDynArray, deserves special notice because it maps to a
‘base64’ block of binary data, rather than mapping each array element separately the
way the other dynamic array types do.

For any other types, such as static arrays, structs, or classes, you must map the type
to a remotable class. A remotable class is a class that includes runtime type
information (RTTI). Your interface must then use the remotable class instead of the
corresponding static array, struct, or class. Any remotable classes you create must be
registered with the remotable type registry.

Important All types should be declared explicitly with a typedef statement rather than declared
inline. This is necessary so that the remotable type registry can determine the native
C++ type name.

Registering nonscalar types
Before an invokable interface can use any types other than the built-in scalar types
listed in “Using nonscalar types in invokable interfaces” on page 36-3, the application
must register the type with the remotable type registry. To access the remotable type
registry, you must include InvokeRegistry.hpp in your source file. This header
declares a global function, RemTypeRegistry(), which returns a reference to the
remotable type registry.

Note On clients, the code to register types with the remotable type registry is generated
automatically when you import a WSDL document. For servers, remotable types are
registered for you automatically when you register an interface that uses them. You
only need to explicitly add code to register types if you want to specify the
namespace or type name rather than using the automatically-generated values.

U s i n g W e b S e r v i c e s 36-5

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

The remotable type registry has two methods that you can use to register types:
RegisterXSInfo and RegisterXSClass. The first (RegisterXSInfo) lets you register a
dynamic array. The second (RegisterXSClass) is for registering remotable classes that
you define to represent other types.

If you are using dynamic arrays, the invocation registry can get the information it
needs from the compiler-generated type information. Thus, for example, your
interface may use a type such as the following:

typedef DynamicArray<TXSDateTime> TDateTimeArray;

This type is registered automatically when you register the invokable interface.
However, if you want to specify the namespace in which the type is defined or the
name of the type, you must add the following registration to the RegTypes function
where you register the invokable interface that uses this dynamic array:

void RegTypes()
{

RemTypeRegistry()->RegisterXSInfo(__arraytypeinfo(TDateTimeArray),
MyNameSpace, "DTarray", "DTarray");

InvRegistry()->RegisterInterface(__delphirtti(ITimeServices));
}

Note Do not use multiple dynamic array types that all map to the same underlying
element type. Because the compiler treats these as transparent types that can be
implicitly cast one to another, it doesn’t distinguish their runtime type information.

The first parameter of RegisterXSInfo is the type information for the type you are
registering. The second parameter is the namespace URI for the namespace in which
the type is defined. If you omit this parameter or supply an empty string, the registry
generates a namespace for you. The third parameter is the name of the type as it
appears in native C++ code. You must supply a value for this parameter. The final
parameter is the name of the type as it appears in WSDL documents. If you omit this
parameter or supply an empty string, the registry uses the native type name (the
third parameter).

Registering a remotable class is similar, except that you supply a class reference
rather than a type information pointer. For example, the following code registers a
remotable class called TXSRecord:

void RegTypes()
{

RemTypeRegistry()->RegisterXSclass(__classid(TXSRecord), MyNameSpace, "record", "",
false);

InvRegistry()->RegisterInterface(__delphirtti(ITimeServices));
}

The first parameter is class reference for the remotable class that represents the type.
The second is a uniform resource identifier (URI) that uniquely identifies the
namespace of the new class. If you supply an empty string, the registry generates a
URI for you. The third and fourth parameters specify the native and external names
of the data type your class represents. If you omit the second fourth parameter, the
type registry uses the third parameter for both values. If you supply an empty string
for both parameters, the registry uses the class name. The fifth parameter indicates

36-6 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

whether the value of class instances can be transmitted as a string. You can optionally
add a sixth parameter (not shown here) to control how multiple references to the
same object instance should be represented in SOAP packets.

Registering typedef’ed types and enumerated types
If your invokable interface uses an enumerated type, the __delphirtti function can’t
extract its type information directly. To work around this, you need to generate a
VCL-style holder class that can be used to extract the type information for your
enumerated type:

class MyEnumType_TypeInfoHolder : public TObject {
MyEnumType __instanceType;

public:
__published:

__property MyEnumType __propType = {read=__instanceType };
};

In this case, the class MyEnumType_TypeInfoHolder is defined to extract the type
information from an enumerated type called MyEnumType. It has a single published
property, __propType, whose type is the enumerated type you want to register. Once
you have defined the holder class, you can obtain the type information for the
enumerated type by calling the global GetClsMemberTypeInfo function. The following
code illustrates how to register an enumerated type, given its holder class:

void RegTypes()
{

RemTypeRegistry()->RegisterXSInfo(
GetClsMemberTypeInfo(__classid(MyEnumType_TypeInfoHolder), "__propType"),
MyNameSpace, "MyEnumType");

}

RegisterClsMemberTypeInfo has two parameters: The type information of the holder
class, and the name of the published property from whose type you want to extract
type information. If the holder class has only one published property (as in the
previous example), you can omit the second parameter.

This technique of using a holder class must also be used if your type is declared using
a typedef statement that maps it to a built-in C++ scalar type. (A built-in C++ scalar
type is any of the types listed in “Using nonscalar types in invokable interfaces” on
page 36-3 except for the ones that are classes that emulate Object Pascal types.) Thus,
for example, given the following type:

typedef int CardNumber;

You would create a holder class such as the following:

class CardNumberType_TypeInfoHolder : public TObject {
CardNumber __instanceType;

public:
__published:

__property CardNumber __propType = {read=__instanceType };
};

U s i n g W e b S e r v i c e s 36-7

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

and then register it as follows:

RemTypeRegistry()->RegisterXSInfo(GetClsMemberTypeInfo(
__classid(CardNumber_TypeInfoHolder), "__propType"),
MyNameSpace, "CardNumber");

For any other type declared using a typedef statement, call RegisterXSInfo if it maps
to a dynamic array class, and RegisterXSClass if it maps to a class. For more
information about registering dynamic arrays and classes, see “Registering nonscalar
types” on page 36-4.

Note You should try to avoid typedef statements that map multiple types to the same
underlying type. The runtime type information for these is not distinct.

Using remotable objects
Use TRemotable as a base class when defining a class to represent a complex data type
on an invokable interface. For example, in the case where you would ordinarily pass
a struct as a parameter, you would instead define a TRemotable descendant where
every member of the struct is a published property on your new class.

You can control whether the published properties of your TRemotable descendant
appear as element nodes or attributes in the corresponding SOAP encoding of the
type. To make the property an attribute, use the stored directive on the property
definition, assigning a value of AS_ATTRIBUTE:

__property bool MyAttribute =
{read=FMyAttribute, write=FMyAttribute, stored= AS_ATTRIBUTE;

Note If you do not include a stored directive, or if you assign any other value to the stored
directive (even a function that returns AS_ATTRIBUTE), the property is encoded as a
node rather than an attribute.

If the value of your new TRemotable descendant represents a scalar type in a WSDL
document, you should use TRemotableXS as a base class instead. TRemotableXS is a
TRemotable descendant that introduces two methods for converting between your
new class and its string representation. Implement these methods by overriding the
XSToNative and NativeToXS methods.

For certain commonly-used XML scalar types, the XSBuiltIns unit already defines
and registers remotable classes for you. These are listed in the following table:

Table 36.1 Remotable classes

XML type remotable class

dateTime
timeInstant

TXSDateTime

date TXSDate

time TXSTime

duration
timeDuration

TXSDuration

decimal TXSDecimal

hexBinary TXSHexBinary

36-8 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g i n v o k a b l e i n t e r f a c e s

After you define a remotable class, it must be registered with the remotable type
registry, as described in “Registering nonscalar types” on page 36-4.This registration
happens automatically on servers when you register the interface that uses the class.
On clients, the code to register the class is generated automatically when you import
the WSDL document that defines the type.

Tip It is a good idea to implement and register TRemotable descendants in a separate unit
from the rest of your server application, including from the units that declare and
register invokable interfaces. In this way, you can use the type for more than one
interface.

One issue that arises when using TRemotable descendants is the question of when
they are created and destroyed. Obviously, the server application must create its own
local instance of these objects, because the caller’s instance is in a separate process
space. To handle this, Web Service applications create a data context for incoming
requests. The data context persists while the server handles the request, and is freed
after any output parameters are marshaled into a return message. When the server
creates local instances of remotable objects, it adds them to the data context, and
those instances are then freed along with the data context. In some cases, you may
want to keep an instance of a remotable object from being freed after a method call.
For example, if the object contains state information, it may be more efficient to have
a single instance that is used for every message call. To prevent the remotable object
from being freed along with the data context, change its DataContext property.

Remotable object example
This example shows how to create a remotable object for a parameter on an invokable
interface where you would otherwise use an existing class. In this example, the
existing class is a string list (TStringList). To keep the example small, it does not
reproduce the Objects property of the string list.

Because the new class is not scalar, it descends from TRemotable rather than
TRemotableXS. It includes a published property for every property of the string list
you want to communicate between the client and server. Each of these remotable
properties corresponds to a remotable type. In addition, the new remotable class
includes methods to convert to and from a string list.

class TRemotableStringList: public TRemotable
{

private:
bool FCaseSensitive;
bool FSorted;
Classes::TDuplicates FDuplicates;
System::TStringDynArray FStrings;

public:
void __fastcall Assign(Classes::TStringList *SourceList);
void __fastcall AssignTo(Classes::TStringList *DestList);

__published:
__property bool CaseSensitive = {read=FCaseSensitive, write=FCaseSensitive};
__property bool Sorted = {read=FSorted, write=FSorted};
__property Classes::TDuplicates Duplicates = {read=FDuplicates, write=FDuplicates};
__property System::TStringDynArray Strings = {read=FStrings, write=FStrings};

}

U s i n g W e b S e r v i c e s 36-9

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Note that TRemotableStringList exists only as a transport class. Thus, although it has a
Sorted property (to transport the value of a string list’s Sorted property), it does not
need to sort the strings it stores, it only needs to record whether the strings should be
sorted. This keeps the implementation very simple. You only need to implement the
Assign and AssignTo methods, which convert to and from a string list:

void __fastcall TRemotableStringList::Assign(Classes::TStringList *SourceList)
{

SetLength(Strings, SourceList->Count);
for (int i = 0; i < SourceList->Count; i++)

Strings[i] = SourceList->Strings[i];
CaseSensitive = SourceList->CaseSensitive;
Sorted = SourceList->Sorted;
Duplicates = SourceList->Duplicates;

}

void __fastcall TRemotableStringList::AssignTo(Classes::TStringList *DestList)
{

DestList->Clear();
DestList->Capacity = Length(Strings);
DestList->CaseSensitive = CaseSensitive;
DestList->Sorted = Sorted;
DestList->Duplicates = Duplicates;
for (int i = 0; i < Length(Strings); i++)

DestList->Add(Strings[i]);
}

Optionally, you may want to register the new remotable class so that you can specify
its class name. If you do not register the class, it is registered automatically when you
register the interface that uses it. Similarly, if you register the class but not the
TDuplicates and TStringDynArray types that it uses, they are registered automatically.
This code shows how to register the TRemotableStringList class. TStringDynArray is
registered automatically because it is one of the built-in dynamic array types
declared in sysdyn.h. For details on explicitly registering an enumerated type such as
TDuplicates, see “Registering typedef’ed types and enumerated types” on page 36-6.

void RegTypes()
{

RemTypeRegistry()->RegisterXSclass(__classid(TRemotableStringList), MyNameSpace,
"stringList", "", false);
}
#pragma startup initServices 32

Writing servers that support Web Services
In addition to the invokable interfaces and the descendant classes that implement
their pure virtual methods, your server requires two components: a dispatcher and
an invoker. The dispatcher (THTTPSoapDispatcher) receives incoming SOAP
messages and passes them on to the invoker. The invoker (THTTPSoapCppInvoker)
interprets the SOAP message, identifies the invokable interface it calls, executes the
call, and assembles the response message.

36-10 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Note THTTPSoapDispatcher and THTTPSoapCppInvoker are designed to respond to HTTP
messages containing a SOAP request. The underlying architecture is sufficiently
general, however, that it can support other protocols with the substitution of
different dispatcher and invoker components.

Once you register your invokable interfaces and their implementation classes, the
dispatcher and invoker automatically handle any messages that identify those
interfaces in the SOAP Action header of the HTTP request message.

Web services also include a publisher (TWSDLHTMLPublish). Publishers respond to
incoming client requests by creating the WSDL documents that describe how to call
the Web Services in the application.

Building a Web Service server

Use the following steps to build a server application that implements a Web Service:

1 Choose File|New|Other and on the WebServices tab, double-click the Soap
Server Application icon to launch the SOAP Server Application wizard. The
wizard creates a new Web server application that includes the components you
need to respond to SOAP requests. For details on the SOAP application wizard
and the code it generates, see “Using the SOAP application wizard” on page 36-11.

2 When you exit the SOAP Server Application wizard, it asks you if you want to
define an interface for your Web Service. If you are creating a Web Service from
scratch, click yes, and you will see the Add New Web Service wizard. The wizard
adds code to declare and register a new invokable interface for your Web Service.
Edit the generated code to define and implement your Web Service. If you want to
add additional interfaces (or you want to define the interfaces at a later time),
choose File|New|Other, and on the WebServices tab, double-click the SOAP Web
Service interface icon. For details on using the Add New Web Service wizard and
completing the code it generates, see “Adding new Web Services” on page 36-12.

3 If you are implementing a Web Service that has already been defined in a WSDL
document, you can use the Web Services Importer to generate the interfaces,
implementation classes, and registration code that your application needs. You
need only fill in the body of the methods the importer generates for the
implementation classes. For details on using the Web Services Importer, see
“Using the Web Services Importer” on page 36-13.

4 If your application raises an exception when attempting to execute a SOAP
request, the exception will be automatically encoded in a SOAP fault packet,
which is returned instead of the results of the method call. If you want to convey
more information than a simple error message, you can create your own exception
classes that are encoded and passed to the client. This is described in “Creating
custom exception classes for Web Services” on page 36-14.

5 The SOAP Server Application wizard adds a publisher component
(TWSDLHTMLPublish) to new Web Service applications. This enables your
application to publish WSDL documents that describe your Web Service to clients.
For information on the WSDL publisher, see “Generating WSDL documents for a
Web Service application” on page 36-15.

U s i n g W e b S e r v i c e s 36-11

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Using the SOAP application wizard

Web Service applications are a special form of Web Server application. Because of
this, support for Web Services is built on top of the Web Broker architecture. To
understand the code that the SOAP Application wizard generates, therefore, it is
helpful to understand the Web Broker architecture. Information about Web Server
applications in general, and Web Broker in particular, can be found in Chapter 32,
“Creating Internet server applications” and Chapter 33, “Using Web Broker.”

To launch the SOAP application wizard, choose File|New|Other, and on the
WebServices page, double-click the Soap Server Application icon. Choose the type of
Web server application you want to use for your Web Service. For information about
different types of Web Server applications, see “Types of Web server applications”
on page 32-6.

The wizard generates a new Web server application that includes a Web module
which contains three components:

• An invoker component (THTTPSOAPCppInvoker). The invoker converts between
SOAP messages and the methods of any registered invokable interfaces in your
Web Service application.

• A dispatcher component (THTTPSoapDispatcher). The dispatcher automatically
responds to incoming SOAP messages and forwards them to the invoker. You can
use its WebDispatch property to identify the HTTP request messages to which your
application responds. This involves setting the PathInfo property to indicate the
path portion of any URL directed to your application, and the MethodType
property to indicate the method header for request messages.

• A WSDL publisher (TWSDLHTMLPublish). The WSDL publisher publishes a
WSDL document that describes your interfaces and how to call them. The WSDL
document tells clients that how to call on your Web Service application. For details
on using the WSDL publisher, see “Generating WSDL documents for a Web
Service application” on page 36-15.

The SOAP dispatcher and WSDL publisher are auto-dispatching components. This
means they automatically register themselves with the Web module so that it
forwards any incoming requests addressed using the path information they specify
in their WebDispatch properties. If you right-click on the Web module, you can see
that in addition to these auto-dispatching components, it has a single Web action
item named DefaultHandler.

DefaultHandler is the default action item. That is, if the Web module receives a request
for which it can’t find a handler (can’t match the path information), it forwards that
message to the default action item. DefaultHandler generates a Web page that
describes your Web Service. To change the default action, edit this action item’s
OnAction event handler.

36-12 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

Adding new Web Services

To add a new Web Service interface to your server application, choose File|New|
Other, and on the WebServices tab double-click on the icon labeled SOAP Server
Interface.

The Add New Web Service wizard lets you specify the name of the invokable
interface you want to expose to clients, and generates the code to declare and register
the interface and its descendant implementation class. By default, the wizard also
generates comments that show sample methods and additional type definitions, to
help you get started in editing the generated files.

Editing the generated code
The interface definitions appear in the header file of the generated unit, which has
the name you specified using the wizard. You will want to change the interface
declaration, replacing the sample methods with the methods you are making
available to clients.

The wizard generates an implementation class that descends from TInvokableClass
and from the invokable interface). If you are defining an invokable interface from
scratch, you must edit the declaration of the implementation class to match any edits
you made to the generated invokable interface.

When adding methods to the invokable interface and implementation class,
remember that the methods must only use remotable types. For information on
remotable types and invokable interfaces, see “Using nonscalar types in invokable
interfaces” on page 36-3.

Using a different base class
The Add New Web Service wizard generates implementation classes that descend
from TInvokableClass. This is the easiest way to create a new class to implement a Web
Service. You can, however, replace this generated class with an implementation class
that has a different base class (for example, you may want to use an existing class as a
base class.) There are a number of considerations to take into account when you
replace the generated implementation class:

• Your new implementation class must descend from the invokable interface
directly. The invocation registry, with which you register invokable interfaces and
their implementation classes, keeps track of what class implements each registered
interface and makes it available to the invoker component when the invoker needs
to call the interface. It can only detect that a class implements an interface if the
interface is directly included in the class declaration. It does not detect support an
interface if it is inherited along with a base class.

• Your new implementation class must include support for the IUnknown methods
that are part of any interface. This point may seem obvious, but it is an easy one to
overlook. For more information about IUnknown, see “Creating classes that
support IUnknown” on page 13-4.

• You must change the generated code that registers the implementation class to
include a factory method to create instances of your implementation class.

U s i n g W e b S e r v i c e s 36-13

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

This last point takes a bit of explanation. When the implementation class descends
from TInvokableClass and does not replace the inherited constructor with a new
constructor that includes one or more parameters, the invocation registry knows how
to create instances of the class when it needs them. When you write an
implementation class that does not descend from TInvokableClass, or when you
change the constructor, you must tell the invocation registry how to obtain instances
of your implementation class.

You can tell the invocation registry how to obtain instances of your implementation
class by supplying it with a factory procedure. Even if you have an implementation
class that descends from TInvokableClass and that uses the inherited constructor, you
may want to supply a factory procedure anyway. For example, you can use a single
global instance of your implementation class rather than requiring the invocation
registry to create a new instance every time your application receives a call to the
invokable interface.

The factory procedure must be of type TCreateInstanceProc. It returns an instance of
your implementation class. If the procedure creates a new instance, the
implementation object should free itself when the reference count on its interface
drops to zero, as the invocation registry does not explicitly free object instances. The
following code illustrates another approach, where the factory procedure returns a
single global instance of the implementation class:

void __fastcall CreateEncodeDecode(System::TObject* &obj)
{

if (!FEncodeDecode)
{

FEncodeDecode = new TEncodeDecodeImpl();
// save a reference to the interface so that the global instance doesn’t free itself
TEncodeDecodeImpl->QueryInterface(FEncodeDecodeInterface);

}
obj = FEncodeDecode;

}

Note In the previous example, FEncodeDecodeInterface is a variable of type
_di_IEncodeDecode.

You register the factory procedure with an implementation class by supplying it as a
second to the call that registers the class with the invocation registry. First, locate the
call the wizard generated to register the implementation class. This will appear in the
RegTypes method at the bottom of the unit that defines the class. It looks something
like the following:

InvRegistry()->RegisterInvokableClass(__classid(TEncodeDecodeImpl));

Add a second parameter to this call that specifies the factory procedure:

InvRegistry()->RegisterInvokableClass(__classid(TEncodeDecodeImpl), &CreateEncodeDecode);

Using the Web Services Importer

To use the Web Services Importer, choose File|New|Other, and on the WebServices
page double-click the icon labeled Web Services Importer. In the dialog that appears,

36-14 D e v e l o p e r ’ s G u i d e

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

specify the file name of a WSDL document (or XML file) or provide the URL where
that document is published.

If the WSDL document is on a server that requires authentication (or must be reached
using a proxy server that requires authentication), you need to provide a user name
and password before the wizard can retrieve the WSDL document. To supply this
information, click the Options button and provide the appropriate connection
information.

When you click the Next button, the Web Services Importer displays the code it
generates for every definition in the WSDL document that is compatible with the
Web Services framework. That is, it only uses those port types that have a SOAP
binding. You can configure the way the importer generates code by clicking the
Options button and choosing the options you want.

You can use the Web Services Importer when writing either a server or a client
application. When writing a server, click the Options button and in the resulting
dialog, check the option that tells the importer to generate server code. When you
select this option, the importer generates implementation classes for the invokable
interfaces, and you need only fill in the bodies of the methods.

Warning If you import a WSDL document to create a server that implements a Web Service
that is already defined, you must still publish your own WSDL document for that
service. There may be minor differences in the imported WSDL document and the
generated implementation. For example, If the WSDL document or XML schema file
uses identifiers that are also C++ keywords, the importer automatically adjusts their
names so that the generated code can compile.)

When you click Finish, the importer creates new units that define and register
invokable interfaces for the operations defined in the document, and that define and
register remotable classes for the types that the document defines.

As an alternate approach, you can use the command line WSDL importer instead. For
a server, call the command line importer with the -S option, as follows:

WSDLIMP -S -C -V MyWSDLDoc.wsdl

For a client application, call the command line importer without the -S option:

WSDLIMP -C -V MyWSDLDoc.wsdl

Creating custom exception classes for Web Services

When your Web Service application raises an exception in the course of trying to
execute a SOAP request, it automatically encodes information about that exception in
a SOAP fault packet, which it returns instead of the results of the method call. The
client application then raises the exception.

By default, the client application raises a generic exception of type
ERemotableExceptionwith the information from the SOAP fault packet. You can
transmit additional, application-specific information by deriving an
ERemotableException descendant. The values of any published properties you add to
the exception class are included in the SOAP fault packet so that the client can raise
an equivalent exception.

U s i n g W e b S e r v i c e s 36-15

W r i t i n g s e r v e r s t h a t s u p p o r t W e b S e r v i c e s

To use an ERemotableException descendant, you must register it with the remotable
type registry. Thus, in the unit that defines your ERemotableException descendant, you
must include InvokeRegistry.hpp and add a call to the RegisterXSClass method of the
object that the global RemTypeRegistry function returns.

If the client also defines and registers your ERemotableException descendant, then
when it receives the SOAP fault packet, it automatically raises an instance of the
appropriate exception class, with all properties set to the values in the SOAP fault
packet.

Generating WSDL documents for a Web Service application

To allow client applications to know what Web Services your application makes
available, you can publish a WSDL document that describes your invokable
interfaces and indicates how to call them.

Note You must always publish a WSDL document for your Web Service application, even
if you implemented an imported service or if your client is written using C++Builder.

To publish a WSDL document that describes your Web Service, include a
TWSDLHTMLPublish component in your Web Module. (The SOAP Server
Application wizard adds this component by default.) TWSDLHTMLPublish is an
auto-dispatching component, which means it automatically responds to incoming
messages that request a list of WSDL documents for your Web Service. Use the
WebDispatch property to specify the path information of the URL that clients must
use to access the list of WSDL documents. The Web browser can then request the list
of WSDL documents by specifying an URL that is made up of the location of the
server application followed by the path in the WebDispatch property. This URL looks
something like the following:

http://www.myco.com/MyService.dll/WSDL

Tip If you want to use a physical WSDL file instead, you can display the WSDL
document in your Web browser and then save it to generate a WSDL document file.

It is not necessary to publish the WSDL document from the same application that
implements your Web Service. To create an application that simply publishes the
WSDL document, omit the code that implements and registers the implementation
objects and only include the code that defines and registers invokable interfaces,
remotable classes that represent complex types, and any remotable exceptions.

By default, when you publish a WSDL document, it indicates that the services are
available at the same URL as the one where you published the WSDL document (but
with a different path). If you are deploying multiple versions of your Web Service
application, or if you are publishing the WSDL document from a different
application than the one that implements the Web Service, you will need to change
the WSDL document so that it includes updated information on where to locate the
Web Service.

To change the URL, use the WSDL administrator. The first step is to enable the
administrator. You do this by setting the AdminEnabled property of the
TWSDLHTMLPublish component to true. Then, when you use your browser to
display the list of WSDL documents, it includes a button to administer them as well.

36-16 D e v e l o p e r ’ s G u i d e

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

Use the WSDL administrator to specify the locations (URLs) where you have
deployed your Web Service application.

Writing clients for Web Services
C++Builder provides client-side support for calling Web Services that use a SOAP-
based binding. These Web Services can be supplied by a server written in
C++Builder, or by any other server that defines its Web Service in a WSDL
document.

Importing WSDL documents

Before you can use a Web Service, your application must define and register the
invokable interfaces and types that are included in the Web Service application. To
obtain these definitions, you can import a WSDL document (or XML file) that defines
the service. The Web Services importer creates a unit that defines and registers the
interfaces and types you need to use. For details on using the Web Services Importer,
see “Using the Web Services Importer” on page 36-13.

Calling invokable interfaces

To call an invokable interface, your client application must include any headers that
define the invokable interfaces and any remotable classes that implement complex
types.

Once the client application has the declaration of an invokable interface, create an
instance of THTTPRio for the desired interface:

X = new THTTPRio(NULL);

Note It is important that you do not explicitly destroy the THTTPRio instance. If it is
created without an Owner (as in the previous line of code), it automatically frees itself
when its interface is released. If it is created with an Owner, the Owner is responsible
for freeing the THTTPRio instance.

Next, provide the THTTPRio object with the information it needs to identify the
server interface and locate the server. There are two ways to supply this information:

• If you do not expect the URL for the Web Service or the namespaces and soap
Action headers it requires to change, you can simply specify the URL for the Web
Service you want to access. THTTPRio uses this URL to look up the definition of
the interface, plus any namespace and header information, based on the
information in the invocation registry. Specify the URL by setting the URL
property to the location of the server:

X->URL = "http://www.myco.com/MyService.dll/SOAP/IServerInterface";

• If you want to look up the URL, namespace, or Soap Action header from the
WSDL document dynamically at runtime, you can use the WSDLLocation, Service,

U s i n g W e b S e r v i c e s 36-17

W r i t i n g c l i e n t s f o r W e b S e r v i c e s

and Port properties, and it will extract the necessary information from the WSDL
document:

X.WSDLLocation = "Cryptography.wsdl";
X.Service = "Cryptography";
X.Port = "SoapEncodeDecode";

Once you have specified how to locate the server and identify the interface, you can
then use the QueryInterface method to obtain an interface pointer for the invokable
interface.When you do this, it creates a vtable for the associated interface
dynamically in memory, enabling you to make interface calls:

_di_IEncodeDecode InterfaceVariable;
X->QueryInterface(InterfaceVariable);
if (InterfaceVariable)
{

Code = InterfaceVariable->EncodeValue(5);
}

Note that the call to QueryInterface takes as an argument the DelphiInterface wrapper
for the invokable interface rather than the invokable interface itself.

THTTPRio relies on the invocation registry to obtain information about the invokable
interface. If the client application does not have an invocation registry, or if the
invokable interface is not registered, THTTPRio can’t build its in-memory vtable.

Warning If you assign the interface you obtain from THTTPRio to a global variable, you must
change that assignment to NULL before shutting down your application. For
example, if InterfaceVariable in the previous code sample is a global variable, rather
than stack variable, you must release the interface before the THTTPRio object is
freed. Typically, this code goes in the OnDestroy event handler of the form or data
module:

void __fastcall TForm1::FormDestroy(TObject *Sender)
{

InterfaceVariable = NULL;
}

The reason you must reassign a global interface variable to NULL is because
THTTPRio builds its vtable dynamically in memory. That vtable must still be present
when the interface is released. If you do not release the interface along with the form
or data module, it is released when the global variable is freed on shutdown. The
memory for global variables may be freed after the form or data module that contains
the THTTPRio object, in which case the vtable will not be available when the interface
is released.

36-18 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h s o c k e t s 37-1

C h a p t e r

37
Chapter37Working with sockets

This chapter describes the socket components that let you create an application that
can communicate with other systems using TCP/IP and related protocols. Using
sockets, you can read and write over connections to other machines without
worrying about the details of the underlying networking software. Sockets provide
connections based on the TCP/IP protocol, but are sufficiently general to work with
related protocols such as User Datagram Protocol (UDP), Xerox Network System
(XNS), Digital’s DECnet, or Novell’s IPX/SPX family.

Using sockets, you can write network servers or client applications that read from
and write to other systems. A server or client application is usually dedicated to a
single service such as Hypertext Transfer Protocol (HTTP) or File Transfer Protocol
(FTP). Using server sockets, an application that provides one of these services can
link to client applications that want to use that service. Client sockets allow an
application that uses one of these services to link to server applications that provide
the service.

Implementing services
Sockets provide one of the pieces you need to write network servers or client
applications. For many services, such as HTTP or FTP, third party servers are readily
available. Some are even bundled with the operating system, so that there is no need
to write one yourself. However, when you want more control over the way the
service is implemented, a tighter integration between your application and the
network communication, or when no server is available for the particular service you
need, then you may want to create your own server or client application. For
example, when working with distributed data sets, you may want to write a layer to
communicate with databases on other systems.

37-2 D e v e l o p e r ’ s G u i d e

T y p e s o f s o c k e t c o n n e c t i o n s

Understanding service protocols

Before you can write a network server or client, you must understand the service that
your application is providing or using. Many services have standard protocols that
your network application must support. If you are writing a network application for
a standard service such as HTTP, FTP, or even finger or time, you must first
understand the protocols used to communicate with other systems. See the
documentation on the particular service you are providing or using.

If you are providing a new service for an application that communicates with other
systems, the first step is designing the communication protocol for the servers and
clients of this service. What messages are sent? How are these messages coordinated?
How is the information encoded?

Communicating with applications
Often, your network server or client application provides a layer between the
networking software and an application that uses the service. For example, an HTTP
server sits between the Internet and a Web server application that provides content
and responds to HTTP request messages.

Sockets provide the interface between your network server or client application and
the networking software. You must provide the interface between your application
and the clients that use it. You can copy the API of a standard third party server (such
as Apache), or you can design and publish your own API.

Services and ports

Most standard services are associated, by convention, with specific port numbers. We
will discuss port numbers in greater detail later. For now, consider the port number a
numeric code for the service.

If you are implementing a standard service for use in cross-platform applications,
Linux socket objects provide methods for you to look up the port number for the
service. If you are providing a new service, you can specify the associated port
number in the /etc/services file. See your Linux documentation for more
information on the services file.

Types of socket connections
Socket connections can be divided into three basic types, which reflect how the
connection was initiated and what the local socket is connected to. These are

• Client connections.

• Listening connections.

• Server connections.

W o r k i n g w i t h s o c k e t s 37-3

D e s c r i b i n g s o c k e t s

Once the connection to a client socket is completed, the server connection is
indistinguishable from a client connection. Both end points have the same
capabilities and receive the same types of events. Only the listening connection is
fundamentally different, as it has only a single endpoint.

Client connections

Client connections connect a client socket on the local system to a server socket on a
remote system. Client connections are initiated by the client socket. First, the client
socket must describe the server socket to which it wishes to connect. The client socket
then looks up the server socket and, when it locates the server, requests a connection.
The server socket may not complete the connection right away. Server sockets
maintain a queue of client requests, and complete connections as they find time.
When the server socket accepts the client connection, it sends the client socket a full
description of the server socket to which it is connecting, and the connection is
completed by the client.

Listening connections

Server sockets do not locate clients. Instead, they form passive “half connections”
that listen for client requests. Server sockets associate a queue with their listening
connections; the queue records client connection requests as they come in. When the
server socket accepts a client connection request, it forms a new socket to connect to
the client, so that the listening connection can remain open to accept other client
requests.

Server connections

Server connections are formed by server sockets when a listening socket accepts a
client request. A description of the server socket that completes the connection to the
client is sent to the client when the server accepts the connection. The connection is
established when the client socket receives this description and completes the
connection.

Describing sockets
Sockets let your network application communicate with other systems over the
network. Each socket can be viewed as an endpoint in a network connection. It has an
address that specifies:

• The system on which it is running.

• The types of interfaces it understands.

• The port it is using for the connection.

37-4 D e v e l o p e r ’ s G u i d e

D e s c r i b i n g s o c k e t s

A full description of a socket connection includes the addresses of the sockets on both
ends of the connection. You can describe the address of each socket endpoint by
supplying both the IP address or host and the port number.

Before you can make a socket connection, you must fully describe the sockets that
form its endpoints. Some of the information is available from the system your
application is running on. For instance, you do not need to describe the local IP
address of a client socket—this information is available from the operating system.

The information you must provide depends on the type of socket you are working
with. Client sockets must describe the server they want to connect to. Listening
server sockets must describe the port that represents the service they provide.

Describing the host

The host is the system that is running the application that contains the socket. You
can describe the host for a socket by giving its IP address, which is a string of four
numeric (byte) values in the standard Internet dot notation, such as

123.197.1.2

A single system may support more than one IP address.

IP addresses are often difficult to remember and easy to mistype. An alternative is to
use the host name. Host names are aliases for the IP address that you often see in
Uniform Resource Locators (URLs). They are strings containing a domain name and
service, such as

http://www.ASite.com

Most Intranets provide host names for the IP addresses of systems on the Internet.
You can learn the host name associated with any IP address (if one already exists) by
executing the following command from a command prompt:

nslookup IPADDRESS

where IPADDRESS is the IP address you’re interested in. If your local IP address
doesn’t have a host name and you decide you want one, contact your network
administrator. It is common for computers to refer to themselves with the name
localhost and the IP number 127.0.0.1.

Server sockets do not need to specify a host. The local IP address can be read from the
system. If the local system supports more than one IP address, server sockets will
listen for client requests on all IP addresses simultaneously. When a server socket
accepts a connection, the client socket provides the remote IP address.

Client sockets must specify the remote host by providing either its host name or IP
address.

Choosing between a host name and an IP address
Most applications use the host name to specify a system. Host names are easier to
remember, and easier to check for typographical errors. Further, servers can change
the system or IP address that is associated with a particular host name. Using a host

W o r k i n g w i t h s o c k e t s 37-5

U s i n g s o c k e t c o m p o n e n t s

name allows the client socket to find the abstract site represented by the host name,
even when it has moved to a new IP address.

If the host name is unknown, the client socket must specify the server system using
its IP address. Specifying the server system by giving the IP address is faster. When
you provide the host name, the socket must search for the IP address associated with
the host name, before it can locate the server system.

Using ports

While the IP address provides enough information to find the system on the other
end of a socket connection, you also need a port number on that system. Without port
numbers, a system could only form a single connection at a time. Port numbers are
unique identifiers that enable a single system to host multiple connections
simultaneously, by giving each connection a separate port number.

Earlier, we described port numbers as numeric codes for the services implemented
by network applications. This is actually just a convention that allows listening server
connections to make themselves available on a fixed port number so that they can be
found by client sockets. Server sockets listen on the port number associated with the
service they provide. When they accept a connection to a client socket, they create a
separate socket connection that uses a different, arbitrary, port number. This way, the
listening connection can continue to listen on the port number associated with the
service.

Client sockets use an arbitrary local port number, as there is no need for them to be
found by other sockets. They specify the port number of the server socket to which
they want to connect so that they can find the server application. Often, this port
number is specified indirectly, by naming the desired service.

Using socket components
The Internet palette page includes three socket components that allow your network
application to form connections to other machines, and that allow you to read and
write information over that connection. These are:

• TcpServer

• TcpClient

• UdpSocket

Associated with each of these socket components are socket objects, which represent
the endpoint of an actual socket connection. The socket components use the socket
objects to encapsulate the socket server calls, so that your application does not need
to be concerned with the details of establishing the connection or managing the
socket messages.

If you want to customize the details of the connections that the socket components
make on your behalf, you can use the properties, events, and methods of the socket
objects.

37-6 D e v e l o p e r ’ s G u i d e

U s i n g s o c k e t c o m p o n e n t s

Getting information about the connection

After completing the connection to a client or server socket, you can use the client or
server socket object associated with your socket component to obtain information
about the connection. Use the LocalHost and LocalPort properties to determine the
address and port number used by the local client or server socket, or use the
RemoteHost and RemotePort properties to determine the address and port number
used by the remote client or server socket. Use the GetSocketAddr method to build a
valid socket address based on the host name and port number. You can use the
LookupPort method to look up the port number. Use the LookupProtocol method to
look up the protocol number. Use the LookupHostName method to look up the host
name based on the host machine’s IP address.

To view network traffic in and out of the socket, use the BytesSent and BytesReceived
properties.

Using client sockets

Add a TcpClient or UdpSocket component to your form or data module to turn your
application into a TCP/IP or UDP client. Client sockets allow you to specify the
server socket you want to connect to, and the service you want that server to provide.
Once you have described the desired connection, you can use the client socket
component to complete the connection to the server.

Each client socket component uses a single client socket object to represent the client
endpoint in a connection.

Specifying the desired server
Client socket components have a number of properties that allow you to specify the
server system and port to which you want to connect. Use the RemoteHost property to
specify the remote host server by either its host name or IP address.

In addition to the server system, you must specify the port on the server system that
your client socket will connect to. You can use the RemotePort property to specify the
server port number directly or indirectly by naming the target service.

Forming the connection
Once you have set the properties of your client socket component to describe the
server you want to connect to, you can form the connection at runtime by calling the
Open method. If you want your application to form the connection automatically
when it starts up, set the Active property to true at design time, using the Object
Inspector.

Getting information about the connection
After completing the connection to a server socket, you can use the client socket
object associated with your client socket component to obtain information about the
connection. Use the LocalHost and LocalPort properties to determine the address and
port number used by the client and server sockets to form the end points of the

W o r k i n g w i t h s o c k e t s 37-7

U s i n g s o c k e t c o m p o n e n t s

connection. You can use the Handle property to obtain a handle to the socket
connection to use when making socket calls.

Closing the connection
When you have finished communicating with a server application over the socket
connection, you can shut down the connection by calling the Close method. The
connection may also be closed from the server end. If that is the case, you will receive
notification in an OnDisconnect event.

Using server sockets

Add a server socket component (TcpServer or UdpSocket) to your form or data module
to turn your application into an IP server. Server sockets allow you to specify the
service you are providing or the port you want to use to listen for client requests. You
can use the server socket component to listen for and accept client connection
requests.

Each server socket component uses a single server socket object to represent the
server endpoint in a listening connection. It also uses a server client socket object for
the server endpoint of each active connection to a client socket that the server accepts.

Specifying the port
Before your server socket can listen to client requests, you must specify the port that
your server will listen on. You can specify this port using the LocalPort property. If
your server application is providing a standard service that is associated by
convention with a specific port number, you can also specify the service name using
the LocalPort property. It is a good idea to use the service name instead of a port
number, because it is easy to introduce typographical errors when specifying the port
number.

Listening for client requests
Once you have set the port number of your server socket component, you can form a
listening connection at runtime by calling the Open method. If you want your
application to form the listening connection automatically when it starts up, set the
Active property to true at design time, using the Object Inspector.

Connecting to clients
A listening server socket component automatically accepts client connection requests
when they are received. You receive notification every time this occurs in an
OnAccept event.

Closing server connections
When you want to shut down the listening connection, call the Close method or set
the Active property to false. This shuts down all open connections to client
applications, cancels any pending connections that have not been accepted, and then

37-8 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s o c k e t e v e n t s

shuts down the listening connection so that your server socket component does not
accept any new connections.

When TCP clients shut down their individual connections to your server socket, you
are informed by an OnDisconnect event.

Responding to socket events
When writing applications that use sockets, you can write or read to the socket
anywhere in the program. You can write to the socket using the SendBuf, SendStream,
or Sendln methods in your program after the socket has been opened. You can read
from the socket using the similarly-named methods ReceiveBuf and Receiveln. The
OnSend and OnReceive events are triggered every time something is written or read
from the socket. They can be used for filtering. Every time you read or write, a read
or write event is triggered.

Both client sockets and server sockets generate error events when they receive error
messages from the connection.

Socket components also receive two events in the course of opening and completing
a connection. If your application needs to influence how the opening of the socket
proceeds, you must use the SendBuf and ReceiveBuf methods to respond to these
client events or server events.

Error events

Client and server sockets generate OnError events when they receive error messages
from the connection. You can write an OnError event handler to respond to these
error messages. The event handler is passed information about

• What socket object received the error notification.

• What the socket was trying to do when the error occurred.

• The error code that was provided by the error message.

You can respond to the error in the event handler, and change the error code to 0 to
prevent the socket from throwing an exception.

Client events

When a client socket opens a connection, the following events occur:

• The socket is set up and initialized for event notification.

• An OnCreateHandle event occurs after the server and server socket is created. At
this point, the socket object available through the Handle property can provide
information about the server or client socket that will form the other end of the
connection. This is the first chance to obtain the actual port used for the
connection, which may differ from the port of the listening sockets that accepted
the connection.

W o r k i n g w i t h s o c k e t s 37-9

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

• The connection request is accepted by the server and completed by the client
socket.

• When the connection is established, the OnConnect notification event occurs.

Server events

Server socket components form two types of connections: listening connections and
connections to client applications. The server socket receives events during the
formation of each of these connections.

Events when listening
Just before the listening connection is formed, the OnListening event occurs. You can
use its Handle property to make changes to the socket before it is opened for listing.
For example, if you want to restrict the IP addresses the server uses for listening, you
would do that in an OnListening event handler.

Events with client connections
When a server socket accepts a client connection request, the following events occur:

• An OnAccept event occurs, passing in the new TTcpClient object to the event
handler. This is the first point when you can use the properties of TTcpClient to
obtain information about the server endpoint of the connection to a client.

• If BlockMode is bmThreadBlocking an OnGetThread event occurs. If you want to
provide your own customized descendant of TServerSocketThread, you can create
one in an OnGetThread event handler, and that will be used instead of
TServerSocketThread. If you want to perform any initialization of the thread, or
make any socket API calls before the thread starts reading or writing over the
connection, you should use the OnGetThread event handler for these tasks as well.

• The client completes the connection and an OnAccept event occurs. With a non-
blocking server, you may want to start reading or writing over the socket
connection at this point.

Reading and writing over socket connections
The reason you form socket connections to other machines is so that you can read or
write information over those connections. What information you read or write, or
when you read it or write it, depends on the service associated with the socket
connection.

Reading and writing over sockets can occur asynchronously, so that it does not block
the execution of other code in your network application. This is called a non-blocking
connection. You can also form blocking connections, where your application waits
for the reading or writing to be completed before executing the next line of code.

37-10 D e v e l o p e r ’ s G u i d e

R e a d i n g a n d w r i t i n g o v e r s o c k e t c o n n e c t i o n s

Non-blocking connections

Non-blocking connections read and write asynchronously, so that the transfer of data
does not block the execution of other code in you network application. To create a
non-blocking connection for client or server sockets, set the BlockMode property to
bmNonBlocking.

When the connection is non-blocking, reading and writing events inform your socket
when the socket on the other end of the connection tries to read or write information.

Reading and writing events
Non-blocking sockets generate reading and writing events when they need to read or
write over the connection. You can respond to these notifications in an OnReceive or
OnSend event handler.

The socket object associated with the socket connection is provided as a parameter to
the read or write event handlers. This socket object provides a number of methods to
allow you to read or write over the connection.

To read from the socket connection, use the ReceiveBuf or Receiveln method. To write
to the socket connection, use the SendBuf, SendStream, or Sendln method.

Blocking connections

When the connection is blocking, your socket must initiate reading or writing over
the connection. It cannot wait passively for a notification from the socket connection.
Use a blocking socket when your end of the connection is in charge of when reading
and writing takes place.

For client or server sockets, set the BlockMode property to bmBlocking to form a
blocking connection. Depending on what else your client application does, you may
want to create a new execution thread for reading or writing, so that your application
can continue executing code on other threads while it waits for the reading or writing
over the connection to be completed.

For server sockets, set the BlockMode property to bmBlocking or bmThreadBlocking to
form a blocking connection. Because blocking connections hold up the execution of
all other code while the socket waits for information to be written or read over the
connection, server socket components always spawn a new execution thread for
every client connection when the BlockMode is bmThreadBlocking. When the BlockMode
is bmBlocking, program execution is blocked until a new connection is established.

D e v e l o p i n g C O M - b a s e d a p p l i c a t i o n s

P a r t

IV
Part IVDeveloping COM-based applications

The chapters in “Developing COM-based applications” present concepts necessary
for building COM-based applications, including Automation controllers,
Automation servers, ActiveX controls, and COM+ applications.

Note Support for COM clients is available in all editions of C++Builder. However, to create
servers, you need the Professional or Enterprise edition.

O v e r v i e w o f C O M t e c h n o l o g i e s 38-1

C h a p t e r

38
Chapter38Overview of COM technologies

C++Builder provides wizards and classes to make it easy to implement applications
based on the Component Object Model (COM) from Microsoft. With these wizards,
you can create COM-based classes and components to use within applications or you
can create fully functional COM clients or servers that implement COM objects,
Automation servers (including Active Server Objects), ActiveX controls, or
ActiveForms.

Note COM components such as those on the ActiveX, COM+, and Servers tabs of the
Component palette are not available for use in CLX applications. This technology is
for use on Windows only and is not cross-platform.

COM is a language-independent software component model that enables interaction
between software components and applications running on a Windows platform.
The key aspect of COM is that it enables communication between components,
between applications, and between clients and servers through clearly defined
interfaces. Interfaces provide a way for clients to ask a COM component which
features it supports at runtime. To provide additional features for your component,
you simply add an additional interface for those features.

Applications can access the interfaces of COM components that exist on the same
computer as the application or that exist on another computer on the network using a
mechanism called Distributed COM (DCOM). For more information on clients,
servers, and interfaces see, “Parts of a COM application,” on page 38-2.

This chapter provides a conceptual overview of the underlying technology on which
Automation and ActiveX controls are built. Later chapters provide details on creating
Automation objects and ActiveX controls in C++Builder.

COM as a specification and implementation
COM is both a specification and an implementation. The COM specification defines
how objects are created and how they communicate with each other. According to
this specification, COM objects can be written in different languages, run in different
process spaces and on different platforms. As long as the objects adhere to the

38-2 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

written specification, they can communicate. This allows you to integrate legacy code
as a component with new components implemented in object-oriented languages.

The COM implementation is built into the Win32 subsystem, which provides a
number of core services that support the written specification. The COM library
contains a set of standard interfaces that define the core functionality of a COM
object, and a small set of API functions designed for the purpose of creating and
managing COM objects.

When you use C++Builder wizards and VCL objects in your application, you are
using C++Builder’s implementation of the COM specification. In addition,
C++Builder provides some wrappers for COM services for those features that it does
not implement directly (such as Active Documents).

Note C++Builder implements objects conforming to the COM specification by using the
Microsoft Active Template Library (ATL), modified by classes and macros.

COM extensions
As COM has evolved, it has been extended beyond the basic COM services. COM
serves as the basis for other technologies such as Automation, ActiveX controls,
Active Documents, and Active Directories. For details on COM extensions, see
“COM extensions” on page 38-10.

In addition, when working in a large, distributed environment, you can create
transactional COM objects. Prior to Windows 2000, these objects were not
architecturally part of COM, but rather ran in the Microsoft Transaction Server (MTS)
environment. With the advent of Windows 2000, this support is integrated into
COM+. Transactional objects are described in detail in Chapter 44, “Creating MTS or
COM+ objects.”

C++Builder provides wizards to easily implement applications that incorporate the
above technologies in the C++Builder environment. For details, see “Implementing
COM objects with wizards” on page 38-19.

Parts of a COM application
When implementing a COM application, you supply the following:

COM interface The way in which an object exposes its services externally to
clients. A COM object provides an interface for each set of related
methods and properties. Note that COM properties are not
identical to properties on VCL objects. COM properties always use
read and write access methods, and are not declared using the
__property keyword.

O v e r v i e w o f C O M t e c h n o l o g i e s 38-3

P a r t s o f a C O M a p p l i c a t i o n

COM interfaces

COM clients communicate with objects through COM interfaces. Interfaces are
groups of logically or semantically related routines which provide communication
between a provider of a service (server object) and its clients. The standard way to
depict a COM interface is shown in Figure 38.1:

Figure 38.1 A COM interface

For example, every COM object must implement the basic interface, IUnknown.
Through a routine called QueryInterface in IUnknown, clients can request other
interfaces implemented by the server.

Objects can have multiple interfaces, where each interface implements a feature. An
interface provides a way to convey to the client what service it provides, without
providing implementation details of how or where the object provides this service.

Key aspects of COM interfaces are as follows:

• Once published, interfaces are immutable; that is, they do not change. You can rely
on an interface to provide a specific set of functions. Additional functionality is
provided by additional interfaces.

• By convention, COM interface identifiers begin with a capital I and a symbolic
name that defines the interface, such as IMalloc or IPersist.

• Interfaces are guaranteed to have a unique identification, called a Globally
Unique Identifier (GUID), which is a 128-bit randomly generated number.
Interface GUIDs are called Interface Identifiers (IIDs). This eliminates naming
conflicts between different versions of a product or different products.

• Interfaces are language independent. You can use any language to implement a
COM interface as long as the language supports a structure of pointers, and can
call a function through a pointer either explicitly or implicitly.

COM server A module, either an EXE, DLL, or OCX, that contains the code for a
COM object. Object implementations reside in servers. A COM
object implements one or more interfaces.

COM client The code that calls the interfaces to get the requested services from
the server. Clients know what they want to get from the server
(through the interface); clients do not know the internals of how
the server provides the services. C++Builder eases the process in
creating a client by letting you install COM servers (such as a Word
document or PowerPoint slide) as components on the Component
Palette. This allows you to connect to the server and hook its
events through the Object Inspector.

COM
Object

Interface

38-4 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

• Interfaces are not objects themselves; they provide a way to access an object.
Therefore, clients do not access data directly; clients access data through an
interface pointer. Windows 2000 adds an additional layer of indirection known as
an interceptor through which it provides COM+ features such as just-in-time
activation and object pooling.

• Interfaces are always inherited from the fundamental interface, IUnknown.

• Interfaces can be redirected by COM through proxies to enable interface method
calls to call between threads, processes, and networked machines, all without the
client or server objects ever being aware of the redirection. For more information
see , “In-process, out-of-process, and remote servers,” on page 38-6.

The fundamental COM interface, IUnknown
All COM objects must support the fundamental interface, called IUnknown, a typedef
to the base interface type IInterface. IUnknown contains the following routines:

Clients obtain pointers to other interfaces through the IUnknown method,
QueryInterface. QueryInterface knows about every interface in the server object and
can give a client a pointer to the requested interface. When receiving a pointer to an
interface, the client is assured that it can call any method of the interface.

Objects track their own lifetime through the IUnknown methods, AddRef and Release,
which are simple reference counting methods. As long as an object’s reference count
is nonzero, the object remains in memory. Once the reference count reaches zero, the
interface implementation can safely dispose of the underlying object(s).

COM interface pointers
An interface pointer is a pointer to an object instance that points, in turn, to the
implementation of each method in the interface. The implementation is accessed
through an array of pointers to these methods, which is called a vtable. Vtables are
similar to the mechanism used to support virtual functions in C++. Because of this
similarity, the compiler can resolve calls to methods on the interface the same way it
resolves calls to methods on C++ classes.

The vtable is shared among all instances of an object class, so for each object instance,
the object code allocates a second structure that contains its private data. The client’s
interface pointer, then, is a pointer to the pointer to the vtable, as shown in the
following diagram.

QueryInterface Provides pointers to other interfaces that the object supports.

AddRef and Release Simple reference counting methods that keep track of the
object’s lifetime so that an object can delete itself when the
client no longer needs its service.

O v e r v i e w o f C O M t e c h n o l o g i e s 38-5

P a r t s o f a C O M a p p l i c a t i o n

Figure 38.2 Interface vtable

In Windows 2000 and subsequent versions of Windows, when an object is running
under COM+, an added level of indirection is provided between the interface pointer
and the vtable pointer. The interface pointer available to the client points at an
interceptor, which in turn points at the vtable. This allows COM+ to provide such
services as just-in-time activation, whereby the server can be deactivated and
reactivated dynamically in a way that is opaque to the client. To achieve this, COM+
guarantees that the interceptor behaves as if it were an ordinary vtable pointer.

COM servers

A COM server is an application or a library that provides services to a client
application or library. A COM server consists of one or more COM objects, where a
COM object is a set of properties (data members or content) and methods (or member
functions).

Clients do not know how a COM object performs its service; the object’s
implementation remains encapsulated. An object makes its services available
through its interfaces as described previously.

In addition, clients do not need to know where a COM object resides. COM provides
transparent access regardless of the object’s location.

When a client requests a service from a COM object, the client passes a class identifier
(CLSID) to COM. A CLSID is simply a GUID that identifies a COM object. COM uses
this CLSID, which is registered in the system registry, to locate the appropriate server
implementation. Once the server is located, COM brings the code into memory, and
has the server instantiate an object instance for the client. This process is handled
indirectly, through a special object called a class factory (based on interfaces) that
creates instances of objects on demand.

As a minimum, a COM server must perform the following:

• Register entries in the system registry that associate the server module with the
class identifier (CLSID).

• Implement a class factory object, which manufactures another object of a
particular CLSID.

Pointer to
Function 1

Implementation
of interface
functions

vtable pointerinterface pointer

object

Pointer to
Function 2

Pointer to
Function 3

38-6 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

• Expose the class factory to COM.

• Provide an unloading mechanism through which a server that is not servicing
clients can be removed from memory.

Note C++Builder wizards automate the creation of COM objects and servers as described
in “Implementing COM objects with wizards” on page 38-19.

CoClasses and class factories
A COM object is an instance of a CoClass, which is a class that implements one or
more COM interfaces. The COM object provides the services as defined by its
interfaces.

CoClasses are instantiated by a special type of object called a class factory. Whenever
an object’s services are requested by a client, a class factory creates an object instance
for that particular client. Typically, if another client requests the object’s services, the
class factory creates another object instance to service the second client. (Clients can
also bind to running COM objects that register themselves to support it.)

A CoClass must have a class factory and a class identifier (CLSID) so that it can be
instantiated externally, that is, from another module. Using these unique identifiers
for CoClasses means that they can be updated whenever new interfaces are
implemented in their class. A new interface can modify or add methods without
affecting older versions, which is a common problem when using DLLs.

C++Builder wizards take care of assigning class identifiers and of implementing and
instantiating class factories.

In-process, out-of-process, and remote servers
With COM, a client does not need to know where an object resides, it simply makes a
call to an object’s interface. COM performs the necessary steps to make the call. These
steps differ depending on whether the object resides in the same process as the client,
in a different process on the client machine, or in a different machine across the
network. The different types of servers are known as:

In-process server A library (DLL) running in the same process space as the client,
for example, an ActiveX control embedded in a Web page
viewed under Internet Explorer or Netscape. Here, the ActiveX
control is downloaded to the client machine and invoked
within the same process as the Web browser.

The client communicates with the in-process server using direct
calls to the COM interface.

O v e r v i e w o f C O M t e c h n o l o g i e s 38-7

P a r t s o f a C O M a p p l i c a t i o n

As shown in Figure 38.3, for in-process servers, pointers to the object interfaces are in
the same process space as the client, so COM makes direct calls into the object
implementation.

Figure 38.3 In-process server

Note This is not always true under COM+. When a client makes a call to an object in a
different context, COM+ intercepts the call so that it behaves like a call to an out-of-
process server (see below), even if the server is in-process. See Chapter 44, “Creating
MTS or COM+ objects” for more information working with COM+.

As shown in Figure 38.4, when the process is either in a different process or in a
different machine altogether, COM uses a proxy to initiate remote procedure calls.
The proxy resides in the same process as the client, so from the client’s perspective,
all interface calls look alike. The proxy intercepts the client’s call and forwards it to
where the real object is running. The mechanism that enables the client to access
objects in a different process space, or even different machine, as if they were in their
own process, is called marshaling.

Out-of-process
server (or local
server)

Another application (EXE) running in a different process space
but on the same machine as the client. For example, an Excel
spreadsheet embedded in a Word document are two separate
applications running on the same machine.

The local server uses COM to communicate with the client.

Remote server A DLL or another application running on a different machine
from that of the client. For example, a C++Builder database
application is connected to an application server on another
machine in the network.

The remote server uses distributed COM (DCOM) to access
interfaces and communicate with the application server.

Client Process

Client
Server

In-process
Object

38-8 D e v e l o p e r ’ s G u i d e

P a r t s o f a C O M a p p l i c a t i o n

Figure 38.4 Out-of-process and remote servers

The difference between out-of-process and remote servers is the type of interprocess
communication used. The proxy uses COM to communicate with an out-of-process
server, it uses distributed COM (DCOM) to communicate with a remote machine.
DCOM transparently transfers a local object request to the remote object running on
a different machine.

Note For remote procedure calls, DCOM uses the RPC protocol provided by Open
Group’s Distributed Computing Environment (DCE). For distributed security,
DCOM uses the NT LAN Manager (NTLM) security protocol. For directory services,
DCOM uses the Domain Name System (DNS).

The marshaling mechanism
Marshaling is the mechanism that allows a client to make interface function calls to
remote objects in another process or on a different machine. Marshaling

• Takes an interface pointer in the server’s process and makes a proxy pointer
available to code in the client process.

• Transfers the arguments of an interface call as passed from the client and places
the arguments into the remote object’s process space.

For any interface call, the client pushes arguments onto a stack and makes a function
call through the interface pointer. If the call to the object is not in-process, the call gets
passed to the proxy. The proxy packs the arguments into a marshaling packet and
transmits the structure to the remote object. The object’s stub unpacks the packet,
pushes the arguments onto the stack, and calls the object’s implementation. In
essence, the object recreates the client’s call in its own address space.

The type of marshaling that occurs depends on what interface the COM object
implements. Objects can use a standard marshaling mechanism provided by the
IDispatch interface. This is a generic marshaling mechanism that enables
communication through a system-standard remote procedure call (RPC). For details
on the IDispatch interface, see “Automation interfaces” on page 41-12. Even if the

DCOM
RPC

Client Process

Client

In-process
Proxy

Out-of-Process Server

Stub In-process
Object

Remote machine

Remote machine

DCOM

Stub

Remote server

In-process
Object

COM
RPC

O v e r v i e w o f C O M t e c h n o l o g i e s 38-9

P a r t s o f a C O M a p p l i c a t i o n

object does not implement IDispatch, if it limits itself to automation-compatible types
and has a registered type library, COM automatically provides marshaling support.

Applications that do not limit themselves to automation-compatible types or register
a type library must provide their own marshaling. Marshaling is provided either
through an implementation of the IMarshal interface, or by using a separately
generated proxy/stub DLL. C++Builder does not support the automatic generation of
proxy/stub DLLs.

Aggregation
Sometimes, a server object makes use of another COM object to perform some of its
functions. For example, an inventory management object might make use of a
separate invoicing object to handle customer invoices. If the inventory management
object wants to present the invoice interface to clients, however, there is a problem:
Although a client that has the inventory interface can call QueryInterface to obtain the
invoice interface, when the invoice object was created it did not know about the
inventory management object and can’t return an inventory interface in response to a
call to QueryInterface. A client that has the invoice interface can’t get back to the
inventory interface.

To avoid this problem, some COM objects support aggregation. When the inventory
management object creates an instance of the invoice object, it passes it a copy of its
own IUnknown interface. The invoice object can then use that IUnknown interface to
handle any QueryInterface calls that request an interface, such as the inventory
interface, that it does not support. When this happens, the two objects together are
called an aggregate. The invoice object is called the inner, or contained object of the
aggregate, and the inventory object is called the outer object.

Note In order to act as the outer object of an aggregate, a COM object must create the inner
object using the Windows API CoCreateInstance or CoCreateInstanceEx, passing its
IUnknown pointer as a parameter that the inner object can use for QueryInterface calls.
You can also instantiate a TComInterface object and use its CreateInstance method for
this purpose.

Objects that act as the inner object of an aggregate provide two implementations of
the IUnknown interface: one that defers QueryInterface calls it can’t handle to the
controlling IUnknown of the outer object, and one that returns an error when it
receives QueryInterface calls it can’t handle. The C++Builder wizards automatically
create objects that include this support for acting as inner objects.

COM clients

Clients can always query the interfaces of a COM object to determine what it is
capable of providing. All COM objects allow clients to request known interfaces. In
addition, if the server supports the IDispatch interface, clients can query the server for
information about what methods the interface supports. Server objects have no
expectations about the client using its objects. Similarly, clients don’t need to know
how (or even where) an object provides the services; they simply rely on server
objects to provide the services they advertise through their interfaces.

38-10 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

There are two types of COM clients, controllers and containers. Controllers launch
the server and interact with it through its interface. They request services from the
COM object or drive it as a separate process. Containers host visual controls or
objects that appear in the container’s user interface. They use predefined interfaces to
negotiate display issues with server objects. It is impossible to have a container
relationship over DCOM; for example, visual controls that appear in the container's
user interface must be located locally. This is because the controls are expected to
paint themselves, which requires that they have access to local GDI resources.

C++Builder makes it easier for you to develop COM clients by letting you import a
type library or ActiveX control into a component wrapper so that server objects look
like other VCL components. For details on this process, see Chapter 40, “Creating
COM clients.”

COM extensions
COM was originally designed to provide core communication functionality and to
enable the broadening of this functionality through extensions. COM itself has
extended its core functionality by defining specialized sets of interfaces for specific
purposes.

The following lists some of the services COM extensions currently provide.
Subsequent sections describe these services in greater detail.

Automation servers Automation refers to the ability of an application to control
the objects in another application programmatically.
Automation servers are the objects that can be controlled by
other executables at runtime.

ActiveX controls ActiveX controls are specialized in-process servers, typically
intended for embedding in a client application. The controls
offer both design and runtime behaviors as well as events.

Active Server Pages Active Server Pages are scripts that generate HTML pages.
The scripting language includes constructs for creating and
running Automation objects. That is, the Active Server Page
acts as an Automation controller.

Active Documents Objects that support linking and embedding, drag-and-drop,
visual editing, and in-place activation. Word documents and
Excel spreadsheets are examples of Active Documents.

Transactional objects Objects that include additional support for responding to
large numbers of clients. This includes features such as just-
in-time activation, transactions, resource pooling, and
security services. These features were originally handled by
MTS but have been built into COM with the advent of
COM+.

O v e r v i e w o f C O M t e c h n o l o g i e s 38-11

C O M e x t e n s i o n s

The following diagram illustrates the relationship of the COM extensions and how
they are built upon COM:

Figure 38.5 COM-based technologies

COM objects can be visual or non-visual. Some must run in the same process space as
their clients; others can run in different processes or remote machines, as long as the
objects provide marshaling support. Table 38.1 summarizes the types of COM objects

COM+ Event and event
subscription objects

Objects that support the loosely coupled COM+ Events
model. Unlike the tightly coupled model used by ActiveX
controls, the COM+ Events model allows you to develop
event publishers independently of event subscribers.

Type libraries A collection of static data structures, often saved as a
resource, that provides detailed type information about an
object and its interfaces. Clients of Automation servers,
ActiveX controls, and transactional objects expect type
information to be available.

38-12 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

that you can create, whether they are visual, process spaces they can run in, how they
provide marshaling, and whether they require a type library.

Automation servers

Automation refers to the ability of an application to control the objects in another
application programmatically, like a macro that can manipulate more than one
application at the same time. The server object being manipulated is called the
Automation object, and the client of the Automation object is referred to as an
Automation controller.

Automation can be used on in-process, local, and remote servers.

Automation is characterized by two key points:

• The Automation object defines a set of properties and commands, and describes
their capabilities through type descriptions. In order to do this, it must have a way
to provide information about its interfaces, the interface methods, and those
methods’ arguments. Typically, this information is available in a type library. The
Automation server can also generate type information dynamically when queried
via its IDispatch interface (see following).

• Automation objects make their methods accessible so that other applications can
use them. For this, they implement the IDispatch interface. Through this interface
an object can expose all of its methods and properties. Through the primary
method of this interface, the object’s methods can be invoked, once having been
identified through type information.

Table 38.1 COM object requirements

Object
Visual
Object? Process space Communication Type library

Active
Document

Usually In-process, or
out-of-process

OLE Verbs No

Automation
Server

Occasionally In-process,
out-of-
process, or
remote

Automatically marshaled
using the IDispatch interface
(for out-of process and
remote servers)

Required for
automatic
marshaling

ActiveX
Control

Usually In-process Automatically marshaled
using the IDispatch interface

Required

MTS or COM+ Occasionally In-process for
MTS,
any for COM+

Automatically marshaled
via a type library

Required

In-process
custom
interface object

Optionally In-process No marshaling required for
in-process servers

Recommended

Other custom
interface object

Optionally In-process,
out-of-
process, or
remote

Automatically marshaled
via a type library;
otherwise, manually
marshaled using custom
interfaces

Recommended

O v e r v i e w o f C O M t e c h n o l o g i e s 38-13

C O M e x t e n s i o n s

Developers often use Automation to create and use non-visual OLE objects that run
in any process space because the Automation IDispatch interface automates the
marshaling process. Automation does, however, restrict the types that you can use.

For a list of types that are valid for type libraries in general, and Automation
interfaces in particular, see “Valid types” on page 39-11.

For information on writing an Automation server, see Chapter 41, “Creating simple
COM servers.”

Active Server Pages

The Active Server Page (ASP) technology lets you write simple scripts, called Active
Server Pages, that can be launched by clients via a Web server. Unlike ActiveX
controls, which run on the client, Active Server Pages run on the server, and return a
resulting HTML page to clients.

Active Server Pages are written in Jscript or VB script. The script runs every time the
server loads the Web page. That script can then launch an embedded Automation
server (or Enterprise Java Bean). For example, you can write an Automation server,
such as one to create a bitmap or connect to a database, and this server accesses data
that gets updated every time a client loads the Web page.

Active Server Pages rely on the Microsoft Internet Information Server (IIS)
environment to serve your Web pages.

C++Builder wizards let you create an Active Server Object, which is an Automation
object specifically designed to work with an Active Server Page. For more
information about creating and using these types of objects, see Chapter 42,
“Creating an Active Server Page.”

ActiveX controls

ActiveX is a technology that allows COM components, especially controls, to be more
compact and efficient. This is especially necessary for controls that are intended for
Intranet applications that need to be downloaded by a client before they are used.

ActiveX controls are visual controls that run only as in-process servers, and can be
plugged into an ActiveX control container application. They are not complete
applications in themselves, but can be thought of as prefabricated OLE controls that
are reusable in various applications. ActiveX controls have a visible user interface,
and rely on predefined interfaces to negotiate I/O and display issues with their host
containers.

ActiveX controls make use of Automation to expose their properties, methods, and
events. Features of ActiveX controls include the ability to fire events, bind to data
sources, and support licensing.

One use of ActiveX controls is on a Web site as interactive objects in a Web page. As
such, ActiveX is a standard that targets interactive content for the World Wide Web,
including the use of ActiveX Documents used for viewing non-HTML documents

38-14 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

through a Web browser. For more information about ActiveX technology, see the
Microsoft ActiveX Web site.

C++Builder wizards allow you to easily create ActiveX controls. For more
information about creating and using these types of objects, see Chapter 43,
“Creating an ActiveX control.”

Active Documents

Active Documents (previously referred to as OLE documents) are a set of COM
services that support linking and embedding, drag-and-drop, and visual editing.
Active Documents can seamlessly incorporate data or objects of different formats,
such as sound clips, spreadsheets, text, and bitmaps.

Unlike ActiveX controls, Active Documents are not limited to in-process servers; they
can be used in cross-process applications.

Unlike Automation objects, which are almost never visual, Active Document objects
can be visually active in another application. Thus, Active Document objects are
associated with two types of data: presentation data, used for visually displaying the
object on a display or output device, and native data, used to edit an object.

Active Document objects can be document containers or document servers. While
C++Builder does not provide an automatic wizard for creating Active Documents,
you can use the VCL class, TOleContainer, to support linking and embedding of
existing Active Documents.

You can also use TOleContainer as a basis for an Active Document container. To
create objects for Active Document servers, use the COM object wizard and add the
appropriate interfaces, depending on the services the object needs to support. For
more information about creating and using Active Document servers, see the
Microsoft ActiveX Web site.

Note While the specification for Active Documents has built-in support for marshaling in
cross-process applications, Active Documents do not run on remote servers because
they use types that are specific to a system on a given machine such as window
handles, menu handles, and so on.

Transactional objects

C++Builder uses the term “transactional objects” to refer to objects that take
advantage of the transaction services, security, and resource management supplied
by Microsoft Transaction Server (MTS) (for versions of Windows prior to Windows
2000) or COM+ (for Windows 2000 and later). These objects are designed to work in a
large, distributed environment.

The transaction services provide robustness so that activities are always completed
or rolled back (the server never partially completes an activity). The security services
allow you to expose different levels of support to different classes of clients. The
resource management allows an object to handle more clients by pooling resources or
keeping objects active only when they are in use. To enable the system to provide

O v e r v i e w o f C O M t e c h n o l o g i e s 38-15

C O M e x t e n s i o n s

these services, the object must implement the IObjectControl interface. To access the
services, transactional objects use an interface called IObjectContext, which is created
on their behalf by MTS or COM+.

Under MTS, the server object must be built into a library (DLL), which is then
installed in the MTS runtime environment. That is, the server object is an in-process
server that runs in the MTS runtime process space. Under COM+, this restriction
does not apply because all COM calls are routed through an interceptor. To clients,
the difference between MTS and COM+ is transparent.

MTS or COM+ servers group transactional objects that run in the same process space.
Under MTS, this group is called an MTS package, while under COM+ it is called a
COM+ application. A single machine can be running several different MTS packages
(or COM+ applications), where each one is running in a separate process space.

To clients, the transactional object may appear like any other COM server object. The
client need never know about transactions, security, or just-in-time activation unless
it is initiating a transaction itself.

Both MTS and COM+ provide a separate tool for administering transactional objects.
This tool lets you configure objects into packages or COM+ applications, view the
packages or COM+ applications installed on a computer, view or change the
attributes of the included objects, monitor and manage transactions, make objects
available to clients, and so on. Under MTS, this tool is the MTS Explorer. Under
COM+ it is the COM+ Component Manager.

COM+ Event and event subscriber objects

The COM+ Events system introduces a middle layer of software that decouples
applications that generate event s (called publishers) from applications that respond
to events (called subscribers). Instead of being tightly bound to each other, publishers
and subscribers can be developed, deployed and activated independently of each
other.

In the COM+ Events model, an event interface is first created using C++Builder’s
COM+ Event Object wizard. The event interface has no implementation; it simply
defines the event methods that publishers will generate, and that subscribers will
respond to. The COM+ event object is then installed into a COM+ Application, in the
COM+ Catalog. This can be done using the C++Builder IDE, programatically using
the TComAdminCatalog object, or by a system administrator using the Component
Services tool.

Event subscribers are responsible for providing an implementation for the event
interface. You can create event subscriber components using C++Builder’s COM+
Event Subscription wizard. Using the wizard, you can select the event object you
want to implement, and C++Builder will stub out each method of the interface. You
can also select a type library if the event object has not yet been installed in the
COM+ Catalog.

38-16 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Finally, once the subscriber component has been implemented, it too must be
installed in the COM+ Catalog. Again, this can be done either with the C++Builder
IDE, a TComAdminCatalog object, or by using the Component Services administrative
tool.

When a publisher wishes to generate an event, it simply creates an instance of the
event object (not the subscriber component), and calls the appropriate methods on
the event interface. COM+ then steps in and notifies all applications that have
subscribed to that event object, calling them synchronously, one at a time. This way,
publishers need not know anything about those applications that are subscribing to
the event. Subscribers don’t need anything more than an implementation of the event
interface, and to select those publishers they wish to subscribe to. COM+ handles the
rest.

For more information regarding the COM+ Events system, see “Generating events
under COM+” on page 44-20.

Type libraries

Type libraries provide a way to get more type information about an object than can
be determined from an object’s interface. The type information contained in type
libraries provides needed information about objects and their interfaces, such as
what interfaces exist on what objects (given the CLSID), what member functions exist
on each interface, and what arguments those functions require.

You can obtain type information either by querying a running instance of an object or
by loading and reading type libraries. With this information, you can implement a
client which uses a desired object, knowing specifically what member functions you
need, and what to pass those member functions.

Clients of Automation servers, ActiveX controls, and transactional objects expect
type information to be available. All of C++Builder’s wizards generate a type library
automatically. You can view or edit this type information by using the Type Library
Editor as described in Chapter 39, “Working with type libraries.”

This section describes what a type library contains, how it is created, when it is used,
and how it is accessed. For developers wanting to share interfaces across languages,
the section ends with suggestions on using type library tools.

The content of type libraries
Type libraries contain type information, which indicates which interfaces exist in
which COM objects, and the types and numbers of arguments to the interface
methods. These descriptions include the unique identifiers for the CoClasses
(CLSIDs) and the interfaces (IIDs), so that they can be properly accessed, as well as
the dispatch identifiers (dispIDs) for Automation interface methods and properties.

Type libraries can also contain the following information:

• Descriptions of custom type information associated with custom interfaces

• Routines that are exported by the Automation or ActiveX server, but that are not
interface methods

O v e r v i e w o f C O M t e c h n o l o g i e s 38-17

C O M e x t e n s i o n s

• Information about enumeration, record (structures), unions, alias, and module
data types

• References to type descriptions from other type libraries

Creating type libraries
With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL) or the Object Description Language (ODL), then
running that script through a compiler. However, C++Builder automatically
generates a type library when you create a COM object (including ActiveX controls,
Automation objects, remote data modules, and so on) using any of the wizards on the
ActiveX or Multitier page of the new items dialog. You can also create a type library
by choosing from the main menu, File|New|Other, select the ActiveX tab, and
choose Type Library.

You can view the type library using C++Builder’s Type Library editor. You can easily
edit your type library using the Type Library editor and C++Builder automatically
updates the corresponding .tlb file (binary type library file) when the type library is
saved. For any changes to Interfaces and CoClasses that were created using a wizard,
the Type Library editor also updates your implementation files. For more
information on using the Type Library editor to write interfaces and CoClasses, see
Chapter 39, “Working with type libraries.”

When to use type libraries
It is important to create a type library for each set of objects that is exposed to
external users, for example,

• ActiveX controls require a type library, which must be included as a resource in
the DLL that contains the ActiveX controls.

• Exposed objects that support vtable binding of custom interfaces must be
described in a type library because vtable references are bound at compile time.
Clients import information about the interfaces from the type library and use that
information to compile. For more information about vtable and compile time
binding, see “Automation interfaces” on page 41-12.

• Applications that implement Automation servers should provide a type library so
that clients can early bind to it.

• Objects instantiated from classes that support the IProvideClassInfo interface must
have a type library.

• Type libraries are not required, but are useful for identifying the objects used with
OLE drag-and-drop.

Accessing type libraries
The binary type library is normally a part of a resource file (.res) or a stand-alone file
with a .tlb file-name extension. When included in a resource file, the type library can
be bound into a server (.dll, .ocx, or .exe).

38-18 D e v e l o p e r ’ s G u i d e

C O M e x t e n s i o n s

Once a type library has been created, object browsers, compilers, and similar tools
can access type libraries through special type interfaces:

C++Builder can import and use type libraries from other applications by choosing
Project|Import Type Library.

Benefits of using type libraries
Even if your application does not require a type library, you can consider the
following benefits of using one:

• You can use early binding with Automation (as opposed to calling through
Variants), and controllers that do not support vtables or dual interfaces can encode
dispIDs at compile time, improving runtime performance.

• Type browsers can scan the library, so clients can see the characteristics of your
objects.

• The RegisterTypeLib function can be used to register your exposed objects in the
registration database.

• The UnRegisterTypeLib function can be used to completely uninstall an
application’s type library from the system registry.

• Local server access is improved because Automation uses information from the
type library to package the parameters that are passed to an object in another
process.

Using type library tools
The tools for working with type libraries are listed below.

• The TLIBIMP (Type Library Import) tool, which takes existing type libraries and
creates C++Builder Interface files (_TLB.cpp and _TLB.h files), is incorporated into
the Type Library editor. TLIBIMP provides additional configuration options not
available inside the Type Library editor.

• TRegSvr is a tool for registering and unregistering servers and type libraries,
which comes with C++Builder. The source to TRegSvr is available as an example
in the Examples directory.

Interface Description

ITypeLib Provides methods for accessing a library of type descriptions.

ITypeLib2 Augments ITypeLib to include support for documentation
strings, custom data, and statistics about the type library.

ITypeInfo Provides descriptions of individual objects contained in a type
library. For example, a browser uses this interface to extract
information about objects from the type library.

ITypeInfo2 Augments ITypeInfo to access additional type library
information, including methods for accessing custom data
elements.

ITypeComp Provides a fast way to access information that compilers need
when binding to an interface.

O v e r v i e w o f C O M t e c h n o l o g i e s 38-19

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

• The Microsoft IDL compiler (MIDL) compiles IDL scripts to create a type library.
MIDL has an optional switch for generating header files, found in the MS Win32
SDK.

• RegSvr32.exe is a standard Windows utility for registering and unregistering
servers and type libraries.

• OLEView is a type library browser tool, found on Microsoft’s Web site.

Implementing COM objects with wizards
C++Builder makes it easier to write COM server applications by providing wizards
that handle many of the details involved. C++Builder provides separate wizards to
create the following:

• A simple COM object
• An Automation object
• An Active Server Object (for embedding in an Active Server page)
• An ActiveX control
• An ActiveX Form
• A transactional object
• A COM+ Event Object
• A COM+ Subscription Object
• A Property page
• A Type library
• An ActiveX library

The wizards handle many of the tasks involved in creating each type of COM object.
They provide the required COM interfaces for each type of object. As shown in
Figure 38.6, with a simple COM object, the wizard implements the one required
COM interface, IUnknown, which provides an interface pointer to the object.

Figure 38.6 Simple COM object interface

The COM object wizard also provides an implementation for IDispatch if you specify
that you are creating an object that supports an IDispatch descendant.

As shown in Figure 38.7, for Automation and Active Server objects, the wizard
implements IUnknown and IDispatch, which provides automatic marshaling.

Figure 38.7 Automation object interface

COM
Object

IUnknown

Automation
Object

IUnknown

IDispatch

38-20 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

As shown in Figure 38.8, for ActiveX control objects and ActiveX forms, the wizard
implements all the required ActiveX control interfaces, from IUnknown, IDispatch,
IOleObject, IOleControl, and so on.

Figure 38.8 ActiveX object interface

Table 38.2 lists the various wizards and the interfaces they implement:

Table 38.2 C++Builder wizards for implementing COM, Automation, and ActiveX objects

Wizard Implemented interfaces What the wizard does

COM server IUnknown (and IDispatch if
you select a default interface
that descends from
IDispatch)

Exports routines that handle server
registration, class registration, loading and
unloading the server, and object instantiation.
Creates and manages class factories for objects
implemented on the server.
Provides registry entries for the object that
specify the selected threading model.
Provides server-side support for generating
events, if requested.
Declares the methods that implement a
selected interface, providing skeletal
implementations for you to complete.
Provides a type library.
Allows you to select an arbitrary interface that
is registered in the type library and implement
it. If you do this, you must use a type library.

Automation
server

IUnknown, IDispatch Performs the tasks of a COM server wizard
(described above), plus:
Implements the interface that you specify,
either dual or dispatch.

IUnknown

IOleObject

IOleControl

IOleInPlaceObject

ISpecifyPropertyPages

ActiveX
Control
Object

IDispatch

·
··

O v e r v i e w o f C O M t e c h n o l o g i e s 38-21

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

Active Server
Object

IUnknown, IDispatch,
(IASPObject)

Performs the tasks of an Automation object
wizard (described above) and optionally
generates an .ASP page which can be loaded
into a Web browser. It leaves you in the Type
Library editor so that you can modify the
object’s properties and methods if needed.
Surfaces the ASP intrinsics as properties so that
you can easily obtain information about the
ASP application and the HTTP messages that
launched it.

ActiveX Control IUnknown, IDispatch,
IPersistStreamInit,
IOleInPlaceActiveObject,
IPersistStorage, IViewObject,
IOleObject, IViewObject2,
IOleControl,
IPerPropertyBrowsing,
IOleInPlaceObject,
ISpecifyPropertyPages

Performs the tasks of the Automation server
wizard (described above), plus:
Generates an implementation CoClass that
corresponds to the VCL control on which the
ActiveX control is based and which
implements all the ActiveX interfaces.
Leaves you in the source code editor so that
you can modify the implementation class.

ActiveForm Same interfaces as ActiveX
Control

Performs the tasks of the ActiveX control
wizard, plus:
Creates a TActiveForm descendant that takes
the place of the pre-existing VCL class in the
ActiveX control wizard. This new class lets you
design the Active Form the same way you
design a form in a Windows application.

Transactional
object

IUnknown, IDispatch,
IObjectControl

Adds a new unit to the current project
containing the MTS or COM+ object definition.
It inserts proprietary GUIDs into the type
library so that C++Builder can install the object
properly, and leaves you in the Type Library
editor so that you can define the interface that
the object exposes to clients. You must install
the object separately after it is built.

Property Page IUnknown, IPropertyPage Creates a new property page that you can
design in the Forms designer.

COM+ Event
object

None, by default Creates a COM+ event object that you can
define using the Type Library editor. Unlike
the other object wizards, the COM+ Event
object wizard does not create an
implementation unit because event objects
have no implementation (it is provided by
event subscriber objects).

COM+
Subscription
object

None, by default Creates a COM+ subscriber object that
implements the chosen event interface.

Type Library None, by default Creates a new type library and associates it
with the active project.

ActiveX library None, by default Creates a new ActiveX or Com server DLL and
exposes the necessary export functions.

Table 38.2 C++Builder wizards for implementing COM, Automation, and ActiveX objects (continued)

Wizard Implemented interfaces What the wizard does

38-22 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

You can add additional COM objects or reimplement an existing implementation. To
add a new object, it is easiest to use the wizard a second time. This is because the
wizard sets up an association between the type library and an implementation class,
so that changes you make in the type library editor are automatically applied to your
implementation object.

Code generated by wizards

C++Builder’s wizards generate code that uses the Microsoft Active Template Library
(ATL) as the basis of its COM support. ATL is a framework of template classes that
handle many of the implementation details of developing COM applications.
Because ATL is template-based, you don’t link to DLLs. Instead, your project
includes ATL header files that compile into your object code. The C++Builder
wizards generate include statements for these header files in a unit with the _ATL
suffix (For example, Project1_ATL.cpp and Project1_ATL.h).

Note The ATL header files in C++Builder’s Include/ATL directory differ slightly from the
ATL header files supplied by Microsoft. These differences are required so that
C++Builder’s compiler can compile the headers. You can’t replace these headers with
another version of ATL, because it will not compile properly.

In addition to the include statements for the ATL files (and additional files that
enable the ATL classes to work with VCL classes), the generated _ATL unit header
also includes the declaration of a global variable called _Module. _Module is an
instance of the ATL class CComModule, which isolates the rest of the application from
differences between DLLs and EXEs in the way threading and registration issues are
handled. In your project file (Project1.cpp), _Module is assigned to an instance of
TComModule, which is a descendant of CComModule that supports C++Builder’s style
of COM registration. Typically, you do not need to use this object directly.

The wizard also adds an object map to your project file. This is a set of ATL macros
that looks something like the following:

BEGIN_OBJECT_MAP(ObjectMap)
 OBJECT_ENTRY(CLSID_MyObj, TMyObjImpl)
END_OBJECT_MAP()

Each entry between the BEGIN_OBJECT_MAP line and the END_OBJECT_MAP line
defines an association between a class id and its ATL implementation class. The
_Module object uses this map to register components. The object map is also used by
the ATL object creator classes. If you add any COM objects to your application
without using a wizard, you must update the object map so that they can be properly
registered and created. To do so, add another line that uses the OBJECT_ENTRY
macro, assigning the class id and the implementation class name as parameters.

The wizards generate an implementation unit for the particular type of COM object
you are creating. The implementation unit contains the declaration of the class that
implements your COM object. This class is a descendant (directly or indirectly) of the
ATL class CComObjectRootEx, the ATL class CComCoClass, and other classes that
depend on the type of object you are creating.

O v e r v i e w o f C O M t e c h n o l o g i e s 38-23

I m p l e m e n t i n g C O M o b j e c t s w i t h w i z a r d s

CComCoClass provides the class factory support for creating your class. It uses the
object map that was added to your project file.

CComObjectRootEx is a template class that provides the underlying support for
IUnknown. It implements the QueryInterface method by making use of an interface
map, which you can find in the implementation unit header. The interface map looks
like the following:

BEGIN_COM_MAP(TMyObjImpl)
 COM_INTERFACE_ENTRY(IMyObj)
END_COM_MAP()

Each entry in the interface map is an interface that is exposed by the QueryInterface
method. If you add additional interfaces to your implementation class, you must add
them to the interface map (using the COM_INTERFACE_ENTRY macro), and add
them as additional ancestors of the implementation class.

CComObjectRootEx supplies the underlying support for reference counting. It does
not, however, declare the AddRef and Release methods. These methods are added to
your implementation class through the END_COM_MAP() macro at the end of the
interface map.

Note For more information on the ATL, see the Microsoft documentation. However, note
that C++Builder’s COM support does not use the ATL for registration, ActiveX
controls (which are based on VCL objects instead), or property page support.

The wizards also generate a type library and its associated unit, which has a name of
the form Project1_TLB. The Project1_TLB unit includes the definitions your
application needs to use the type definitions and interfaces defined in the type
library. For more information on the contents of this file, see “Code generated when
you import type library information” on page 40-5.

You can modify the interface generated by the wizard using the type library editor.
When you do this, the implementation class is automatically updated to reflect those
changes. You need only fill in the bodies of the generated methods to complete the
implementation.

38-24 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h t y p e l i b r a r i e s 39-1

C h a p t e r

39
Chapter39Working with type libraries

This chapter describes how to create and edit type libraries using C++Builder’s Type
Library editor. Type libraries are files that include information about data types,
interfaces, member functions, and object classes exposed by a COM object. They
provide a way to identify what types of objects and interfaces are available on a
server. For a detailed overview on why and when to use type libraries, see “Type
libraries” on page 38-16.

A type library can contain any and all of the following:

• Information about custom data types such as aliases, enumerations, structures,
and unions.

• Descriptions of one or more COM elements, such as an interface, dispinterface, or
CoClass. Each of these descriptions is commonly referred to as type information.

• Descriptions of constants and methods defined in external modules.

• References to type descriptions from other type libraries.

By including a type library with your COM application or ActiveX library, you make
information about the objects in your application available to other applications and
programming tools through COM’s type library tools and interfaces.

With traditional development tools, you create type libraries by writing scripts in the
Interface Definition Language (IDL), then run that script through a compiler. The
Type Library editor automates some of this process, easing the burden of creating
and modifying your own type libraries.

When you create a COM server of any type (ActiveX control, Automation object,
remote data module, and so on) using C++Builder’s wizards, the wizard
automatically generates a type library for you. Most of the work you do in
customizing the generated object starts with the type library, because that is where
you define the properties and methods it exposes to clients: you change the interface
of the CoClass generated by the wizard, using the Type Library editor. The Type
Library editor automatically updates the implementation unit for your object, so that
all you need do is fill in the bodies of the generated methods.

39-2 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Type Library editor
The Type Library editor enables developers to examine and create type information
for COM objects. Using the Type Library editor can greatly simplify the task of
developing COM objects by centralizing the tasks of defining interfaces, CoClasses,
and types, obtaining GUIDs for new interfaces, associating interfaces with CoClasses,
updating implementation units, and so on.

The Type Library editor outputs two types of file that represent the contents of the
type library:

Parts of the Type Library editor

The main elements of the Type Library editor are described in Table 39.2:

These parts are illustrated in Figure 39.1, which shows the Type Library editor
displaying type information for a COM object named cyc.

Table 39.1 Type Library editor files

File Description

.TLB file The binary type library file. By default, you do not need to use this file, because the
type library is automatically compiled into the application as a resource. However,
you can use this file to explicitly compile the type library into another project or to
deploy the type library separately from the .exe or .ocx. For more information, see
“Opening an existing type library” on page 39-13 and “Deploying type libraries”
on page 39-19.

_TLB unit This unit (.cpp and .h files) reflects the contents of the type library for use by
your application. It contains all the declarations your application needs to use the
elements defined in the type library. Although you can open this file in the code
editor, you should never edit it—it is maintained by the Type Library editor, so any
changes you make will be overwritten by the Type Library editor. For more details
on the contents of this file, see “Code generated when you import type library
information” on page 40-5.

Table 39.2 Type Library editor parts

Part Description

Toolbar Includes buttons to add new types, CoClasses, interfaces, and interface
members to your type library. The toolbar also includes buttons for refreshing
your implementation unit, registering the type library, and saving an IDL file
with the information in your type library.

Object list pane Displays all the existing elements in the type library. When you click on an
item in the object list pane, it displays pages valid for that object.

Status bar Displays syntax errors if you try to add invalid types to your type library.

Pages Display information about the selected object. Which pages appear here
depends on the type of object selected.

W o r k i n g w i t h t y p e l i b r a r i e s 39-3

T y p e L i b r a r y e d i t o r

Figure 39.1 Type Library editor

Toolbar
The Type Library editor’s toolbar located at the top of the Type Library Editor,
contains buttons that you click to add new objects into your type library.

The first group of buttons let you add elements to the type library. When you click a
toolbar button, the icon for that element appears in the object list pane. You can then
customize its attributes in the right pane. Depending on the type of icon you select,
different pages of information appear to the right.

The following table lists the elements you can add to your type library:

Icon Meaning

An interface description.

A dispinterface description.

A CoClass.

An enumeration.

An alias.

A record.

A union.

A module.

Toolbar

Pages

Status bar

Object list pane

39-4 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

When you select one of the elements listed above in the object list pane, the second
group of buttons displays members that are valid for that element. For example,
when you select Interface, the Method and Property icons in the second box become
enabled because you can add methods and properties to your interface definition.
When you select Enum, the second group of buttons changes to display the Const
member, which is the only valid member for Enum type information.

The following table lists the members that can be added to elements in the object list
pane:

The third group of buttons let you refresh, register, or export your type library (save
it as an IDL file), as described in “Saving and registering type library information” on
page 39-17.

Object list pane
The Object list pane displays all the elements of the current type library in a tree
view. The root of the tree represents the type library itself, and appears as the
following icon:

Descending from the type library node are the elements in the type library:

Figure 39.2 Object list pane

Icon Meaning

A method of the interface, dispinterface, or an entry point in a module.

A property on an interface or dispinterface.

A write-only property. (available from the drop-down list on the property button)

A read-write property. (available from the drop-down list on the property button)

A read-only property. (available from the drop-down list on the property button)

A field in a record or union.

A constant in an enum or a module.

W o r k i n g w i t h t y p e l i b r a r i e s 39-5

T y p e L i b r a r y e d i t o r

When you select any of these elements (including the type library itself), the pages of
type information to the right change to reflect only the relevant information for that
element. You can use these pages to edit the definition and properties of the selected
element.

You can manipulate the elements in the object list pane by right clicking to get the
object list pane context menu. This menu includes commands that let you use the
Windows clipboard to move or copy existing elements as well as commands to add
new elements or customize the appearance of the Type Library editor.

Status bar
When editing or saving a type library, syntax, translation errors, and warnings are
listed in the Status bar pane.

For example, if you specify a type that the Type Library editor does not support, you
will get a syntax error. For a complete list of types supported by the Type Library
editor, see “Valid types” on page 39-11.

Pages of type information
When you select an element in the object list pane, pages of type information appear
in the Type Library editor that are valid for the selected element. Which pages appear
depends on the element selected in the object list panel, as follows:

Table 39.3 Type library pages

Type Info
element

Page of
type information Contents of page

Type library Attributes Name, version, and GUID for the type library, as well as
information linking the type library to help.

Uses List of other type libraries that contain definitions on which
this one depends.

Flags Flags that determine how other applications can use the type
library.

Text All definitions and declarations defining the type library itself
(see discussion below).

Interface Attributes Name, version, and GUID for the interface, the name of the
interface from which it descends, and information linking the
interface to help.

Flags Flags that indicate whether the interface is hidden, dual,
Automation-compatible, and/or extensible.

Text The definitions and declarations for the Interface (see
discussion below).

Dispinterface Attributes Name, version, and GUID for the interface, and information
linking it to help.

Flags Flags that indicate whether the Dispinterface is hidden, dual,
and/or extensible.

Text The definitions and declarations for the Dispinterface. (see
discussion below).

39-6 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

CoClass Attributes Name, version, and GUID for the CoClass, and information
linking it to help.

Implements A List of interfaces that the CoClass implements, as well as
their attributes.

COM+ The attributes of transactional objects, such as the transaction
model, call synchronization, just-in-time activation, object
pooling, and so on. Also includes the attributes of COM+
event objects.

Flags Flags that indicate various attributes of the CoClass, including
how clients can create and use instances, whether it is visible
to users in a browser, whether it is an ActiveX control, and
whether it can be aggregated (act as part of a composite).

Text The definitions and declarations for the CoClass (see
discussion below).

Enumeration Attributes Name, version, and GUID for the enumeration, and
information linking it to help.

Text The definitions and declarations for the enumerated type (see
discussion below).

Alias Attributes Name, version, and GUID for the enumeration, the type the
alias represents, and information linking it to help.

Text The definitions and declarations for the alias (see discussion
below).

Record Attributes Name, version, and GUID for the record, and information
linking it to help.

Text The definitions and declarations for the record (see discussion
below).

Union Attributes Name, version, and GUID for the union, and information
linking it to help.

Text The definitions and declarations for the union (see discussion
below).

Module Attributes Name, version, GUID, and associated DLL for the module,
and information linking it to help.

Text The definitions and declarations for the module (see
discussion below).

Method Attributes Name, dispatch ID or DLL entry point, and information
linking it to help.

Parameters Method return type, and a list of all parameters with their
types and any modifiers.

Flags Flags to indicate how clients can view and use the method,
whether this is a default method for the interface, and
whether it is replaceable.

Text The definitions and declarations for the method (see
discussion below).

Property Attributes Name, dispatch ID, type of property access method (getter vs.
setter), and information linking it to help.

Table 39.3 Type library pages (continued)

Type Info
element

Page of
type information Contents of page

W o r k i n g w i t h t y p e l i b r a r i e s 39-7

T y p e L i b r a r y e d i t o r

Note For more detailed information about the various options you can set on type
information pages, see the online Help for the Type Library editor.

You can use each of the pages of type information to view or edit the values it
displays. Most of the pages organize the information into a set of controls so that you
can type in values or select them from a list without requiring that you know the
syntax of the corresponding declarations. This can prevent many small mistakes such
as typographic errors when specifying values from a limited set. However, you may
find it faster to type in the declarations directly. To do this, use the Text page.

All type library elements have a text page that displays the syntax for the element.
This syntax appears in an IDL subset of Microsoft Interface Definition Language.
Any changes you make in other pages of the element are reflected on the text page. If
you add code directly in the text page, changes are reflected in the other pages of the
Type Library editor.

The Type Library editor generates syntax errors if you add identifiers that are
currently not supported by the editor; the editor currently supports only those
identifiers that relate to type library support (not RPC support or constructs used by
the Microsoft IDL compiler for C++ code generation or marshaling support).

Parameters Property access method return type, and a list of all
parameters with their types and any modifiers.

Flags Flags to indicate how clients can view and use the property,
whether this is a default for the interface, whether the
property is replaceable, bindable, and so on.

Text The definitions and declarations for the property access
method (see discussion below).

Const Attributes Name, value, type (for module consts), and information
linking it to help.

Flags Flags to indicate how clients can view and use the constant,
whether this represents a default value, whether the constant
is bindable, and so on.

Text The definitions and declarations for the constant (see
discussion below).

Field Attributes Name, type, and information linking it to help.

Flags Flags to indicate how clients can view and use the field,
whether this represents a default value, whether the field is
bindable, and so on.

Text The definitions and declarations for the field (see discussion
below).

Table 39.3 Type library pages (continued)

Type Info
element

Page of
type information Contents of page

39-8 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Type library elements

The Type Library interface can seem overwhelmingly complicated at first. This is
because it represents information about a great number of elements, each of which
has its own characteristics. However, many of these characteristics are common to all
elements. For example, every element (including the type library itself) has the
following:

• A Name, which is used to describe the element and which is used when referring
to the element in code.

• A GUID (globally unique identifier), which is a unique 128-bit value that COM
uses to identify the element. This should always be supplied for the type library
itself and for CoClasses and interfaces. It is optional otherwise.

• A Version number, which distinguishes between multiple versions of the element.
This is always optional, but should be provided for CoClasses and interfaces,
because some tools can’t use them without a version number.

• Information linking the element to a Help topic. These include a Help String, and
Help Context or Help String Context value. The Help Context is used for a
traditional Windows Help system where the type library has a stand-alone Help
file. The Help String Context is used when help is supplied by a separate DLL
instead. The Help Context or Help String Context refers to a Help file or DLL that
is specified on the type library’s Attributes page. This is always optional.

Interfaces
An interface describes the methods (and any properties expressed as ‘get’ and ‘set’
functions) for an object that must be accessed through a virtual function table
(vtable). If an interface is flagged as dual, it will inherit from IDispatch, and your
object can provide both early-bound, vtable access, and runtime binding through
OLE automation. By default, the type library flags all interfaces you add as dual.

Interfaces can be assigned members: methods and properties. These appear in the
object list pane as children of the interface node. Properties for interfaces are
represented by the ‘get’ and ‘set’ methods used to read and write the property’s
underlying data. They are represented in the tree view using special icons that
indicate their purpose.

Note When a property is specified as Write By Reference, it means it is passed as a pointer
rather than by value. Some applications, such a Visual Basic, use Write By Reference,
if it is present, to optimize performance. To pass the property only by reference
rather than by value, use the property type By Reference Only. To pass the property by
reference as well as by value, select Read|Write|Write By Ref. To invoke this menu,
go to the toolbar and select the arrow next to the property icon.

Once you add the properties or methods using the toolbar button or the object list
pane context menu, you describe their syntax and attributes by selecting the property
or method and using the pages of type information.

The Attributes page lets you give the property or method a name and dispatch ID (so
that it can be called using IDispatch). For properties, you also assign a type. The

W o r k i n g w i t h t y p e l i b r a r i e s 39-9

T y p e L i b r a r y e d i t o r

function signature is created using the Parameters page, where you can add, remove,
and rearrange parameters, set their type and any modifiers, and specify function
return types.

Note that when you assign properties and methods to an interface, they are implicitly
assigned to its associated CoClass. This is why the Type Library editor does not let
you add properties and methods directly to a CoClass.

Dispinterfaces
Interfaces are more commonly used than dispinterfaces to describe the properties
and methods of an object. Dispinterfaces are only accessible through dynamic
binding, while interfaces can have static binding through a vtable.

You can add methods and properties to dispinterfaces in the same way you add them
to interfaces. However, when you create a property for a dispinterface, you can’t
specify a function kind or parameter types.

CoClasses
A CoClass describes a unique COM object that implements one or more interfaces.
When defining a CoClass, you must specify which implemented interface is the
default for the object, and optionally, which dispinterface is the default source for
events. Note that you do not add properties or methods to a CoClass in the Type
Library editor. Properties and methods are exposed to clients by interfaces, which are
associated with the CoClass using the Implements page.

Type definitions
Enumerations, aliases, records, and unions all declare types that can then be used
elsewhere in the type library.

Enums consist of a list of constants, each of which must be numeric. Numeric input is
usually an integer in decimal or hexadecimal format. The base value is zero by
default. You can add constants to your enumeration by selecting the enumeration in
the object list pane and clicking the Const button on the toolbar or selecting New|
Const command from the object list pane context menu.

Note It is strongly recommended that you provide help strings for your enumerations to
make their meaning clearer. The following is a sample entry of an enumeration type
for a mouse button and includes a help string for each enumeration element.

typedef enum TxMouseButton
{

[helpstring("mbLeft”)]
mbLeft = 0,
[helpstring("mbRight)]
mbRight = 1.
[helpstring("mbMiddle)]
mbMiddle = 2

} TxMouseButton;

39-10 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

An alias creates an alias (typedef) for a type. You can use the alias to define types that
you want to use in other type info such as records or unions. Associate the alias with
the underlying type definition by setting the Type attribute on the Attributes page.

A record is a C-style structure. It consists of a list of structure members or fields. A
union defines a C-style union. Like a record, a union consists of a list of structure
members or fields. However, unlike the members of records, each member of a union
occupies the same physical address, so that only one logical value can be stored.

Add the fields to a record or union by selecting it in the object list pane and clicking
the field button in the toolbar or right clicking and choosing field from the object list
pane context menu. Each field has a name and a type, which you assign by selecting
the field and assigning values using the Attributes page. Records and unions can be
defined with an optional tag, as with a C struct.

Members can be of any built-in type, or you can specify a type using alias before you
define the record.

Note C++Builder does not support marshaling related keywords for structs and unions,
such as switch_type, first_is, last_is, etc.

Modules
A module defines a group of functions, typically a set of DLL entry points. You
define a module by

• Specifying a DLL that it represents on the attributes page.

• Adding methods and constants using the toolbar or the object list pane context
menu. For each method or constant, you must then define its attributes by
selecting the it in the object list pane and setting the values on the Attributes page.

For module methods, you must assign a name and DLL entry point using the
attributes page. Declare the function’s parameters and return type using the
parameters page.

For module constants, use the Attributes page to specify a name, type, and value.

Note The Type Library editor does not generate any declarations or implementation
related to a module. The specified DLL must be created as a separate project.

Using the Type Library editor

Using the type library editor, you can create new type libraries or edit existing ones.
Typically, an application developer uses a wizard to create the objects that are
exposed in the type library, letting C++Builder generate the type library
automatically. Then, the automatically-generated type library is opened in the Type
Library editor so that the interfaces can be defined (or modified), type definitions
added, and so on.

However, even if you are not using a wizard to define the objects, you can use the
Type Library editor to define a new type library. In this case, you must create any
implementation classes yourself, because the Type Library editor does not generate
code for CoClasses that were not associated with a type library by a wizard.

W o r k i n g w i t h t y p e l i b r a r i e s 39-11

T y p e L i b r a r y e d i t o r

The editor supports a subset of valid types in a type library as described below.

The final topics in this section describe how to:

• Create a new type library
• Open an existing type library
• Add an interface to the type library
• Modify an interface
• Add properties and methods to the type library
• Add a CoClass to the type library
• Add an interface to a CoClass
• Add an enumeration to the type library
• Add an alias to the type library
• Add a record or union to the type library
• Add a module to the type library
• Save and register type library information

Valid types
The Type Library editor supports the following IDL types in a type library. The
Automation compatible column specifies whether the type can be used by an
interface that has its Automation or Dispinterface flag checked. These are the types
that COM can marshal via the type library automatically.

IDL type Variant type
Automation
compatible Description

short VT_I2 Yes 2-byte signed integer

long VT_I4 Yes 4-byte signed integer

single VT_R4 Yes 4-byte real

double VT_R8 Yes 8-byte real

CURRENCY VT_CY Yes currency

DATE VT_DATE Yes date

BSTR VT_BSTR Yes binary string

IDispatch VT_DISPATCH Yes pointer to IDispatch interface

SCODE VT_ERROR Yes OLE Error Code

VARIANT_BOOL VT_BOOL Yes True = –1, False = 0

VARIANT VT_VARIANT Yes pointer to OLE Variant

IUnknown VT_UNKNOWN Yes pointer to IUnknown interface

DECIMAL VT_DECIMAL Yes 16-byte fixed point

byte VT_I1 No* 1-byte signed integer

unsigned char VT_UI1 Yes 1-byte unsigned integer

unsigned short VT_UI2 No* 2-byte unsigned integer

unsigned long VT_UI4 No* 4-byte unsigned integer

__int64 VT_I8 No 8-byte signed real

uint64 VT_UI8 No 8-byte unsigned real

int VT_INT No* system-dependent integer
(Win32=Integer)

39-12 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

* May be Automation compatible with some applications.

Note The unsigned char type (VT_UI1) is Automation-compatible, but is not allowed in a
Variant or OleVariant since many Automation servers do not handle this value
correctly.

Note For valid types for CORBA development, see “Defining object interfaces” on
page 31-5.

Besides these IDL types, any interfaces and types defined in the library or defined in
referenced libraries can be used in a type library definition.

The Type Library editor stores type information in the generated type library (.TLB) file
in binary form.

SafeArrays
COM requires that arrays be passed via a special data type known as a SafeArray.
You can create and destroy SafeArrays by calling special COM functions to do so,
and all elements within a SafeArray must be valid automation-compatible types.

In the Type Library editor, a SafeArray must specify the type of its elements. For
example, the following line from the text page declares a method with a parameter
that is a SafeArray with an element type of long:

HRESULT _stdcall HighlightLines(SAFEARRAY(long) Lines);

Note Although you must specify the element type when declaring a SafeArray type in the
Type Library editor, the declaration in the generated _TLB unit does not indicate the
element type.

Creating a new type library
You may want to create a type library that is independent of a particular COM object.
For example, you might want to define a type library that contains type definitions
that you use in several other type libraries. You can then create a type library of basic
definitions and add it to the uses page of other type libraries.

You can also create a type library for an object that is not yet implemented. Once the
type library contains the interface definition, you can use the COM object wizard to
generate a CoClass and implementation.

unsigned int VT_UINT No* system-dependent unsigned integer

void VT_VOID Yes C style VOID

HRESULT VT_HRESULT No 32-bit error code

SAFEARRAY VT_SAFEARRAY Yes OLE Safe Array

LPSTR VT_LPSTR No null terminated string

LPWSTR VT_LPWSTR No wide null terminated string

IDL type Variant type
Automation
compatible Description

W o r k i n g w i t h t y p e l i b r a r i e s 39-13

T y p e L i b r a r y e d i t o r

To create a new type library,

1 Choose File|New|Other to open the New Items dialog box.

2 Choose the ActiveX page.

3 Select the Type Library icon.

4 Choose OK.

The Type Library editor opens with a prompt to enter a name for the type library.

5 Enter a name for the type library. Continue by adding elements to your type
library.

Opening an existing type library
When you use the wizards to create an ActiveX control, Automation object, Active
form, Active Server Page object, COM object, transactional object, remote data
module, or transactional data module, a type library is automatically created with an
implementation unit. In addition, you may have type libraries that are associated
with other products (servers) that are available on your system.

To open a type library that is not currently part of your project,

1 Choose File|Open from the main menu in the IDE.

2 In the Open dialog box, set the File Type to type library.

3 Navigate to the desired type library files and choose Open.

To open a type library associated with the current project,

1 Choose View|Type Library.

Now, you can add interfaces, CoClasses, and other elements of the type library such
as enumerations, properties, and methods.

 Tip When writing client applications, you do not need to open the type library. You only
need the Project_TLB unit that the Type Library editor creates from a type library, not
the type library itself. You can add this file directly to a client project, or, if the type
library is registered on your system, you can use the Import Type Library dialog
(Project|Import Type Library).

Adding an interface to the type library
To add an interface,

1 On the toolbar, click on the interface icon.

An interface is added to the object list pane prompting you to add a name.

2 Type a name for the interface.

The new interface contains default attributes that you can modify as needed.

You can add properties (represented by getter/setter functions) and methods to suit
the purpose of the interface.

39-14 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

Modifying an interface using the type library
There are several ways to modify an interface or dispinterface once it is created.

• You can change the interface’s attributes using the page of type information that
contains the information you want to change. Select the interface in the object list
pane and then use the controls on the appropriate page of type information. For
example, you may want to change the parent interface using the attributes page, or
use the flags page to change whether or not it is a dual interface.

• You can edit the interface declaration directly by selecting the interface in the
object list pane and then editing the declarations on the Text page.

• You can Add properties and methods to the interface (see the next section).

• You can modify the properties and methods already in your interface by changing
their type information.

• You can associate it with a CoClass by selecting the CoClass in the object list pane,
right-clicking on the Implements page, and choosing Insert Interface.

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar.

Adding properties and methods to an interface or dispinterface
To add properties or methods to an interface or dispinterface,

1 Select the interface, and choose either a property or method icon from the toolbar.
If you are adding a property, you can click directly on the property icon to create a
read/write property (with both a getter and a setter), or click the down arrow to
display a menu of property types.

The property access method members or method member is added to the object
list pane, prompting you to add a name.

2 Type a name for the member.

The new member contains default settings on its attributes, parameters, and flags
pages that you can modify to suit the member. For example, you will probably want
to assign a type to a property on the attributes page. If you are adding a method, you
will probably want to specify its parameters on the parameters page.

As an alternate approach, you can add properties and methods by typing directly
into the text page using IDL syntax. For example, you can type the following
property declarations into the text page of an interface:

[
 uuid(5FD36EEF-70E5-11D1-AA62-00C04FB16F42),
 version(1.0),
 dual,
 oleautomation
]
interface Interface1: IDispatch
{ // Add everything between the curly braces
[propget, id(0x00000002)]

W o r k i n g w i t h t y p e l i b r a r i e s 39-15

T y p e L i b r a r y e d i t o r

 HRESULT _stdcall AutoSelect([out, retval] long Value);
 [propget, id(0x00000003)]
 HRESULT _stdcall AutoSize([out, retval] VARIANT_BOOL Value);
 [propput, id(0x00000003)]
 HRESULT _stdcall AutoSize([in] VARIANT_BOOL Value);
};

After you have added members to an interface using the interface text page, the
members appear as separate items in the object list pane, each with its own attributes,
flags, and parameters pages. You can modify each new property or method by
selecting it in the object list pane and using these pages, or by making edits directly in
the text page.

If the interface is associated with a CoClass that was generated by a wizard, you can
tell the Type Library editor to apply your changes to the implementation file by
clicking the Refresh button on the toolbar. The Type Library editor adds new
methods to your implementation class to reflect the new members. You can then
locate the new methods in implementation unit’s source code and fill in their bodies
to complete the implementation.

 Adding a CoClass to the type library
The easiest way to add a CoClass to your project is to choose File|New|Other from
the main menu in the IDE and use the appropriate wizard on the ActiveX or Multitier
page of the New Items dialog. The advantage to this approach is that, in addition to
adding the CoClass and its interface to the type library, the wizard adds an
implementation unit, updates the project file to include the new implementation unit,
and adds the new CoClass to the object map in the project file.

If you are not using a wizard, however, you can create a CoClass by clicking the
CoClass icon on the toolbar and then specifying its attributes. You will probably
want to give the new CoClass a name (on the Attributes page), and may want to use
the Flags page to indicate information such as whether the CoClass is an application
object, whether it represents an ActiveX control, and so on.

Note When you add a CoClass to a type library using the toolbar instead of a wizard, you
must generate the implementation for the CoClass yourself and update it by hand
every time you change an element on one of the CoClass’s interfaces. When you add
a CoClass implementation manually, be sure to add the new CoClass to the object
map in the project file.

You can’t add members directly to a CoClass. Instead, you implicitly add members
when you add an interface to the CoClass.

Adding an interface to a CoClass
CoClasses are defined by the interfaces they present to clients. While you can add
any number of properties and methods to the implementation class of a CoClass,
clients can only see those properties and methods that are exposed by interfaces
associated with the CoClass.

To associate an interface with a CoClass, right-click in the Implements page for the
class and choose Insert Interface to display a list of interfaces from which you can
choose. The list includes interfaces that are defined in the current type library and

39-16 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

those defined in any type libraries that the current type library references. Choose an
interface you want the class to implement. The interface is added to the page with its
GUID and other attributes.

If the CoClass was generated by a wizard, the Type Library editor automatically
updates the implementation class to include skeletal methods for the methods
(including property access methods) of any interfaces you add this way.

Adding an enumeration to the type library
To add enumerations to a type library,

1 On the toolbar, click on the enum icon.

An enum type is added to the object list pane prompting you to add a name.

2 Type a name for the enumeration.

The new enum is empty and contains default attributes in its attributes page for
you to modify.

Add values to the enum by clicking on the New Const button. Then, select each
enumerated value and assign it a name (and possibly a value) using the attributes
page.

Once you have added an enumeration, the new type is available for use by the type
library or any other type library that references it from its uses page. For example,
you can use the enumeration as the type for a property or parameter.

Adding an alias to the type library
To add an alias to a type library,

1 On the toolbar, click on the alias icon.

An alias type is added to the object list pane prompting you to add a name.

2 Type a name for the alias.

By default, the new alias stands for an long type. Use the Attributes page to
change this to the type you want the alias to represent.

Once you have added an alias, the new type is available for use by the type library or
any other type library that references it from its uses page. For example, you can use
the alias as the type for a property or parameter.

Adding a record or union to the type library
To add a record or union to a type library,

1 On the toolbar, click on the record icon or the union icon.

The selected type element is added to the object list pane prompting you to add a
name.

2 Type a name for the record or union.

At this point, the new record or union contains no fields.

W o r k i n g w i t h t y p e l i b r a r i e s 39-17

T y p e L i b r a r y e d i t o r

3 With the record or union selected in the object list pane, click on the field icon in
the toolbar. Specify the field’s name and type, using the Attributes page.

4 Repeat step 3 for as many fields as you need.

Once you have defined the record or union, the new type is available for use by the
type library or any other type library that references it from its uses page. For
example, you can use the record or union as the type for a property or parameter.

Adding a module to the type library
To add a module to a type library,

1 On the toolbar, click on the module icon.

The selected module is added to the object list pane prompting you to add a name.

2 Type a name for the module.

3 On the Attributes page, specify the name of the DLL whose entry points the
Module represents.

4 Add any methods from the DLL you specified in step 3 by clicking on the Method
icon in the toolbar and then using the attributes pages to describe the method.

5 Add any constants you want the module to define by clicking on the Const icon on
the toolbar. For each constant, specify a name, type, and value.

Saving and registering type library information
After modifying your type library, you’ll want to save and register the type library
information.

Saving the type library automatically updates:

• The binary type library file (.tlb extension).

• The Project_TLB unit that represents its contents

• The implementation code for any CoClasses that were generated by a wizard.

Note The type library is stored as a separate binary (.TLB) file, but is also linked into the
server (.EXE, DLL, or .OCX).

The Type Library editor gives you options for storing your type library information.
Which way you choose depends on what stage you are at in implementing the type
library:

• Save, to save both the .TLB and the Project_TLB unit to disk.
• Refresh, to update the type library units in memory only.
• Register, to add an entry for the type library in your system’s Windows registry.

This is done automatically when the server with which the .TLB is associated is
itself registered.

• Export, to save a .IDL file that contains the type and interface definitions in IDL
syntax.

39-18 D e v e l o p e r ’ s G u i d e

T y p e L i b r a r y e d i t o r

All the above methods perform syntax checking. When you refresh, register, or save
the type library, C++Builder automatically updates the implementation unit of any
CoClasses that were created using a wizard.

Saving a type library
Saving a type library

• Performs a syntax and validity check.

• Saves information out to a .TLB file.

• Saves information out to the Project_TLB unit.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To save the type library, choose File|Save from the C++Builder main menu.

Refreshing the type library
Refreshing the type library

• Performs a syntax check.

• Regenerates the C++Builder type library units in memory only. It does not save
any files to disk.

• Notifies the IDE’s module manager to update the implementation, if the type
library is associated with a CoClass that was generated by a wizard.

To refresh the type library choose the Refresh icon on the Type Library editor toolbar.

Note If you have renamed items in the type library, refreshing the implementation may
create duplicate entries. In this case, you must move your code to the correct entry
and delete any duplicates. Similarly, if you delete items in the type library, refreshing
the implementation does not remove them from CoClasses (under the assumption
that you are merely removing them from visibility to clients). You must delete these
items manually in the implementation unit if they are no longer needed.

Registering the type library
Typically, you do not need to explicitly register a type library because it is registered
automatically when you register your COM server application (see “Registering a
COM object” on page 41-16). However, when you create a type library using the
Type Library wizard, it is not associated with a server object. In this case, you can
register the type library directly using the toolbar.

Registering the type library,

• Performs a syntax check

• Adds an entry to the Windows Registry for the type library

To register the type library, choose the Register icon on the Type Library editor
toolbar.

W o r k i n g w i t h t y p e l i b r a r i e s 39-19

D e p l o y i n g t y p e l i b r a r i e s

Exporting an IDL file
Exporting the type library,

• Performs a syntax check.

• Creates an IDL file that contains the type information declarations. This file
describes the type information in Microsoft IDL.

To export the type library, choose the Export icon on the Type Library editor toolbar.

Deploying type libraries
By default, when you have a type library that was created as part of an ActiveX or
Automation server project, the type library is automatically linked into the .DLL,
.OCX, or EXE as a resource.

You can, however, deploy your application with the type library as a separate .TLB,
as C++Builder maintains the type library, if you prefer.

Historically, type libraries for Automation applications were stored as a separate file
with the .TLB extension. Now, typical Automation applications compile the type
libraries into the .OCX or .EXE file directly. The operating system expects the type
library to be the first resource in the executable (.DLL, .OCX, or .EXE) file.

When you make type libraries other than the primary project type library available to
application developers, the type libraries can be in any of the following forms:

• A resource. This resource should have the type TYPELIB and an integer ID. If you
choose to build type libraries with a resource compiler, it must be declared in the
resource (.RC) file as follows:

1 typelib mylib1.tlb
2 typelib mylib2.tlb

There can be multiple type library resources in an ActiveX library. Application
developers use the resource compiler to add the .TLB file to their own ActiveX
library.

• Stand-alone binary files. The .TLB file output by the Type Library editor is a binary
file.

39-20 D e v e l o p e r ’ s G u i d e

C r e a t i n g C O M c l i e n t s 40-1

C h a p t e r

40
Chapter40Creating COM clients

COM clients are applications that make use of a COM object implemented by another
application or library. The most common types are applications that control an
Automation server (Automation controllers) and applications that host an ActiveX
control (ActiveX containers).

At first glance these two types of COM client are very different: The typical
Automation controller launches an external server EXE and issues commands to
make that server perform tasks on its behalf. The Automation server is usually
nonvisual and out-of-process. The typical ActiveX client, on the other hand, hosts a
visual control, using it much the same way you use any control on the Component
palette. ActiveX servers are always in-process servers.

However, the task of writing these two types of COM client is remarkably similar:
The client application obtains an interface for the server object and uses its properties
and methods. C++Builder makes this particularly easy by letting you wrap the server
CoClass in a component on the client, which you can even install on the Component
palette. Samples of such component wrappers appear on two pages of the
Component palette: sample ActiveX wrappers appear on the ActiveX page and
sample Automation objects appear on the Servers page.

When writing a COM client, you must understand the interface that the server
exposes to clients, just as you must understand the properties and methods of a
component from the Component palette to use it in your application. This interface
(or set of interfaces) is determined by the server application, and typically published
in a type library. For specific information on a particular server application’s
published interfaces, you should consult that application’s documentation.

Even if you do not choose to wrap a server object in a component wrapper and install
it on the Component palette, you must make its interface definition available to your
application. To do this, you can import the server’s type information.

Note You can also query the type information directly using COM APIs, but C++Builder
provides no special support for this.

40-2 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. These are discussed in “Creating clients for servers that do not
have a type library” on page 40-15.

Importing type library information
To make information about the COM server available to your client application, you
must import the information about the server that is stored in the server’s type
library. Your application can then use the resulting generated classes to control the
server object.

There are two ways to import type library information:

• You can use the Import Type Library dialog to import all available information
about the server types, objects, and interfaces. This is the most general method,
because it lets you import information from any type library and can optionally
generate component wrappers for all creatable CoClasses in the type library that
are not flagged as Hidden, Restricted, or PreDeclID.

• You can use the Import ActiveX dialog if you are importing from the type library
of an ActiveX control. This imports the same type information, but only creates
component wrappers for CoClasses that represent ActiveX controls.

• You can use the command line utility tlibimp.exe which provides additional
configuration options not available from within the IDE.

• A type library generated using a wizard is automatically imported using the same
mechanism as the import type library menu item.

Regardless of which method you choose to import type library information, the
resulting dialog creates a unit with the name TypeLibName_TLB, where TypeLibName
is the name of the type library. This file contains declarations for the classes, types,
and interfaces defined in the type library. By including it in your project, those
definitions are available to your application so that you can create objects and call
their interfaces. This file may be recreated by the IDE from time to time; as a result,
making manual changes to the file is not recommended.

In addition to adding type definitions to the TypeLibName_TLB unit, the dialog can
also create VCL class wrappers for any CoClasses defined in the type library, which it
puts in a separate unit with the name TypeLibName_OCX. When you use the Import
Type Library dialog, these wrappers are optional. When you use the Import ActiveX
dialog, they are always generated for all CoClasses that represent controls.

Note If you are generating Component wrappers, the import dialog generates the
TypeLibName_OCX unit, but does not add it to your project. (It only adds the
TypeLibName_TLB unit to your project.) You can explicitly add the
TypeLibName_OCX unit to your project by choosing Project|Add to Project.

The generated class wrappers represent the CoClasses to your application, and
expose the properties and methods of its interfaces. If a CoClass supports the
interfaces for generating events (IConnectionPointContainer and IConnectionPoint), the

C r e a t i n g C O M c l i e n t s 40-3

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

VCL class wrapper creates an event sink so that you can assign event handlers for the
events as simply as you can for any other component. If you tell the dialog to install
the generated VCL classes on the Component palette, you can use the Object
Inspector to assign property values and event handlers.

Note The Import Type Library dialog does not create class wrappers for COM+ event
objects. To write a client that responds to events generated by a COM+ event object,
you must create the event sink programmatically. This process is described in
“Handling COM+ events” on page 40-15.

For more details about the code generated when you import a type library, see “Code
generated when you import type library information” on page 40-5.

Using the Import Type Library dialog

To import a type library,

1 Choose Project|Import Type Library.

2 Select the type library from the list.

The dialog lists all the libraries registered on this system. If the type library is not
in the list, choose the Add button, find and select the type library file, choose OK.
This registers the type library, making it available. Then repeat step 2. Note that
the type library could be a stand-alone type library file (.tlb, .olb), or a server that
provides a type library (.dll, .ocx, .exe).

3 If you want to generate a VCL component that wraps a CoClass in the type library,
check Generate Component Wrapper. If you do not generate the component, you
can still use the CoClass by using the definitions in the TypeLibName_TLB unit.
However, you will have to write your own calls to create the server object and, if
necessary, to set up an event sink.

The Import Type Library dialog only imports CoClasses that are have the
CanCreate flag set and that do not have the Hidden, Restricted, or PreDeclID flags
set. These flags can be overridden using the command-line utility tlibimp.exe.

4 If you do not want to install a generated component wrapper on the Component
palette, choose Create Unit. This generates the TypeLibName_TLB unit and, if you
checked Generate Component Wrapper in step 3, the TypeLibName_OCX unit. This
exits the Import Type Library dialog.

5 If you want to install the generated component wrapper on the Component
palette, select the Palette page on which this component will reside and then
choose Install. This generates the TypeLibName_TLB and TypeLibName_OCX units,
like the Create Unit button, and then displays the Install component dialog, letting
you specify the package where the components should reside (either an existing
package or a new one). This button is grayed out if no component can be created
for the type library.

When you exit the Import Type Library dialog, the new TypeLibName_TLB and
TypeLibName_OCX units appear in the directory specified by the Unit dir name
control. The TypeLibName_TLB unit contains declarations for the elements defined in

40-4 D e v e l o p e r ’ s G u i d e

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

the type library. The TypeLibName_OCX unit contains the generated component
wrapper if you checked Generate Component Wrapper.

In addition, if you installed the generated component wrapper, a server object that
the type library described now resides on the Component palette. You can use the
Object Inspector to set properties or write an event handler for the server. If you add
the component to a form or data module, you can right-click on it at design time to
see its property page (if it supports one).

Note The Servers page of the Component palette contains a number of example
Automation servers that were imported this way for you.

Using the Import ActiveX dialog

To import an ActiveX control,

1 Choose Component|Import ActiveX Control.

2 Select the type library from the list.

The dialog lists all the registered libraries that define ActiveX controls. (This is a
subset of the libraries listed in the Import Type Library dialog.) If the type library
is not in the list, choose the Add button, find and select the type library file, choose
OK. This registers the type library, making it available. Then repeat step 2. Note
that the type library could be a stand-alone type library file (.tlb, .olb), or an
ActiveX server (.dll, .ocx).

3 If you do not want to install the ActiveX control on the Component palette, choose
Create Unit. This generates the TypeLibName_TLB unit and the TypeLibName_OCX
unit. This exits the Import ActiveX dialog.

4 If you want to install the ActiveX control on the Component palette, select the
Palette page on which this component will reside and then choose Install. This
generates the TypeLibName_TLB and TypeLibName_OCX units, like the Create Unit
button, and then displays the Install component dialog, letting you specify the
package where the components should reside (either an existing package or a new
one).

When you exit the Import ActiveX dialog, the new TypeLibName_TLB and
TypeLibName_OCX units appear in the directory specified by the Unit dir name
control. The TypeLibName_TLB unit contains declarations for the elements defined in
the type library. The TypeLibName_OCX unit contains the generated component
wrapper for the ActiveX control.

Note Unlike the Import Type Library dialog where it is optional, the import ActiveX
dialog always generates a component wrapper. This is because, as a visual control, an
ActiveX control needs the additional support of the component wrapper so that it can
fit in with VCL forms.

If you installed the generated component wrapper, an ActiveX control now resides
on the Component palette. You can use the Object Inspector to set properties or write
event handlers for this control.If you add the control to a form or data module, you
can right-click on it at design time to see its property page (if it supports one).

C r e a t i n g C O M c l i e n t s 40-5

I m p o r t i n g t y p e l i b r a r y i n f o r m a t i o n

Note The ActiveX page of the Component palette contains a number of example ActiveX
controls that were imported this way for you.

Code generated when you import type library information

Once you import a type library, you can view the generated TypeLibName_TLB unit.
The source file for that unit defines constants that give symbolic names to the GUIDS
of the type library and its interfaces and CoClasses. The names for these constants are
generated as follows:

• The GUID for the type library has the form LIBID_TypeLibName, where
TypeLibName is the name of the type library.

• The GUID for an interface has the form IID_InterfaceName, where InterfaceName is
the name of the interface.

• The GUID for a dispinterface has the form DIID_InterfaceName, where
InterfaceName is the name of the dispinterface.

• The GUID for a CoClass has the form CLSID_ClassName, where ClassName is the
name of the CoClass.

If you right click in the source file and choose Open Source/Header file, you will find
the following definitions:

• Declarations for the CoClasses in the type library. These map each CoClass to its
default interface. In addition, a wrapper for each CoClass, using the TComInterface
template, is declared. This wrapper’s name has the form CoClassNamePtr.

• Declarations for the interfaces and dispinterfaces in the type library.

• Declarations of class wrappers for the interfaces and dispinterfaces. For interfaces,
the class wrapper uses the TComInterface template, and has a name of the form
TComInterfaceName. For dispinterfaces, the class wrapper uses the TAutoDriver
template, and has a name of the form InterfaceNameDisp.

• Declarations for a creator class for each CoClass whose default interface supports
VTable binding. The creator class has two static methods, Create and CreateRemote,
that can be used to instantiate the CoClass locally (Create) or remotely
(CreateRemote).These methods return the class wrapper for the CoClass’s default
interface (defined in TypeLibName_TLB.h using the TComInterface template.

• A proxy class wrapper for every event interface. This class wrapper has a name of
the form TEvents_CoClassName, where CoClassName is the name of the CoClass
that generates the events. The proxy class maintains a list of all client event sinks
and invokes the appropriate method on all appropriate event sinks when the
server object fires events.

These declarations provide you with what you need to create instances of the
CoClass and access its interface. All you need do is include the generated
TypeLibName_TLB.h file in the unit where you wish to bind to a CoClass and call its
interfaces.

40-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Warning The generated wrapper classes use a static object (TInitOleT) to handle COM
initialization. This can be a problem if you are creating objects from multiple threads,
because COM is only initialized on the first thread that connects to a server. You
must explicitly create a separate instance of TInitOleT or TInitOle on all other threads
that connect to a COM server.

Note The TypeLibName_TLB unit is also generated when you use the Type Library editor or
the command-line utility TLIBIMP.

If you want to use an ActiveX control, you also need the generated VCL wrapper in
addition to the declarations described above. The VCL wrapper handles window
management issues for the control. You may also have generated a VCL wrapper for
other CoClasses in the Import Type Library dialog. These VCL wrappers simplify the
task of creating server objects and calling their methods. They are especially
recommended if you want your client application to respond to events.

The declarations for generated VCL wrappers appear in the TypeLibName_OCX unit.
Component wrappers for ActiveX controls are descendants of TOleControl.
Component wrappers for Automation objects descend from TOleServer. The
generated component wrapper adds the properties, events, and methods exposed by
the CoClass’s interface. You can use this component like any other VCL component.

Warning You should not edit the generated TypeLibName_TLB or TypeLibName_OCX unit.
They are regenerated each time the type library is refreshed, so any changes will be
overwritten.

Note For the most up-to-date information about the generated code, refer to the comments
in the automatically-generated TypeLibName_TLB unit and utilcls.h.

Controlling an imported object
After importing type library information, you are ready to start programming with
the imported objects. How you proceed depends in part on the objects, and in part on
whether you have chosen to create component wrappers.

Using component wrappers

If you generated a component wrapper for your server object, writing your COM
client application is not very different from writing any other application that
contains VCL components. The server object’s properties, methods, and events are
already encapsulated in the VCL component. You need only assign event handlers,
set property values, and call methods.

To use the properties, methods, and events of the server object, see the
documentation for your server. The component wrapper automatically provides a
dual interface where possible. C++Builder determines the VTable layout from
information in the type library.

In addition, your new component inherits certain important properties and methods
from its base class.

C r e a t i n g C O M c l i e n t s 40-7

C o n t r o l l i n g a n i m p o r t e d o b j e c t

ActiveX wrappers
You should always use a component wrapper when hosting ActiveX controls,
because the component wrapper integrates the control’s window into the VCL
framework.

The properties and methods an ActiveX control inherits from TOleControl allow you to
access the underlying interface or obtain information about the control. Most
applications, however, do not need to use these. Instead, you use the imported control
the same way you would use any other VCL control.

Typically, ActiveX controls provide a property page that lets you set their properties.
Property pages are similar to the component editors some components display when
you double-click on them in the form designer. To display an ActiveX control’s
property page, right click and choose Properties.

The way you use most imported ActiveX controls is determined by the server
application. However, ActiveX controls use a standard set of notifications when they
represent the data from a database field. See “Using data-aware ActiveX controls” on
page 40-8 for information on how to host such ActiveX controls.

Automation object wrappers
The wrappers for Automation objects let you control how you want to form the
connection to your server object:

• The ConnectKind property indicates whether the server is local or remote and
whether you want to connect to a server that is already running or if a new
instance should be launched. When connecting to a remote server, you must
specify the machine name using the RemoteMachineName property.

• Once you have specified the ConnectKind, there are three ways you can connect
your component to the server:

• you can explicitly connect to the server by calling the component’s Connect
method.

• You can tell the component to connect automatically when your application
starts up by setting the AutoConnect property to true.

• You do not need to explicitly connect to the server. The component
automatically forms a connection when you use one of the server’s properties
or methods using the component.

Calling methods or accessing properties is the same as using any other component:

TServerComponent1->DoSomething();

Handling events is easy, because you can use the Object Inspector to write event
handlers. Note, however, that the event handler on your component may have
slightly different parameters than those defined for the event in the type library.
Parameters that are interface pointers are usually wrapped using the TComInterface
template, rather than appearing as a raw interface pointer. The resulting interface
wrapper has a name of the form InterfaceNamePtr.

40-8 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

For example, the following code shows an event handler for the ExcelApplication
event, OnNewWorkBook. The event handler has a parameter that provides the
interface of another CoClass (ExcelWorkbook). However, the interface is not passed
as an ExcelWorkbook interface pointer, but rather as an ExcelWorkbookPtr object.

void _fastcall TForm1::XLappNewWorkbook(TObject *Sender, ExcelWorkbookPtr Wb)
{

ExcelWorkbook1->ConnectTo(Wb);
}

In this example, the event handler assigns the workbook to an ExcelWorkbook
component (ExcelWorkbook1). This demonstrates how to connect a component
wrapper to an existing interface by using the ConnectTo method. The ConnectTo
method is added to the generated code for the component wrapper.

Servers that have an application object expose a Quit method on that object to let
clients terminate the connection. Quit typically exposes functionality that is
equivalent to using the File menu to quit the application. Code to call the Quit
method is generated in your component’s Disconnect method. If it is possible to call
the Quit method with no parameters, the component wrapper also has an AutoQuit
property. AutoQuit causes your controller to call Quit when the component is freed.
If you want to disconnect at some other time, or if the Quit method requires
parameters, you must call it explicitly. Quit appears as a public method on the
generated component.

Using data-aware ActiveX controls

When you use a data-aware ActiveX control in a C++Builder application, you must
associate it with the database whose data it represents. To do this, you need a data
source component, just as you need a data source for any data-aware VCL control.

After you place the data-aware ActiveX control in the form designer, assign its
DataSource property to the data source that represents the desired dataset. Once you
have specified a data source, you can use the Data Bindings editor to link the
control’s data-bound property to a field in the dataset.

To display the Data Bindings editor, right-click the data-aware ActiveX control to
display a list of options. In addition to the basic options, the additional Data
Bindings item appears. Select this item to see the Data Bindings editor, which lists the
names of fields in the dataset and the bindable properties of the ActiveX control.

To bind a field to a property,

1 In the ActiveX Data Bindings Editor dialog, select a field and a property name.

Field Name lists the fields of the database and Property Name lists the ActiveX
control properties that can be bound to a database field. The dispID of the
property is in parentheses, for example, Value(12).

2 Click Bind and OK.

Note If no properties appear in the dialog, the ActiveX control contains no data-aware
properties. To enable simple data binding for a property of an ActiveX control, use

C r e a t i n g C O M c l i e n t s 40-9

C o n t r o l l i n g a n i m p o r t e d o b j e c t

the type library as described in “Enabling simple data binding with the type library”
on page 43-11.

The following example walks you through the steps of using a data-aware ActiveX
control in the C++Builder container. This example uses the Microsoft Calendar
Control, which is available if you have Microsoft Office 97 installed on your system.

1 From the C++Builder main menu, choose Component|Import ActiveX Control.

2 Select a data-aware ActiveX control, such as the Microsoft Calendar control 8.0,
change its class name to TCalendarAXControl, and click Install.

3 In the Install dialog, click OK to add the control to the default user package, which
makes the control available on the Palette.

4 Choose Close All and File|New|Application to begin a new application.

5 From the ActiveX tab, drop a TCalendarAXControl object, which you just added to
the Palette, onto the form.

6 Drop a DataSource object from the Data Access tab, and a Table object from the BDE
tab onto the form.

7 Select the DataSource object and set its DataSet property to Table1.

8 Select the Table object and do the following:

• Set the DatabaseName property to BCDEMOS

• Set the TableName property to EMPLOYEE.DB

• Set the Active property to true

9 Select the TCalendarAXControl object and set its DataSource property to
DataSource1.

10 Select the TCalendarAXControl object, right-click, and choose Data Bindings to
invoke the ActiveX Control Data Bindings Editor.

Field Name lists all the fields in the active database. Property Name lists those
properties of the ActiveX Control that can be bound to a database field. The dispID
of the property is in parentheses.

11 Select the HireDate field and the Value property name, choose Bind, and OK.

The field name and property are now bound.

12 From the Data Controls tab, drop a DBGrid object onto the form and set its
DataSource property to DataSource1.

13 From the Data Controls tab, drop a DBNavigator object onto the form and set its
DataSource property to DataSource1.

14 Run the application.

15 Test the application as follows:

With the HireDate field displayed in the DBGrid object, navigate through the
database using the Navigator object. The dates in the ActiveX control change as
you move through the database.

40-10 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Example: Printing a document with Microsoft Word

The following steps show how to create an Automation controller that prints a
document using Microsoft Word 8 from Office 97.

Before you begin: Create a new project that consists of a form, a button, and an open
dialog box (TOpenDialog). These controls constitute the Automation controller.

Step 1: Prepare C++Builder for this example
For your convenience, C++Builder has provided many common servers, such as
Word, Excel, and PowerPoint, on the Component palette. To demonstrate how to
import a server, we use Word. Since it already exists on the Component palette, this
first step asks you to remove the package containing Word so that you can see how to
install it on the palette. Step 4 describes how to return the Component palette to its
normal state.

To remove Word from the Component palette,

1 Choose Component|Install packages.

2 Click Borland C++Builder COM Server Components Sample Package and choose
Remove.

The Servers page of the Component palette no longer contains any of the servers
supplied with C++Builder. (If no other servers have been imported, the Servers
page also disappears.)

Step 2: Import the Word type library
To import the Word type library,

1 Choose Project|Import Type Library.

2 In the Import Type Library dialog,

1 Select Microsoft Office 8.0 Object Library.

If Word (Version 8) is not in the list, choose the Add button, go to Program
Files\Microsoft Office\Office, select the Word type library file, MSWord8.olb
choose Add, and then select Word (Version 8) from the list.

2 For Palette Page, choose Servers.

3 Choose Install.

The Install dialog appears. Select the Into New Packages tab and type
WordExample to create a new package containing this type library.

3 Go to the Servers Palette Page, select WordApplication and place it on a form.

4 Write an event handler for the button object as described in the next step.

C r e a t i n g C O M c l i e n t s 40-11

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Step 3: Use a VTable or dispatch interface object to control Microsoft Word
You can use either a VTable or a dispatch object to control Microsoft Word.

Using a VTable interface object
By dropping an instance of the WordApplication object onto your form, you can
easily access the control using a VTable interface object. You simply call on methods
of the class you just created. For Word, this is the TWordApplication class.

1 Select the button, double-click its OnClick event handler and supply the following
event handling code:

void __fastcall TForm1::Button1Click(TObject *Sender)
{

if (OpenDialog1->Execute())
{

TVariant FileName = OpenDialog1->FileName.c_str();
WordApplication1->Documents->Open(&FileName);

WordApplication1->ActiveDocument->PrintOut();
}

}

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

Using a dispatch interface object
As an alternate, you can use a dispatch interface for late binding. To use a dispatch
interface object, you create and initialize the Application object using the
_ApplicationDisp dispatch wrapper class as follows. Notice that dispinterface
methods are “documented” by the source as returning VTable interfaces, but, in fact,
you must cast them to dispatch interfaces.

1 Select the button, double-click its OnClick event handler and supply the following
event handling code:

void __fastcall TForm1::Button1Click(TObject *Sender)
{
if (OpenDialog1->Execute())
 {
 TVariant FileName = OpenDialog1->FileName.c_str();

 _ApplicationDisp MyWord;
 MyWord.Bind(CLSID_WordApplication);
 DocumentsDisp MyDocs = MyWord->Documents;
 MyDocs->Open(&FileName);

 _DocumentDisp MyActiveDoc = MyWord->ActiveDocument;
 MyActiveDoc->PrintOut();
 MyWord->Quit();
}

2 Build and run the program. By clicking the button, Word prompts you for a file to
print.

40-12 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Step 4: Clean up the example
After completing this example, you will want to restore C++Builder to its original
form.

1 Delete the objects on this Servers page:

• Choose Component|Install Packages.

• From the list, select the WordExample package and click remove.

• Click Yes to the message box asking for confirmation.

• Exit the Install Packages dialog by clicking OK.

2 Return the Borland C++Builder COM Server Components Sample Package
package:

• Choose Component|Install Packages.

• Click the Add button.

• In the resulting dialog, choose bcb97axserver60.bpl for the Office 97
components, or bcb2kaxserver60.bpl for the Office 2000 components.

• Exit the Install Packages dialog by clicking OK.

Writing client code based on type library definitions

Although you must use a component wrapper for hosting an ActiveX control, you
can write an Automation controller using only the definitions from the type library
that appear in the TypeLibName_TLB unit. This process is a bit more involved that
letting a component do the work, especially if you need to respond to events.

Connecting to a server
Before you can drive an Automation server from your controller application, you
must obtain a reference to an interface it supports. Typically, you connect to a server
through its main interface. For example, you connect to Microsoft Word through the
WordApplication component.

If the main interface is a dual interface, you can use the creator objects in the
TypeLibName_TLB.h file. The creator classes have the same name as the CoClass, with
the prefix “Co” added. You can connect to a server on the same machine by calling
the Create method, or a server on a remote machine using the CreateRemote method.
Because Create and CreateRemote are static methods, you do not need an instance of
the creator class to call them.

pInterface = CoServerClassName.Create();
pInterface = CoServerClassName.CreateRemote("Machine1");

Create and CreateRemote return the class wrapper for the CoClass’s default interface
(defined in TypeLibName_TLB.h using the TComInterface template.

If the default interface is a dispatch interface, then there is no Creator class generated
for the CoClass. Instead, you must create an instance of the automatically generated
wrapper class for the default interface. This class is defined using the TAutoDriver

C r e a t i n g C O M c l i e n t s 40-13

C o n t r o l l i n g a n i m p o r t e d o b j e c t

template, and has a name of the form InterfaceNameDisp. Next, call the Bind method,
passing in the GUID for the CoClass (there is a constant for this GUID defined at the
top of the _TLB unit).

Controlling an Automation server using a dual interface
After using the automatically generated creator class to connect to the server, you call
methods of the interface wrapper object, using the “->” operator. For example,

TComApplication AppPtr = CoWordApplication_.Create();
AppPtr->DoSomething;

The interface wrapper and creator class are defined in the TypeLibName_TLB unit that
is generated automatically when you import a type library. An advantage of using
this wrapper class for interfaces is that it automatically frees the underlying interface
when it is destroyed.

For information about dual interfaces, see “Dual interfaces” on page 41-12.

Controlling an Automation server using a dispatch interface
Typically, you use the dual interface to control the Automation server, as described
above. However, you may find a need to control an Automation server with a
dispatch interface because no dual interface is available.

To call the methods of a dispatch interface,

1 Connect to the server, using the Bind method of the wrapper class for the dispatch
interface. For more details on connecting to the server, see “Connecting to a
server” on page 40-12.

2 Control the Automation server by calling methods of the dispatch interface
wrapper object.

The wrapper class surfaces the properties and methods of the dispatch interface as its
own properties and methods. In addition, because it descends from TAutoDriver, you
can use the IDispatch mechanism to call the server object’s properties and methods.
Before you can access a property or method, you must obtain its dispatch ID. To do
this, use the GetIDsOfNames method, passing in the name and a reference to a DISPID
variable that receives the dispatch ID for that name. Once you have the dispatch ID,
you can use it to call OlePropertyGet, OlePropertyPut, or OleFunction to access the
server objects properties and methods.

Another way to use dispatch interfaces is to assign them to a Variant. This approach
is taken by some VCL objects for properties or parameters whose values are
interfaces. The Variant type includes built-in support for calling dispatch interfaces,
through its OlePropertyGet, OlePropertySet, OleFunction, and OleProcedure methods,
which correspond to the methods on a dispatch interface wrapper class. Using
Variants can be a bit slower than using the dispatch interface wrapper class, because
the Variant methods dynamically look up the dispatch ID every time you call them.
However, they have the advantage that you do not need to import the type library to
use them.

40-14 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a n i m p o r t e d o b j e c t

Warning Care must be taken when assigning an interface to a Variant instead of a dispatch
interface wrapper. While the wrapper automatically handles calls to AddRef and
Release, the Variant does not. Thus, for example, if you assign a Variant whose value is
an interface to an interface wrapper, the interface wrapper does not call AddRef, but
its destructor calls Release. Because of this, using Variants is not recommended except
where they already appear as the property of a VCL object.

For more information on dispatch interfaces, see “Automation interfaces” on
page 41-12.

Handling events in an automation controller
When you generate a Component wrapper for an object whose type library you
import, you can respond to events simply using the events that are added to the
generated component. If you do not use a Component wrapper, however, (or if the
server uses COM+ events), you must write the event sink code yourself.

Handling Automation events programmatically
Before you can handle events, you must define an event sink. This is a class that
implements the event dispatch interface that is defined in the server’s type library.

The event sink is a descendant of TEventDispatcher, which is a templatized class that
requires two parameters, the class of your event sink and the GUID for the event
interface that your event sink handles:

class MyEventSinkClass: TEventDispatcher<MyEventSinkClass, DIID_TheServerEvents>
{
...// declare the methods of DIID_TheServerEvents here
}

Once you have an instance of your event sink class, call its ConnectEvents method to
let the server know about your event sink. This method uses the
IConnectionPointContainer and IConnectionPoint interfaces of the server to register the
object as an event sink. Now your object receives calls from the server when events
occur:

pInterface = CoServerClassName.CreateRemote("Machine1");
MyEventSinkClass ES;
ES.ConnectEvents(pInterface);

You must terminate the connection before you free your event sink. To do this, call
the event sink’s DisconnectEvents method:

ES.DisconnectEvents(pInterface);

Note You must be certain that the server has released its connection to your event sink
before you free it. Because you don’t know how the server responds to the disconnect
notification initiated by DisconnectEvents, this may lead to a race condition if you free
your event sink immediately after the call. TEventDispatcher guards against this for
you by maintaining its own reference count that is not decremented until the server
releases the event sink’s interface.

C r e a t i n g C O M c l i e n t s 40-15

C r e a t i n g c l i e n t s f o r s e r v e r s t h a t d o n o t h a v e a t y p e l i b r a r y

Handling COM+ events
Under COM+, servers use a special helper object to generate events rather than a set
of special interfaces (IConnectionPointContainer and IConnectionPoint). Because of this,
you can’t use an event sink that descends from TEventDispatcher. TEventDispatcher is
designed to work with those interfaces, not COM+ event objects.

Instead of defining an event sink, your client application defines a subscriber object.
Subscriber objects, like event sinks, provide the implementation of the event
interface. They differ from event sinks in that they subscribe to a particular event
object rather than connecting to a server’s connection point.

To define a subscriber object, use the COM Object wizard, selecting the event object’s
interface as the one you want to implement. The wizard generates an implementation
unit with skeletal methods that you can fill in to create your event handlers. For more
information about using the COM Object wizard to implement an existing interface,
see “Using the COM object wizard” on page 41-2.

Note You may need to add the event object’s interface to the registry using the wizard if it
does not appear in the list of interfaces you can implement.

Once you create the subscriber object, you must subscribe to the event object’s
interface or to individual methods (events) on that interface. There are three types of
subscriptions from which you can choose:

• Transient subscriptions. Like traditional event sinks, transient subscriptions are
tied to the lifetime of an object instance. When the subscriber object is freed, the
subscription ends and COM+ no longer forwards events to it.

• Persistent subscriptions. These are tied to the object class rather than a specific
object instance. When the event occurs, COM locates or launches an instance of the
subscriber object and calls its event handler. In-process objects (DLLs) use this
type of subscription.

• Per-user subscriptions. These subscriptions provide a more secure version of
transient subscriptions. Both the subscriber object and the server object that fires
events must be running under the same user account on the same machine.

To subscribe to an event object, use the global RegisterComPlusEventSubscription
function.

Note Objects that subscribe to COM+ events must be installed in a COM+ application.

Creating clients for servers that do not have a type library
Some older COM technologies, such as object linking and embedding (OLE), do not
provide type information in a type library. Instead, they rely on a standard set of
predefined interfaces. To write clients that host such objects, you can use the
TOleContainer component. This component appears on the System page of the
Component palette.

TOleContainer acts as a host site for an Ole2 object. It implements the IOleClientSite
interface and, optionally, IOleDocumentSite. Communication is handled using OLE
verbs.

40-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g c l i e n t s f o r s e r v e r s t h a t d o n o t h a v e a t y p e l i b r a r y

To use TOleContainer,

1 Place a TOleContainer component on your form.

2 Set the AllowActiveDoc property to true if you want to host an Active document.

3 Set the AllowInPlace property to indicate whether the hosted object should appear
in the TOleContainer, or in a separate window.

4 Write event handlers to respond when the object is activated, deactivated, moved,
or resized.

5 To bind the TOleContainer object at design time, right click and choose Insert
Object. In the Insert Object dialog, choose a server object to host.

6 To bind the TOleContainer object at runtime, you have several methods to choose
from, depending on how you want to identify the server object. These include
CreateObject, which takes a program id, CreateObjectFromFile, which takes the
name of a file to which the object has been saved, CreateObjectFromInfo, which
takes a struct containing information on how to create the object, or
CreateLinkToFile, which takes the name of a file to which the object was saved and
links to it rather than embeds it.

7 Once the object is bound, you can access its interface using the OleObjectInterface
property. However, because communication with Ole2 objects was based on OLE
verbs, you will most likely want to send commands to the server using the DoVerb
method.

8 When you want to release the server object, call the DestroyObject method.

C r e a t i n g s i m p l e C O M s e r v e r s 41-1

C h a p t e r

41
Chapter41Creating simple COM servers

C++Builder provides wizards to help you create various COM objects. The simplest
COM objects are servers that expose properties and methods (and possibly events)
through a default interface that clients can call.

Note COM servers and Automation is not available for use in CLX applications. This
technology is for use on Windows only and is not cross-platform.

Two wizards, in particular, ease the process of creating simple COM objects:

• The COM Object wizard builds a lightweight COM object whose default interface
descends from IUnknown or that implements an interface already registered on
your system. This wizard provides the most flexibility in the types of COM objects
you can create.

• The Automation Object wizard creates a simple Automation object whose default
interface descends from IDispatch. IDispatch introduces a standard marshaling
mechanism and support for late binding of interface calls.

Note COM defines many standard interfaces and mechanisms for handling specific
situations. The C++Builder wizards automate the most common tasks. However,
some tasks, such as custom marshaling, are not supported by any C++Builder
wizards. For information on that and other technologies not explicitly supported by
C++Builder, refer to the Microsoft Developer’s Network (MSDN) documentation.
The Microsoft Web site also provides current information on COM support.

Overview of creating a COM object
Whether you use the Automation object wizard to create a new Automation server or
the COM object wizard to create some other type of COM object, the process you
follow is the same. It involves these steps:

1 Design the COM object.

41-2 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a C O M o b j e c t

2 Use the COM Object wizard or the Automation Object wizard to create the server
object.

3 Specify options on the ATL page of the project options dialog to indicate how
COM will call the application that houses your object and what type of debugging
support you want.

4 Define the interface that the object exposes to clients.

5 Register the COM object.

6 Test and debug the application.

Designing a COM object
When designing the COM object, you need to decide what COM interfaces you want
to implement. You can write a COM object to implement an interface that has already
been defined, or you can define a new interface for your object to implement. In
addition, you can have your object support more than one interface. For information
about standard COM interfaces that you might want to support, see the MSDN
documentation.

• To create a COM object that implements an existing interface, use the COM Object
wizard.

• To create a COM object that implements a new interface that you define, use either
the COM Object wizard or the Automation Object wizard. The COM object wizard
can generate a new default interface that descends from IUnknown, and the
Automation object gives your object a default interface that descends from
IDispatch. No matter which wizard you use, you can always use the Type Library
editor later to change the parent interface of the default interface that the wizard
generates.

In addition to deciding what interfaces to support, you must decide whether the
COM object is an in-process server, out-of-process server, or remote server. For in-
process servers and for out-of-process and remote servers that use a type library,
COM marshals the data for you. Otherwise, you must consider how to marshal the
data to out-of-process servers. For information on server types, see, “In-process, out-
of-process, and remote servers,” on page 38-6.

Using the COM object wizard
The COM object wizard performs the following tasks:

• Creates a new unit.

• Defines a new class that descends from the ATL classes CComObjectRootEx and
CComCoClass. For more information on the base classes, see “Code generated by
wizards” on page 38-22.

• Adds a type library to your project and adds your object and its interface to the
type library.

C r e a t i n g s i m p l e C O M s e r v e r s 41-3

U s i n g t h e C O M o b j e c t w i z a r d

Before you create a COM object, create or open the project for the application
containing functionality that you want to implement. The project can be either an
application or ActiveX library, depending on your needs.

To bring up the COM object wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled, ActiveX.

3 Double-click the COM object icon.

In the wizard, you must specify the following:

• CoClass name: This is the name of the object as it appears to clients. The class
created to implement your object has this name with a ‘T’ prepended. If you do
not choose to implement an existing interface, the wizard gives your CoClass a
default interface that has this name with an ‘I’ prepended.

• Implemented Interface: By default, the wizard gives your object a default
interface that descends from IUnknown. After exiting the wizard, you can then use
the Type Library editor to add properties and methods to this interface. However,
you can also select a pre-defined interface for your object to implement. Click the
List button in the COM object wizard to bring up the Interface Selection wizard,
where you can select any dual or custom interface defined in a type library
registered on your system. The interface you select becomes the default interface
for your new CoClass. The wizard adds all the methods on this interface to the
generated implementation class, so that you only need to fill in the bodies of the
methods in the implementation unit. Note that if you select an existing interface,
the interface is not added to your project’s type library. This means that when
deploying your object, you must also deploy the type library that defines the
interface.

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see
“Choosing a threading model” on page 41-5. For information on how to provide
thread support to your application, see Chapter 11, “Writing multi-threaded
applications.”

• Event support: You must indicate whether you want your object to generate
events to which clients can respond. The wizard can provide support for the
interfaces required to generate events and the dispatching of calls to client event
handlers. For information on how events work and what you need to do when
implementing them, see “Exposing events to clients” on page 41-10.

• Oleautomation: If you are willing to confine yourself to Automation-compatible
types, you can let COM handle the marshaling for you when you are not
generating an in-process server. By marking your object’s interface as
OleAutomation in the type library, you enable COM to set up the proxies and
stubs for you and handles passing parameters across process boundaries. For
more information on this process, see “The marshaling mechanism” on page 38-8.

41-4 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

You can only specify whether your interface is Automation-compatible if you are
generating a new interface. If you select an existing interface, its attributes are
already specified in its type library. If your object’s interface is not marked as
OleAutomation, you must either create an in-process server or write your own
marshaling code.

• Implement Ancestor Interfaces: Select this option if you want the wizard to
provide stub routines for inherited interfaces. There are three inherited interfaces
that will never be implemented by the wizard: IUnknown, IDispatch, and
IAppServer. IUnknown and IDispatch are not implemented because ATL provides
its own implementation of these two interfaces. IAppServer is not implemented
because it is implemented automatically when working with client datasets and
dataset providers.

You can optionally add a description of your COM object. This description appears
in the type library for your object.

Using the Automation object wizard
The Automation object wizard performs the following tasks:

• Creates a new unit.

• Defines a new class that descends from the ATL classes CComObjectRootEx and
CComCoClass. For more information on the base classes, see “Code generated by
wizards” on page 38-22.

• Adds a type library to your project and adds your object and its interface to the
type library.

Before you create an Automation object, create or open the project for an application
containing functionality that you want to expose. The project can be either an
application or ActiveX library, depending on your needs.

To display the Automation wizard:

1 Choose File|New|Other.

2 Select the tab labeled, ActiveX.

3 Double-click the Automation Object icon.

In the wizard dialog, specify the following:

• CoClass name: This is the name of the object as it appears to clients. Your object’s
default interface is created with a name based on this CoClass name with an ‘I’
prepended, and the class created to implement your object has this name with a ‘T’
prepended.

• Threading Model: Typically, client requests to your object enter on different
threads of execution. You can specify how COM serializes these threads when it
calls your object. Your choice of threading model determines how the object is
registered. You are responsible for providing any threading support implied by
the model you choose. For information on the different possibilities, see

C r e a t i n g s i m p l e C O M s e r v e r s 41-5

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

“Choosing a threading model” on page 41-5. For information on how to provide
thread support to your application, see Chapter 11, “Writing multi-threaded
applications.”

• Event support: You must indicate whether you want your object to generate
events to which clients can respond. The wizard can provide support for the
interfaces required to generate events and the dispatching of calls to client event
handlers. For information on how events work and what you need to do when
implementing them, see “Exposing events to clients” on page 41-10.

You can optionally add a description of your COM object. This description appears
in the type library for your object.

The Automation object implements a dual interface, which supports both early
(compile-time) binding through the VTable and late (runtime) binding through the
IDispatch interface. For more information, see “Dual interfaces” on page 41-12.

Choosing a threading model

When creating an object using a wizard, you select a threading model that your
object agrees to support. By adding thread support to your COM object, you can
improve its performance, because multiple clients can access your application at the
same time.

Table 41.1 lists the different threading models you can specify.

Table 41.1 Threading models for COM objects

Threading model Description Implementation pros and cons

Single The server provides no thread
support. COM serializes client
requests so that the application
receives one request at a time.

Clients are handled one at a time so
no threading support is needed.
No performance benefit.

Apartment (or Single-
threaded apartment)

COM ensures that only one client
thread can call the object at a time.
All client calls use the thread in
which the object was created.

Objects can safely access their own
instance data, but global data must
be protected using critical sections
or some other form of serialization.
The thread’s local variables are
reliable across multiple calls.
Some performance benefits.

Free (also called multi-
threaded apartment)

Objects can receive calls on any
number of threads at any time.

Objects must protect all instance
and global data using critical
sections or some other form of
serialization.
Thread local variables are not
reliable across multiple calls.

41-6 D e v e l o p e r ’ s G u i d e

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

Note Local variables (except those in callbacks) are always safe, regardless of the threading
model. This is because local variables are stored on the stack and each thread has its
own stack. Local variables may not be safe in callbacks when using free-threading.

The threading model you choose in the wizard determines how the object is
registered in the system Registry. You must make sure that your object
implementation adheres to the threading model you have chosen. For general
information on writing thread-safe code, see Chapter 11, “Writing multi-threaded
applications.”

Note In order for COM to call your object according to the specified threading model, it
must be initialized to support that kind of model. You can specify how COM is
initialized using the ATL page of the project options dialog.

For in-process servers, setting the threading model in the wizard sets the threading
model key in the CLSID registry entry.

Out-of-process servers are registered as EXE, and COM must be initialized for the
highest threading model required. For example, if an EXE includes a free-threaded
object, it is initialized for free threading, which means that it can provide the
expected support for any free-threaded or apartment-threaded objects contained in
the EXE. To specify how COM is initialized, use the ATL page of the project options
dialog.

Writing an object that supports the free threading model
Use the free threading (or both) model rather than apartment threading whenever
the object needs to be accessed from more than one thread. A common example is a
client application connected to an object on a remote machine. When the remote
client calls a method on that object, the server receives the call on a thread from the
thread pool on the server machine. This receiving thread makes the call locally to the
actual object; and, because the object supports the free threading model, the thread
can make a direct call into the object.

Both This is the same as the Free-
threaded model except that
outgoing calls (for example,
callbacks) are guaranteed to
execute in the same thread.

Maximum performance and
flexibility.
Does not require the application to
provide thread support for
parameters supplied to outgoing
calls.

Neutral Multiple clients can call the object
on different threads at the same
time, but COM ensures that no
two calls conflict.

You must guard against thread
conflicts involving global data and
any instance data that is accessed
by multiple methods.
This model should not be used
with objects that have a user
interface (visual controls).
This model is only available under
COM+. Under COM, it is mapped
to the Apartment model.

Table 41.1 Threading models for COM objects (continued)

Threading model Description Implementation pros and cons

C r e a t i n g s i m p l e C O M s e r v e r s 41-7

U s i n g t h e A u t o m a t i o n o b j e c t w i z a r d

If the object supported the apartment threading model instead, the call would have to
be transferred to the thread on which the object was created, and the result would
have to be transferred back into the receiving thread before returning to the client.
This approach requires extra marshaling.

To support free threading, you must consider how instance data can be accessed for
each method. If the method is writing to instance data, you must use critical sections
or some other form of serialization, to protect the instance data. Likely, the overhead
of serializing critical calls is less than executing COM’s marshaling code.

Note that if the instance data is read-only, serialization is not needed.

Free-threaded in-process servers can improve performance by acting as the outer
object in an aggregation with the free-threaded marshaler. The free-threaded
marshaler provides a shortcut for COM’s standard thread handling when a free-
threaded DLL is called by a host (client) that is not free-threaded.

To aggregate with the free threaded marshaler, you must

• Call CoCreateFreeThreadedMarshaler, passing your object’s IUnknown interface for
the resulting free-threaded marshaler to use:

CoCreateFreeThreadedMarshaler(static_cast<IUnknown *>(this), &FMarshaler);

This line assigns the interface for the free-threaded marshaler to a class member,
FMarshaler.

• Using the Type Library editor, add the IMarshal interface to the set of interfaces
your CoClass implements.

• In your object’s QueryInterface method, delegate calls for IDD_IMarshal to the free-
threaded marshaler (stored as FMarshaler above).

Warning The free-threaded marshaler violates the normal rules of COM marshaling to provide
additional efficiency. It should be used with care. In particular, it should only be
aggregated with free-threaded objects in in-process servers, and should only be
instantiated by the object that uses it (not another thread).

Writing an object that supports the apartment threading model
To implement the (single-threaded) apartment threading model, you must follow a
few rules:

• The first thread in the application that gets created is COM’s main thread. This is
typically the thread on which WinMain was called. This must also be the last
thread to uninitialize COM.

• Each thread in the apartment threading model must have a message loop, and the
message queue must be checked frequently.

• When a thread gets a pointer to a COM interface, that pointer may only be used in
that thread.

The single-threaded apartment model is the middle ground between providing no
threading support and full, multi-threading support of the free threading model. A
server committing to the apartment model promises that the server has serialized
access to all of its global data (such as its object count). This is because different

41-8 D e v e l o p e r ’ s G u i d e

S p e c i f y i n g A T L o p t i o n s

objects may try to access the global data from different threads. However, the object’s
instance data is safe because the methods are always called on the same thread.

Typically, controls for use in Web browsers use the apartment threading model
because browser applications always initialize their threads as apartment.

Writing an object that supports the neutral threading model
Under COM+, you can use another threading model that is in between free threading
and apartment threading: the neutral model. Like the free-threading model, this
model allows multiple threads to access your object at the same time. There is no
extra marshaling to transfer to the thread on which the object was created. However,
your object is guaranteed to receive no conflicting calls.

Writing an object that uses the neutral threading model follows much the same rules
as writing an apartment-threaded object, except that you do need to guard instance
data against thread conflicts if it can be accessed by different methods in the object’s
interface. Any instance data that is only accessed by a single interface method is
automatically thread-safe.

Specifying ATL options
Once you have used a wizard to create a COM object, the Project Options dialog
gains an additional page labeled “ATL”. This page lets you set a number of
application-level flags that control what parameters are generated for ATL calls that
initialize COM or register the application, as well as flags that control whether debug
tracing is enabled in code that uses the ATL.

Use the ATL page to set the following options:

• Instancing: If your application is not an in-process server, instancing determines
how many instances of your object clients can create within a single process space.
If you specify single use, then once a client has instantiated your object, COM
removes the application from view so that other clients must launch their own
instances of the application. If you specify multiple use, then multiple clients can
each create their own instance of your object, and all instances run in the same
process space.

• OLE Initialization COINIT_XXX flag: This flag determines how COM is
initialized by your application. You can specify apartment-threaded, in which case
each object is always called on the thread in which it was created, or multi-
threaded, in which case the objects can be called on multiple threads. The COINIT
flags influence what threading models objects in the application can use. If the
COINIT flag is set to apartment-threaded, you can only have single-threaded or
apartment-threaded objects in the application. Objects that are registered with any
other threading model default to apartment-threaded.

• Debugging flags: You can also set flags to specify that ATL calls are logged in the
event log when your application runs in the IDE. You can trace calls to IUnknown
methods (QueryInterface and reference counting calls), or trace all ATL calls.

C r e a t i n g s i m p l e C O M s e r v e r s 41-9

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

Defining a COM object’s interface
When you use a wizard to create a COM object, the wizard automatically generates a
type library. The type library provides a way for host applications to find out what
the object can do. It also lets you define your object’s interface using the Type Library
editor. The interfaces you define in the Type Library editor define what properties,
methods, and events your object exposes to clients.

Note If you selected an existing interface in the COM object wizard, you do not need to
add properties and methods. The definition of the interface is imported from the type
library in which it was defined. Instead, simply locate the methods of the imported
interface in the implementation unit and fill in their bodies.

Adding a property to the object’s interface

When you add a property to your object’s interface using the Type Library editor, it
automatically adds a method to read the property’s value and/or a method to set the
property’s value. The Type Library editor, in turn, adds these methods to your
implementation class, and in your implementation unit creates empty method
implementations for you to complete.

To add a property to your object’s interface,

1 In the type library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I”.
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

2 To expose a read/write property, click the Property button on the toolbar;
otherwise, click the arrow next to the Property button on the toolbar, and then
click the type of property to expose.

3 In the Attributes pane, specify the name and type of the property.

4 On the toolbar, click the Refresh button.

A definition and skeletal implementations for the property access methods are
inserted into the object’s implementation unit.

5 In the implementation unit, locate the access methods for the property. These have
names of the form get_PropertyName and set_PropertyName, and include only
the code to catch exceptions and return an HRESULT. Add code (between try and
catch statements) that gets or sets the property value of your object. This code may
simply call an existing function inside the application, access a data member that
you add to the object definition, or otherwise implement the property.

41-10 D e v e l o p e r ’ s G u i d e

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

Adding a method to the object’s interface

When you add a method to your object’s interface using the Type Library editor, the
Type Library editor can, in turn, add the methods to your implementation class, and
in your implementation unit create empty implementation for you to complete.

To expose a method via your object’s interface,

1 In the Type Library editor, select the default interface for the object.

The default interface should be the name of the object preceded by the letter “I”.
To determine the default, in the Type Library editor, choose the CoClass and
Implements tab, and check the list of implemented interfaces for the one marked,
“Default.”

2 Click the Method button.

3 In the Attributes pane, specify the name of the method.

4 In the Parameters pane, specify the method’s return type and add the appropriate
parameters.

5 On the toolbar, click the Refresh button.

A definition and skeletal implementation for the method is inserted into the
object’s implementation unit.

6 In the implementation unit, locate the newly inserted method implementation.
The method is completely empty. Fill in the body to perform whatever task the
method represents.

Exposing events to clients

There are two types of events that a COM object can generate: traditional events and
COM+ events.

• COM+ events require that you create a separate event object using the event object
wizard and add code to call that event object from your server object. For more
information about generating COM+ events, see “Generating events under
COM+” on page 44-20.

• You can use the wizard to handle much of the work in generating traditional
events. This process is described below.

In order for an object to generate events, you need to do the following:

1 In the wizard, check the box, Generate event support code.

The wizard creates an object that includes an Events interface as well as the default
interface. This Events interface has a name of the form ICoClassnameEvents. It is an
outgoing (source) interface, which means that it is not an interface your object
implements, but rather is an interface that clients must implement and which your
object calls. (You can see this by selecting your CoClass, going to the Implements

C r e a t i n g s i m p l e C O M s e r v e r s 41-11

D e f i n i n g a C O M o b j e c t ’ s i n t e r f a c e

page, and noting that the Source column on the Events interface says true.) The
GUID for the Events interface is added to the Connection Points map, which
appears beneath the interface map in the object’s declaration. For more
information about the Connection Points map, see the ATL documentation.

In addition to the Events interface, the wizard adds additional base classes to your
object. These include an implementation of the IConnectionPointContainer interface
(IConnectionPointContainerImpl) and a templatized base class that manages the
firing of events to all clients (TEvents_CoClassName). The template for this latter
class can be found in the _TLB unit header.

2 In the Type Library editor, select the outgoing Events interface for your object.
(This is the one with a name of the form ICoClassNameEvents)

3 Click the Method button from the Type Library toolbar. Each method you add to
the Events interface represents an event handler that the client must implement.

4 In the Attributes pane, specify the name of the event handler, such as MyEvent.

5 On the toolbar, click the Refresh button.

Your object implementation now has everything it needs to accept client event
sinks and maintain a list of interfaces to call when the event occurs. To call these
interfaces, you can call the method that fires an event (implemented by
TEvents_CoClassName) to generate the event on clients. For each event handler,
this method has a name of the form Fire_EventHandlerName.

6 Whenever you need to fire the event so that clients are informed of its occurrence,
call the method that dispatches the event to all event sinks:

if (EventOccurs) Fire_MyEvent; // Call method you created to fire events.

Managing events in your Automation object
For a server to support traditional COM events, it must provide the definition of an
outgoing interface which is implemented by a client. This outgoing interface includes
all the event handlers the client must implement to respond to server events.

When a client has implemented the outgoing event interface, it registers its interest in
receiving event notification by querying the server’s IConnectionPointContainer
interface. The IConnectionPointContainer interface returns the server’s
IConnectionPoint interface, which the client then uses to pass the server a pointer to its
implementation of the event handlers (known as a sink).

The server maintains a list of all client sinks and calls methods on them when an
event occurs, as described above.

41-12 D e v e l o p e r ’ s G u i d e

A u t o m a t i o n i n t e r f a c e s

Automation interfaces
The Automation Object wizard implements a dual interface by default, which means
that the Automation object supports both

• Late binding at runtime, which is through the IDispatch interface. This is
implemented as a dispatch interface, or dispinterface.

• Early binding at compile-time, which is accomplished through directly calling one
of the member functions in the object’s virtual function table (VTable). This is
referred to as a custom interface.

Note Any interfaces generated by the COM object wizard that do not descend from
IDispatch only support VTable calls.

Dual interfaces

A dual interface is a custom interface and a dispinterface at the same time. It is
implemented as a COM VTable interface that derives from IDispatch. For those
controllers that can access the object only at runtime, the dispinterface is available.
For objects that can take advantage of compile-time binding, the more efficient
VTable interface is used.

Dual interfaces offer the following combined advantages of VTable interfaces and
dispinterfaces:

• For Automation controllers that cannot obtain type information, the dispinterface
provides runtime access to the object.

• For in-process servers, you have the benefit of fast access through VTable
interfaces.

• For out-of-process servers, COM marshals data for both VTable interfaces and
dispinterfaces. COM provides a generic proxy/stub implementation that can
marshal the interface based on the information contained in a type library. For
more information on marshaling, see, “Marshaling data,” on page 41-14.

The following diagram depicts the IMyInterface interface in an object that supports a
dual interface named IMyInterface. The first three entries of the VTable for a dual
interface refer to the IUnknown interface, the next four entries refer to the IDispatch
interface, and the remaining entries are COM entries for direct access to members of
the custom interface.

C r e a t i n g s i m p l e C O M s e r v e r s 41-13

A u t o m a t i o n i n t e r f a c e s

Figure 41.1 Dual interface VTable

Dispatch interfaces

Automation controllers are clients that use the COM IDispatch interface to access the
COM server objects. The controller must first create the object, then query the object’s
IUnknown interface for a pointer to its IDispatch interface. IDispatch keeps track of
methods and properties internally by a dispatch identifier (dispID), which is a
unique identification number for an interface member. Through IDispatch, a
controller retrieves the object’s type information for the dispatch interface and then
maps interface member names to specific dispIDs. These dispIDs are available at
runtime, and controllers get them by calling the IDispatch method, GetIDsOfNames.

Once it has the dispID, the controller can then call the IDispatch method, Invoke, to
execute the appropriate code (property or method), packaging the parameters for the
property or method into one of the Invoke parameters. Invoke has a fixed compile-time
signature that allows it to accept any number of arguments when calling an interface
method.

The Automation object’s implementation of Invoke must then unpackage the
parameters, call the property or method, and be prepared to handle any errors that
occur. When the property or method returns, the object passes its return value back
to the controller.

This is called late binding because the controller binds to the property or method at
runtime rather than at compile time.

Note C++Builder can’t create CoClasses with dispatch interfaces that are not dual
interfaces. This is because its COM support rests on the ATL, which does not support
non-dual dispatch interfaces.

QueryInterface

AddRef

Release

GetIDsOfNames

GetTypeInfo

GetTypeInfoCount

Invoke

IUnknown
methods

IDispatch
methods

Method1

Method2

Remaining methods
of IMyInterface

IMyInterface
methods

41-14 D e v e l o p e r ’ s G u i d e

M a r s h a l i n g d a t a

Note When importing a type library, C++Builder will query for dispIDs at the time it
generates the code, thereby allowing generated wrapper classes to call Invoke without
calling GetIDsOfNames. This can significantly increase the runtime performance of
controllers.

Custom interfaces

Custom interfaces are user-defined interfaces that allow clients to invoke interface
methods based on their order in the VTable and knowledge of the argument types.
The VTable lists the addresses of all the properties and methods that are members of
the object, including the member functions of the interfaces that it supports. If the
object does not support IDispatch, the entries for the members of the object’s custom
interfaces immediately follow the members of IUnknown.

If the object has a type library, you can access the custom interface through its VTable
layout, which you can get using the Type Library editor. If the object has a type
library and also supports IDispatch, a client can also get the dispIDs of the IDispatch
interface and bind directly to a VTable offset. C++Builder’s type library importer
(TLIBIMP) retrieves dispIDs at import time, so clients that use dispinterface
wrappers can avoid calls to GetIDsOfNames; this information is already in the _TLB
unit. However, clients still need to call Invoke.

Marshaling data
For out-of-process and remote servers, you must consider how COM marshals data
outside the current process. You can provide marshaling:

• Automatically, using the IDispatch interface.

• Automatically, by creating a type library with your server and marking the
interface with the OLE Automation flag. COM knows how to marshal all the
Automation-compatible types in the type library and can set up the proxies and
stubs for you. Some type restrictions apply to enable automatic marshaling.

• Manually by implementing all the methods of the IMarshal interface. This is called
custom marshaling.

Note The first method (using IDispatch) is only available on Automation servers. The
second method is automatically available on all objects that are created by wizards
and which use a type library.

Automation compatible types

Function result and parameter types of the methods declared in dual and dispatch
interfaces and interfaces that you mark as OLE Automation must be Automation-
compatible types. The following types are OLE Automation-compatible:

• The predefined valid types such as short, int, single, double, WideString. For a
complete list, see “Valid types” on page 39-11.

C r e a t i n g s i m p l e C O M s e r v e r s 41-15

M a r s h a l i n g d a t a

• Enumeration types defined in a type library. OLE Automation-compatible
enumeration types are stored as 32-bit values and are treated as values of type
Integer for purposes of parameter passing.

• Interface types defined in a type library that are OLE Automation safe, that is,
derived from IDispatch and containing only OLE Automation compatible types.

• Dispinterface types defined in a type library.

• Any custom record type defined within the type library.

• IFont, IStrings, and IPicture. Helper objects must be instantiated to map

• an IFont to a TFont
• an IStrings to a TStrings
• an IPicture to a TPicture

The ActiveX control and ActiveForm wizards create these helper objects
automatically when needed. To use the helper objects, call the global routines,
GetOleFont, GetOleStrings, GetOlePicture, respectively.

Type restrictions for automatic marshaling

For an interface to support automatic marshaling (also called Automation
marshaling or type library marshaling), the following restrictions apply. When you
edit your object using the type library editor, the editor enforces these restrictions:

• Types must be compatible for cross-platform communication. For example, you
cannot use data structures (other than implementing another property object),
unsigned arguments, AnsiStrings, and so on.

• String data types must be transferred as BSTR. PChar and AnsiString cannot be
marshaled safely.

• All members of a dual interface must pass an HRESULT as the function’s return
value.

• Members of a dual interface that need to return other values should specify these
parameters as var or out, indicating an output parameter that returns the value of
the function.

Note One way to bypass the Automation types restrictions is to implement a separate
IDispatch interface and a custom interface. By doing so, you can use the full range of
possible argument types. This means that COM clients have the option of using the
custom interface, which Automation controllers can still access. In this case, though,
you must implement the marshaling code manually.

Custom marshaling

Typically, you use automatic marshaling in out-of-process and remote servers
because it is easier—COM does the work for you. However, you may decide to
provide custom marshaling if you think you can improve marshaling performance.

41-16 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g a C O M o b j e c t

When implementing your own custom marshaling, you must support the IMarshal
interface. For more information, on this approach, see the Microsoft documentation.

Registering a COM object
You can register your server object as an in-process or an out-of-process server. For
more information on the server types, see“In-process, out-of-process, and remote
servers” on page 38-6.

Note Before you remove a COM object from your system, you should unregister it.

Registering an in-process server

To register an in-process server (DLL or OCX),

• Choose Run|Register ActiveX Server.

To unregister an in-process server,

• Choose Run|Unregister ActiveX Server.

Registering an out-of-process server

To register an out-of-process server,

• Run the server with the /regserver command-line option.

You can set command-line options with the Run|Parameters dialog box.

You can also register the server by running it.

To unregister an out-of-process server,

• Run the server with the /unregserver command-line option.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Note If the COM server is intended for use under COM+, you should install it in a COM+
application rather than register it. (Installing the object in a COM+ application
automatically takes care of registration.) For information on how to install an object
in a COM+ application, see “Installing transactional objects” on page 44-27.

C r e a t i n g s i m p l e C O M s e r v e r s 41-17

T e s t i n g a n d d e b u g g i n g t h e a p p l i c a t i o n

Testing and debugging the application
To test and debug your COM server application,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the Tools|
Debugger Options dialog.

2 For an in-process server, choose Run|Parameters, type the name of the
Automation controller in the Host Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Automation server.

5 Use the Automation controller to interact with the Automation server.

The Automation server pauses when the breakpoints are reached.

In addition, it can be helpful to trace the calls your application makes to interfaces. By
examining the flow of COM calls, it is possible to determine whether your
application is behaving as expected. To tell C++Builder to add messages to the event
log whenever a COM interface is called, use the ATL page of the project objects
dialog to specify debugging options.

Note As an alternate approach, if you are also writing the Automation controller, you can
debug into an in-process server by enabling COM cross-process support. Use the
General page of the Tools|Debugger Options dialog to enable cross-process support.

41-18 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r P a g e 42-1

C h a p t e r

42
Chapter 42Creating an Active Server Page

If you are using the Microsoft Internet Information Server (IIS) environment to serve
your Web pages, you can use Active Server Pages (ASP) to create dynamic Web-
based client/server applications. Active Server Pages let you write a script that gets
called every time the server loads the Web page. This script can, in turn, call on
Automation objects to obtain information that it includes in a generated HTML page.
For example, you can write a C++Builder Automation server, such as one to create a
bitmap or connect to a database, and use this control to access data that gets updated
every time the server loads the Web page.

On the client side, the ASP acts like a standard HTML document and can be viewed
by users on any platform using any Web Browser.

ASP applications are analogous to applications you write using C++Builder’s Web
broker technology. For more information about the Web broker technology, see
Chapter 32, “Creating Internet server applications.” ASP differs, however, in the way
it separates the UI design from the implementation of business rules or complex
application logic.

• The UI design is managed by the Active Server Page. This is essentially an HTML
document, but it can include embedded script that calls on Active Server objects to
supply it with content that reflects your business rules or application logic.

• The application logic is encapsulated by Active Server objects that expose simple
methods to the Active Server Page, supplying it with the content it needs.

Note Although ASP provides the advantage of separating UI design from application
logic, its performance is limited in scale. For Web sites that respond to extremely
large numbers of clients, an approach based on the Web broker technology is
recommended instead.

The script in your Active Server Pages and the Automation objects you embed in an
active server page can make use of the ASP intrinsics (built-in objects that provide
information about the current application, HTTP messages from the browser, and so
on).

42-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

This chapter shows how to create an Active Server Object using the C++Builder
Active Server Object wizard. This special Automation control can then be called by
an Active Server Page and supply it with content.

Here are the steps for creating an Active Server Object:

• Create an Active Server Object for the application.

• Define the Active Server Object’s interface.

• Register the Active Server Object.

• Test and debug the application.

Creating an Active Server Object
An Active Server Object is an Automation object that has access to information about
the entire ASP application and the HTTP messages it uses to communicate with
browsers. It descends from TASPObject or TMTSASPObject (as well as the ATL base
classes CComObjectRootEx and CComCoClass), and supports Automation protocols,
exposing itself for other applications (or the script in the Active Server page) to use.
You create an Active Server Object using the Active Server Object wizard.

Your Active Server Object project can be either an executable (exe) or library (dll),
depending on your needs. However, you should be aware of the drawbacks of using
an out-of-process server. These drawbacks are discussed in “Creating ASPs for in-
process or out-of-process servers” on page 42-7.

To display the Active Server Object wizard:

1 Choose File|New|Other.

2 Select the tab labeled, ActiveX.

3 Double-click the Active Server Object icon.

In the wizard, give your new Active Server Object a name, and specify the threading
model you want to support. You must write the implementation so that it adheres to
the model (for example, avoiding thread conflicts). The threading model involves the
same choices that you make for other COM objects. For details, see “Choosing a
threading model” on page 41-5.

The thing that makes an Active Server Object unique is its ability to access
information about the ASP application and the HTTP messages that pass between the
Active Server page and client Web browsers. This information is accessed using the
ASP intrinsics. In the wizard, you can specify how your object accesses these by
setting the Active Server Type:

• If you are working with IIS 3 or IIS 4, you use Page Level Event Methods. Under
this model, your object implements the methods, OnStartPage and OnEndPage,
which are called when the Active Server page loads and unloads. When your
object is loaded, it automatically obtains an IScriptingContext interface, which it
uses to access the ASP intrinsics. These interfaces are, in turn, surfaced as
properties inherited from the base class (TASPObject).

C r e a t i n g a n A c t i v e S e r v e r P a g e 42-3

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

• If you are working with IIS5 or later, you use the Object Context type. Under this
model, your object fetches an IObjectContext interface, which it uses to access the
ASP intrinsics. Again, these interfaces are surfaced as properties in the inherited
base class (TMTSASPObject). One advantage of this latter approach is that your
object has access to all of the other services available through IObjectContext. To
access the IObjectContext interface, use the ObjectContext property of your Active
Server Object. For more information about the services available through
IObjectContext, see Chapter 44, “Creating MTS or COM+ objects.”

You can tell the wizard to generate a simple ASP page to host your new Active Server
Object. The generated page provides a minimal script (written in VBScript) that
creates your Active Server Object based on its ProgID, and indicates where you can
call its methods. This script calls Server.CreateObject to launch your Active Server
Object.

Note Although the generated test script uses VBScript, Active Server Pages also can be
written using Jscript.

When you exit the wizard, a new unit is added to the current project that contains the
definition for the Active Server Object. In addition, the wizard adds a type library
project and opens the Type Library editor. Now you can expose the properties and
methods of the interface through the type library as described in “Defining a COM
object’s interface” on page 41-9. As you write the implementation of your object’s
properties and methods, you can take advantage of the ASP intrinsics (described
below) to obtain information about the ASP application and the HTTP messages it
uses to communicate with browsers.

The Active Server Object, like any other Automation object, implements a dual
interface, which supports both early (compile-time) binding through the VTable and
late (runtime) binding through the IDispatch interface. For more information on dual
interfaces, see “Dual interfaces” on page 41-12.

Using the ASP intrinsics

The ASP intrinsics are a set of COM objects supplied by ASP to the objects running in
an Active Server Page. They let your Active Server Object access information that
reflects the messages passing between your application and the Web browser, as well
as a place to store information that is shared among Active Server Objects that belong
to the same ASP application.

To make these objects easy to access, the base class for your Active Server Object
surfaces them as properties. For a complete understanding of these objects, see the
Microsoft documentation. However, the following topics provide a brief overview.

Application
The Application object is accessed through an IApplicationObject interface. It
represents the entire ASP application, which is defined as the set of all .asp files in a
virtual directory and its subdirectories. The Application object can be shared by
multiple clients, so it includes locking support that you should use to prevent thread
conflicts.

42-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

IApplicationObject includes the following:

Request
The Request object is accessed through an IRequest interface. It provides information
about the HTTP request message that caused the Active Server Page to be opened.

IRequest includes the following:

Table 42.1 IApplicationObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the application using script
commands. This interface has two methods, Remove and RemoveAll,
that you can use to delete one or all objects from the list.

StaticObjects property Lists all the objects that were added to the application with the
<OBJECT> tag.

Lock method Prevents other clients from locking the Application object until you
call Unlock. All clients should call Lock before accessing shared
memory (such as the properties).

Unlock method Releases the lock that was set using the Lock method.

Application_OnEnd event Occurs when the application quits, after the Session_OnEnd event.
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Application_OnStart event Occurs before the new session is created (before Session_OnStart).
The only intrinsics available are Application and Server. The event
handler must be written in VBScript or JScript.

Table 42.2 IRequest interface members

Property, Method, or Event Meaning

ClientCertificate property Indicates the values of all fields in the client certificate that is sent
with the HTTP message.

Cookies property Indicates the values of all Cookie headers on the HTTP message.

Form property Indicates the values of form elements in the HTTP body. These can
be accessed by name.

QueryString property Indicates the values of all variables in the query string from the
HTTP header.

ServerVariables property Indicates the values of various environment variables. These
variables represent most of the common HTTP header variables.

TotalBytes property Indicates the number of bytes in the request body. This is an upper
limit on the number of bytes returned by the BinaryRead method.

BinaryRead method Retrieves the content of a Post message. Call the method, specifying
the maximum number of bytes to read. The resulting content is
returns as a Variant array of bytes. After calling BinaryRead, you
can’t use the Form property.

C r e a t i n g a n A c t i v e S e r v e r P a g e 42-5

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

Response
The Request object is accessed through an IResponse interface. It lets you specify
information about the HTTP response message that is returned to the client browser.

IResponse includes the following:

Session
The Session object is accessed through the ISessionObject interface. It allows you to
store variables that persist for the duration of a client’s interaction with the ASP
application. That is, these variables are not freed when the client moves from page to
page within the ASP application, but only when the client exits the application
altogether.

Table 42.3 IResponse interface members

Property, Method, or Event Meaning

Cookies property Determines the values of all Cookie headers on the HTTP message.

Buffer property Indicates whether page output is buffered When page output is
buffered, the server does not send a response to the client until all
of the server scripts on the current page are processed.

CacheControl property Determines whether proxy servers can cache the output in the
response.

Charset property Adds the name of the character set to the content type header.

ContentType property Specifies the HTTP content type of the response message’s body.

Expires property Specifies how long the response can be cached by a browser before
it expires.

ExpiresAbsolute property Specifies the date and time when the response expires.

IsClientConnected property Indicates whether the client has disconnected from the server.

Pics property Set the value for the pics-label field of the response header.

Status property Indicates the status of the response. This is the value of an HTTP
status header.

AddHeader method Adds an HTTP header with a specified name and value.

AppendToLog method Adds a string to the end of the Web server log entry for this
request.

BinaryWrite method Writes raw (uninterpreted) information to the body of the response
message.

Clear method Erases any buffered HTML output.

End method Stops processing the .asp file and returns the current result.

Flush method Sends any buffered output immediately.

Redirect method Sends a redirect response message, redirecting the client browser to
a different URL.

Write method Writes a variable to the current HTTP output as a string.

42-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n A c t i v e S e r v e r O b j e c t

ISessionObject includes the following:

Server
The Server object is accessed through an IServer interface. It provides various utilities
for writing your ASP application.

IServer includes the following:

Table 42.4 ISessionObject interface members

Property, Method, or Event Meaning

Contents property Lists all the objects that were added to the session using the
<OBJECT> tag. You can access any variable in the list by name, or
call the Contents object’s Remove or RemoveAll method to delete
values.

StaticObjects property Lists all the objects that were added to the session with the
<OBJECT> tag.

CodePage property Specifies the code page to use for symbol mapping. Different
locales may use different code pages.

LCID property Specifies the locale identifier to use for interpreting string content.

SessionID property Indicates the session identifier for the current client.

TimeOut property Specifies the time, in minutes, that the session persists without a
request (or refresh) from the client until the application terminates.

Abandon method Destroys the session and releases its resources.

Session_OnEnd event Occurs when the session is abandoned or times out. The only
intrinsics available are Application, Server, and Session. The event
handler must be written in VBScript or JScript.

Session_OnStart event Occurs when the server creates a new session is created (after
Application_OnStart but before running the script on the Active
Server Page). All intrinsics are available. The event handler must be
written in VBScript or JScript.

Table 42.5 IServer interface members

Property, Method, or Event Meaning

ScriptTimeOut property Same as the TimeOut property on the Session object.

CreateObject method Instantiates a specified Active Server Object.

Execute method Executes the script in a specified .asp file.

GetLastError method Returns an ASPError object that describes the error condition.

HTMLEncode method Encodes a string for use in an HTML header, replacing reserved
characters by the appropriate symbolic constants.

MapPath method Maps a specified virtual path (an absolute path on the current
server or a path relative to the current page) into a physical path.

Transfer method Sends all of the current state information to another Active Server
Page for processing.

URLEncode method Applies URL encoding rules, including escape characters, to a
specified string

C r e a t i n g a n A c t i v e S e r v e r P a g e 42-7

R e g i s t e r i n g a n A c t i v e S e r v e r O b j e c t

Creating ASPs for in-process or out-of-process servers

You can use Server.CreateObject in an ASP page to launch either an in-process or
out-of-process server, depending on your requirements. However, launching in-
process servers is more common.

Unlike most in-process servers, an Active Server Object in an in-process server does
not run in the client’s process space. Instead, it runs in the IIS process space. This
means that the client does not need to download your application (as, for example, it
does when you use ActiveX objects). In-process component DLLs are faster and more
secure than out-of-process servers, so they are better suited for server-side use.

Because out-of-process servers are less secure, it is common for IIS to be configured
to not allow out-of-process executables. In this case, creating an out-of-process server
for your Active Server Object would result in an error similar to the following:

Server object error 'ASP 0196'
Cannot launch out of process component
/path/outofprocess_exe.asp, line 11

Also, out-of-process components often create individual server processes for each
object instance, so they are slower than CGI applications. They do not scale as well as
component DLLs.

If performance and scalability are priorities for your site, in-process servers are
highly recommended. However, Intranet sites that receive moderate to low traffic
may use an out-of-process component without adversely affecting the site's overall
performance.

For general information on in-process and out-of-process servers, see, “In-process,
out-of-process, and remote servers,” on page 38-6.

Registering an Active Server Object
You can register the Active Server Page as an in-process or an out-of-process server.
However, in-process servers are more common.

Note When you want to remove the Active Server Page object from your system, you
should first unregister it, removing its entries from the Windows registry.

Registering an in-process server

To register an in-process server (DLL or OCX),

• Choose Run|Register ActiveX Server.

To unregister an in-process server,

• Choose Run|Unregister ActiveX Server.

42-8 D e v e l o p e r ’ s G u i d e

T e s t i n g a n d d e b u g g i n g t h e A c t i v e S e r v e r P a g e a p p l i c a t i o n

Registering an out-of-process server

To register an out-of-process server,

• Run the server with the /regserver command-line option. (You can set command-
line options with the Run|Parameters dialog box.)

You can also register the server by running it.

To unregister an out-of-process server,

• Run the server with the /unregserver command-line option.

Testing and debugging the Active Server Page application
Debugging any in-process server such as an Active Server Object is much like
debugging a DLL. You choose a host application that loads the DLL, and debug as
usual. To test and debug an Active Server Object,

1 Turn on debugging information using the Compiler tab on the Project|Options
dialog box, if necessary. Also, turn on Integrated Debugging in the Tools|
Debugger Options dialog.

2 Choose Run|Parameters, type the name of your Web Server in the Host
Application box, and choose OK.

3 Choose Run|Run.

4 Set breakpoints in the Active Server Object implementation.

5 Use the Web browser to interact with the Active Server Page.

The debugger pauses when the breakpoints are reached.

C r e a t i n g a n A c t i v e X c o n t r o l 43-1

C h a p t e r

43
Chapter43Creating an ActiveX control

An ActiveX control is a software component that integrates into and extends the
functionality of any host application that supports ActiveX controls, such as
C++Builder, Delphi, Visual Basic, Internet Explorer, and (given a plug-in) Netscape
Navigator. ActiveX controls implement a particular set of interfaces that allow this
integration.

For example, C++Builder comes with several ActiveX controls, including charting,
spreadsheet, and graphics controls. You can add these controls to the component
palette in the IDE, and then use them like any standard VCL component, dropping
them on forms and setting their properties using the Object Inspector.

An ActiveX control can also be deployed on the Web, allowing it to be referenced in
HTML documents and viewed with ActiveX-enabled Web browsers.

C++Builder provides wizards that let you create two types of ActiveX controls:

• ActiveX controls that wrap VCL classes. By wrapping a VCL class, you can
convert existing components into ActiveX controls or create new ones, test them
out locally, and then convert them into ActiveX controls. ActiveX controls are
typically intended to be embedded in a larger host application.

• Active forms. Active forms let you use the form designer to create a more
elaborate control that acts like a dialog or like a complete application. You develop
the Active form in much the same way that you develop a typical C++Builder
application. Active Forms are typically intended for deployment on the Web.

This chapter provides an overview of how to create an ActiveX control in the
C++Builder environment. It is not intended to provide complete implementation
details of writing ActiveX control without using a wizard. For that information, refer
to your Microsoft Developer’s Network (MSDN) documentation or search the
Microsoft Web site for ActiveX information.

43-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

Overview of ActiveX control creation
Creating ActiveX controls using C++Builder is very similar to creating ordinary
controls or forms. This differs markedly from creating other COM objects, where you
first define the object’s interface and then complete the implementation. To create
ActiveX controls (other than Active Forms), you reverse this process, starting with
the implementation of a VCL control, and then generating the interface and type
library once the control is written. When creating Active Forms, the interface and
type library are created at the same time as your form, and then you use the form
designer to implement the form.

The completed ActiveX control consists of a VCL control that provides the
underlying implementation, a COM object that wraps the VCL control, and a type
library that lists the COM object’s properties, methods, and events.

To create a new ActiveX control (other than an Active Form), perform the following
steps:

1 Design and create the custom VCL control that forms the basis of your ActiveX
control.

2 Use the ActiveX control wizard to create an ActiveX control from the VCL control
you created in step 1.

3 Use the ActiveX property page wizard to create one or more property pages for
the control (optional).

4 Associate the property page with the ActiveX control (optional).

5 Register the control.

6 Test the control with all potential target applications.

7 Deploy the ActiveX control on the Web. (optional)

To create a new Active Form, perform the following steps:

1 Use the ActiveForm wizard to create an Active Form, which appears as a blank
form in the IDE, and an associated ActiveX wrapper for that form.

2 Use the form designer to add components to your Active Form and implement its
behavior in the same way you create and implement an ordinary form using the
form designer.

3 Follow steps 3-7 above to give your Active Form a property page, register it, and
deploy it on the Web.

Elements of an ActiveX control

An ActiveX control involves many elements which each perform a specific function.
The elements include a VCL control, a corresponding COM object wrapper that
exposes properties, methods, and events, and one or more associated type libraries.

C r e a t i n g a n A c t i v e X c o n t r o l 43-3

O v e r v i e w o f A c t i v e X c o n t r o l c r e a t i o n

VCL control
The underlying implementation of an ActiveX control in C++Builder is a VCL
control. When you create an ActiveX control, you must first design or choose the
VCL control from which you will make your ActiveX control.

The underlying VCL control must be a descendant of TWinControl, because it must
have a window that can be parented by the host application. When you create an
Active form, this object is a descendant of TActiveForm.

Note The ActiveX control wizard lists the available TWinControl descendants from which
you can choose to make an ActiveX control. This list does not include all TWinControl
descendants, however. Some controls, such as THeaderControl, are registered as
incompatible with ActiveX (using the RegisterNonActiveX procedure) and do not
appear in the list.

ActiveX wrapper
The actual COM object is an ActiveX wrapper object for the VCL control. It has a
name of the form TVCLClassXImpl, where TVCLClass is the name of the VCL control
class. Thus, for example, the ActiveX wrapper for TButton would be named
TButtonXImpl.

The wrapper class descends from the classes declared by the VCLCONTROL_IMPL
macro, which provide support for the ActiveX interfaces. The ActiveX wrapper
inherits this support, which allows it to forward Windows messages to the VCL
control and parent its window in the host application.

The ActiveX wrapper exposes the VCL control’s properties and methods to clients
via its default interface. The wizard automatically implements most of the wrapper
class’s properties and methods, delegating method calls to the underlying VCL
control. The wizard also provides the wrapper class with methods that fire the VCL
control’s events on clients and assigns these methods as event handlers on the VCL
control.

Type library
The ActiveX control wizards automatically generate a type library that contains the
type definitions for the wrapper class, its default interface, and any type definitions
that these require. This type information provides a way for your control to advertise
its services to host applications. You can view and edit this information using the
Type Library editor. Although this information is stored in a separate, binary type
library file (.TLB extension), it is also automatically compiled into the ActiveX control
DLL as a resource.

Property page
You can optionally give your ActiveX control a property page. The property page
allows the user of a host (client) application to view and edit your control’s
properties. You can group several properties on a page, or use a page to provide a
dialog-like interface for a property. For information on how to create property pages,
see “Creating a property page for an ActiveX control” on page 43-13.

43-4 D e v e l o p e r ’ s G u i d e

D e s i g n i n g a n A c t i v e X c o n t r o l

Designing an ActiveX control
When designing an ActiveX control, you start by creating a custom VCL control. This
forms the basis of your ActiveX control. For information on creating custom controls,
see Part V, “Creating custom components.”

When designing the VCL control, keep in mind that it will be embedded in another
application; this control is not an application in itself. For this reason, you probably
do not want to use elaborate dialog boxes or other major user-interface components.
Your goal is typically to make a simple control that works inside of, and follows the
rules of the main application.

In addition, you should make sure that the types for all properties and methods you
want your object to expose to clients are Automation-compatible, because the
ActiveX control’s interface must support IDispatch. The wizard does not add any
methods to the wrapper class’s interface that have parameters that are not
Automation-compatible. For a list of Automation-compatible types, see “Valid
types” on page 39-11.

The wizards implement all the necessary ActiveX interfaces required using the COM
wrapper class. They also surface all Automation-compatible properties, methods,
and events through the wrapper class’s default interface. Once the wizard has
generated the COM wrapper class and its interface, you can use the Type Library
editor to modify the default interface or augment the wrapper class by implementing
additional interfaces.

Generating an ActiveX control from a VCL control
To generate an ActiveX control from a VCL control, use the ActiveX Control wizard.
The properties, methods, and events of the VCL control become the properties,
methods, and events of the ActiveX control.

Before using the ActiveX control wizard, you must decide what VCL control will
provide the underlying implementation of the generated ActiveX control.

To bring up the ActiveX control wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveX Control icon.

In the wizard, select the name of the VCL control that will be wrapped by the new
ActiveX control. The dialog lists all available controls, which are descendants of
TWinControl that are not registered as incompatible with ActiveX using the
RegisterNonActiveX procedure.

Tip If you do not see the control you want in the drop-down list, check whether you have
installed it in the IDE or added its unit to your project.

Once you have selected a VCL control, the wizard automatically generates a name for
the CoClass, the implementation unit for the ActiveX wrapper, and the ActiveX

C r e a t i n g a n A c t i v e X c o n t r o l 43-5

G e n e r a t i n g a n A c t i v e X c o n t r o l f r o m a V C L c o n t r o l

library project. (If you currently have an ActiveX library project open, and it does not
contain a COM+ event object, the current project is automatically used.) You can
change any of these in the wizard (unless you have an ActiveX library project already
open, in which case the project name is not editable).

The wizard always specifies Apartment as the threading model. This is not a problem
if your ActiveX project usually contains only a single control. However, if you add
additional objects to your project, you are responsible for providing thread support.

The wizard also lets you configure various options on your ActiveX control:

• Enabling licensing: You can make your control licensed to ensure that users of the
control can't open it either for design purposes or at runtime unless they have a
license key for the control.

• Including Version information: You can include version information, such as a
copyright or a file description, in the ActiveX control. This information can be
viewed in a browser. Some host clients, such as Visual Basic 4.0, require Version
information or they will not host the ActiveX control. Specify version information
by choosing Project|Options and selecting the Version Info page.

• Including an About box: You can tell the wizard to generate a separate form that
implements an About box for your control. Users of the host application can
display this About box in a development environment. By default, the About box
includes the name of the ActiveX control, an image, copyright information, and an
OK button. You can modify this default form, which the wizard adds to your
project.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 39, “Working with type libraries.”

• An ActiveX implementation unit, which defines and implements the ActiveX
control, which is adapted to the Microsoft Active Template Library (ATL) using
the VCLCONTROL_IMPL macro. This ActiveX control is a fully-functioning
implementation that requires no additional work on your part. However, you can
modify this class if you want to customize the properties, methods, and events
that the ActiveX control exposes to clients.

• An ATL unit, which has a name of the form ActiveXControlProj_ATL.cpp (.h),
where ActiveXControlProj is the name of the project. This unit mostly consists of
include statements that make the ATL template classes available to your project
and define classes that allow your generated ActiveX wrapper to work with a VCL
object. It also declares the global variable called _Module, which represents the
ActiveX library to the ATL classes.

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

43-6 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g a n A c t i v e X c o n t r o l b a s e d o n a V C L f o r m

Generating an ActiveX control based on a VCL form
Unlike other ActiveX controls, Active Forms are not first designed and then wrapped
by an ActiveX wrapper class. Instead, the ActiveForm wizard generates a blank form
that you design later when the wizard leaves you in the Form Designer.

When an ActiveForm is deployed on the Web, C++Builder creates an HTML page to
contain the reference to the ActiveForm and specify its location on the page. The
ActiveForm can then displayed and run from a Web browser. Inside the browser, the
form behaves just like a stand-alone C++Builder form. The form can contain any VCL
components or ActiveX controls, including custom-built VCL controls.

To start the ActiveForm wizard,

1 Choose File|New|Other to open the New Items dialog box.

2 Select the tab labeled ActiveX.

3 Double-click the ActiveForm icon.

The Active Form wizard looks just like the ActiveX control wizard, except that you
can’t specify the name of the VCL class to wrap. This is because Active forms are
always based on TActiveForm.

As in the ActiveX control wizard, you can change the default names for the CoClass,
implementation unit, and ActiveX library project. Similarly, this wizard lets you
indicate whether you want your Active Form to require a license, whether it should
include version information, and whether you want an About box form.

When you exit the wizard, it generates the following:

• An ActiveX Library project file, which contains the code required to start an
ActiveX control. You usually don’t change this file.

• A type library, which defines and CoClass for your control, the interface it exposes
to clients, and any type definitions that these require. For more information about
the type library, refer to Chapter 39, “Working with type libraries.”

• A form that descends from TActiveForm. This form appears in the form designer,
where you can use it to visually design the Active Form that appears to clients. Its
implementation appears in the generated implementation unit.

• The declaration of an ActiveX wrapper for the form. This wrapper class is also
defined in the implementation unit, and has a name of the form
TActiveFormXImpl, where TActiveFormX is the name of the form class. This
ActiveX wrapper is a fully-functioning implementation that requires no additional
work on your part. However, you can modify this class if you want to customize
the properties, methods, and events that the Active Form exposes to clients.

• An ATL unit, which has a name of the form ActiveXControlProj_ATL.cpp (.h),
where ActiveXControlProj is the name of the project. This unit mostly consists of
include statements that make the ATL template classes available to your project
and define classes that allow your generated ActiveX wrapper to work with a VCL
form. It also declares the global variable called _Module, which represents the
ActiveX library to the ATL classes.

C r e a t i n g a n A c t i v e X c o n t r o l 43-7

L i c e n s i n g A c t i v e X c o n t r o l s

• An About box form and unit if you requested them.

• A .LIC file if you enabled licensing.

At this point, you can add controls and design the form as you like.

After you have designed and compiled the ActiveForm project into an ActiveX
library (which has the OCX extension), you can deploy the project to your Web
server and C++Builder creates a test HTML page with a reference to the ActiveForm.

Licensing ActiveX controls
Licensing an ActiveX control consists of providing a license key at design-time and
supporting the creation of licenses dynamically for controls created at runtime.

To provide design-time licenses, the ActiveX wizard creates a key for the control,
which it stores in a file with the same name as the project with the LIC extension. This
.LIC file is added to the project. The user of the control must have a copy of the .LIC
file to open the control in a development environment. Each control in the project
that has Make Control Licensed checked has a separate key entry in the LIC file.

To support runtime licenses, the wrapper class implements two methods,
GetLicenseString and GetLicenseFilename. These return the license string for the control
and the name of the .LIC file, respectively. When a host application tries to create the
ActiveX control, the class factory for the control calls these methods and compares
the string returned by GetLicenseString with the string stored in the .LIC file.

Runtime licenses for the Internet Explorer require an extra level of indirection
because users can view HTML source code for any Web page, and because an
ActiveX control is copied to the user’s computer before it is displayed. To create
runtime licenses for controls used in Internet Explorer, you must first generate a
license package file (LPK file) and embed this file in the HTML page that contains the
control. The LPK file is essentially an array of ActiveX control CLSIDs and license
keys.

Note To generate the LPK file, use the utility, LPK_TOOL.EXE, which you can download
from the Microsoft Web site (www.microsoft.com).

To embed the LPK file in a Web page, use the HTML objects, <OBJECT> and
<PARAM> as follows:

<OBJECT CLASSID="clsid:6980CB99-f75D-84cf-B254-55CA55A69452">
 <PARAM NAME="LPKPath" VALUE="ctrllic.lpk">
</OBJECT>

The CLSID identifies the object as a license package and PARAM specifies the
relative location of the license package file with respect to the HTML page.

When Internet Explorer tries to display the Web page containing the control, it parses
the LPK file, extracts the license key, and if the license key matches the control’s
license (returned by GetLicenseString), it renders the control on the page. If more than
one LPK is included in a Web page, Internet Explorer ignores all but the first.

For more information, look for Licensing ActiveX Controls on the Microsoft Web site.

43-8 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Customizing the ActiveX control’s interface
The ActiveX Control and ActiveForm wizards generate a default interface for the
ActiveX wrapper class. This default interface simply exposes the properties,
methods, and events of the original VCL control or form, with the following
exceptions:

• Data-aware properties do not appear. Because ActiveX controls have a different
mechanism for making controls data-aware than VCL controls, the wizards do not
convert properties related to data. See “Enabling simple data binding with the
type library” on page 43-11 for information on how to make your ActiveX control
data-aware.

• Any property, method, or event that type that is not Automation-compatible does
not appear. You may want to add these to the ActiveX control’s interface after the
wizard has finished.

You can add, edit, and remove the properties, methods, and events in an ActiveX
control by editing the type library using the Type Library editor as described in
Chapter 39, “Working with type libraries.”

Note You can add unpublished properties to your ActiveX control’s interface. Such
properties can be set at runtime and will appear in a development environment, but
changes made to them will not persist. That is, when the user of the control changes
the value of a property at design time, the changes are not reflected when the control
is run. This is because ActiveX controls use the VCL streaming system rather than the
ATL streaming system. If the source is a VCL object and the property is not already
published, you can make properties persistent by creating a descendant of the VCL
object and publishing the property in the descendant.

You may also choose not to expose all of the VCL control’s properties, methods, and
events to host applications. You can use the Type Library editor to remove these from
the interfaces that the wizard generated. When you remove properties and methods
from an interface using the Type Library editor, the Type Library editor does not
remove them from the corresponding implementation class. Edit the ActiveX
wrapper class in the implementation unit to remove these after you have changed the
interface in the Type Library editor.

Warning Any changes you make to the type library will be lost if you regenerate the ActiveX
control from the original VCL control or form.

Tip It is a good idea to check the methods that the wizard adds to your ActiveX wrapper
class. Not only does this give you a chance to note where the wizard omitted any
data-aware properties or methods that were not Automation-compatible, it also lets
you detect methods for which the wizard could not generate an implementation.
Such methods appear with a comment in the implementation that indicates the
problem.

C r e a t i n g a n A c t i v e X c o n t r o l 43-9

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

Adding additional properties, methods, and events

Adding properties and methods to your ActiveX control’s interface works the same
way as adding properties, methods, and events to any COM interface. Adding events
is the same as adding methods (event handlers), except that you add them to the
Events interface rather than the object’s default interface. Using the type library to
add properties and events is described in “Defining a COM object’s interface” on
page 41-9.

When you add to an ActiveX control’s interface, you are often just surfacing a
property, method, or event in the underlying VCL control. The following topics
describe how to do this.

Adding properties and methods
The ActiveX wrapper class implements properties in its interface using read and
write access methods. That is, the wrapper class has COM properties, which appear
on an interface as getter and/or setter methods. Unlike VCL properties, you do not
see a “property” declaration on the interface for COM properties. Rather, you see
methods that are flagged as property access methods. When you add a property to
the ActiveX control’s default interface, the wrapper class definition (which appears in
the _TLB unit that is updated by the Type Library editor) gains one or two new
methods (a getter and/or setter) that you must implement, just as when you add a
method to the interface, the wrapper class gains a corresponding method for you to
implement. Thus, adding properties to the wrapper class’s interface is essentially the
same as adding methods: the wrapper class definition gains new skeletal method
implementations for you to complete.

Note For details on what appears in the generated _TLB unit, see “Code generated when
you import type library information” on page 40-5.

For example, consider a Caption property, of type AnsiString in the underlying VCL
object. When you add this property in the Type Library editor, C++Builder adds the
following declarations to the wrapper class:

STDMETHOD(get_Caption(BSTR* Value));
STDMETHOD(set_Caption(BSTR Value));

In addition, it adds skeletal method implementations for you to complete:

STDMETHODIMP TButtonXImpl::get_Caption(BSTR* Value)
{

try
{
}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_IButtonX);
}
return S_OK;

};

43-10 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

STDMETHODIMP TButtonXImpl::set_Caption(BSTR Value)
{

try
{
}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_IButtonX);
}
return S_OK;

};

Typically, you can implement these methods by simply delegating to the associated
VCL control, which can be accessed using the m_VclCtl member of the wrapper class:

STDMETHODIMP TButtonXImpl::get_Caption(BSTR* Value)
{
 try
 {
 *Value = WideString(m_VclCtl->Caption).Copy();
 }
 catch(Exception &e)
 {
 return Error(e.Message.c_str(), IID_IButtonX);
 }
 return S_OK;
};

STDMETHODIMP TButtonXImpl::set_Caption(BSTR Value)
{

try
{

m_VclCtl->Caption = AnsiString(Value);
}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_IButtonX);
}
return S_OK;

};

In some cases, you may need to add code to convert the COM data types to native
C++ types. The preceding example manages this with typecasting.

Adding events
The ActiveX control can fire events to its container in the same way that an
automation object fires events to clients. This mechanism is described in “Exposing
events to clients” on page 41-10.

If the VCL control you are using as the basis of your ActiveX control has any
published events, the wizards automatically add the necessary support for managing
a list of client event sinks to your ActiveX wrapper class and define the outgoing
dispinterface that clients must implement to respond to events.

C r e a t i n g a n A c t i v e X c o n t r o l 43-11

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

In order to fire events to the container, your ActiveX wrapper class must implement
an event handler for the event on the VCL object. This event handler calls the
Fire_EventName method that is implemented by the TEvents_CoClassName class
defined in the _TLB unit:

void __fastcall TButtonXImpl::KeyPressEvent(TObject *Sender, char &Key)
{
 short TempKey;
 TempKey = (short)Key;
 Fire_OnKeyPress(&TempKey);
 Key = (short)TempKey;
};

You must then assign this event handler to the VCL control so that it is called when
the event occurs. To do this, add the event to the InitializeControl method, which
appears in the wrapper class’s declaration (in the header of the implementation unit):

void InitializeControl()
{

m_VclCtl->OnClick = ClickEvent;
m_VclCtl->OnKeyPress = KeyPressEvent;

}

Enabling simple data binding with the type library

With simple data binding, you can bind a property of your ActiveX control to a field
in a database. To do this, the ActiveX control must communicate with its host
application about what value represents field data and when it changes. You enable
this communication by setting the property’s binding flags using the Type Library
editor.

By marking a property bindable, when a user modifies the property (such as a field
in a database), the control notifies its container (the client host application) that the
value has changed and requests that the database record be updated. The container
interacts with the database and then notifies the control whether it succeeded or
failed to update the record.

Note The container application that hosts your ActiveX control is responsible for
connecting the data-aware properties you enable in the type library to the database.
See “Using data-aware ActiveX controls” on page 40-8 for information on how to write
such a container using C++Builder.

Use the type library to enable simple data binding,

1 On the toolbar, click the property that you want to bind.

2 Choose the flags page.

43-12 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g t h e A c t i v e X c o n t r o l ’ s i n t e r f a c e

3 Select the following binding attributes:

4 Click the Refresh button on the toolbar to update the type library.

To test a data-binding control, you must register it first.

For example, to convert a TEdit control into a data-bound ActiveX control, create the
ActiveX control from a TEdit and then change the Text property flags to Bindable,
Display Bindable, Default Bindable, and Immediate Bindable.

To enable editing of data in the ActiveX wrapper, it must ask its container if its value
can be changed before allowing edits. To do this, it calls its FireOnRequestEdit, which
it inherits from the TVclComControl base class, when the VCL control receives key
press messages from the user. The ActiveX wrapper already assigns an OnKeyPress
event handler to the VCL control. This is modified to look like the following:

void __fastcall TMyAwareEditImpl::KeyPressEvent(TObject *Sender, char &Key)
{
 signed_char TempKey;
 const DISPID dispid = -517; // this is the dispatch id of the data-bound property

 if (FireOnRequestEdit(dispid) == S_FALSE) // ask container if edits ok?
 {
 Key = 0; // if edits not ok, cancel the keypress message
 return;
 }
 TempKey = (signed_char)Key;
 Fire_OnKeyPress(&TempKey);// this forwards the OnKeyPress event to fire in the container
 Key = (signed_char)TempKey;
};

The ActiveX wrapper also needs to notify the container when the data changes. To do
this, it calls its FireOnChanged method (inherited from TVclComControl) when the edit
control’s value changes. FireOnChanged notifies the control that something is
different. When data in the control is edited, the container can put the associated

Binding attribute Description

Bindable Indicates that the property supports data binding. If marked
bindable, the property notifies its container when the property
value has changed.

Request Edit Indicates that the property supports the OnRequestEdit
notification. This allows the control to ask the container if its value
can be edited by the user.

Display Bindable Indicates that the container can show users that this property is
bindable.

Default Bindable Indicates the single, bindable property that best represents the
object. Properties that have the default bind attribute must also
have the bindable attribute. Cannot be specified on more than one
property in a dispinterface.

Immediate Bindable Allows individual bindable properties on a form to specify this
behavior. When this bit is set, all changes will be notified. The
bindable and request edit attribute bits need to be set for this new
bit to have an effect.

C r e a t i n g a n A c t i v e X c o n t r o l 43-13

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

dataset into edit mode. FireOnChanged also enables real-time modification of field
data. The following code shows the modified OnChange event handler:

void __fastcall TMyAwareEditImpl::ChangeEvent(TObject *Sender)
{
 const DISPID dispid = -517; // the dispath id of the data-bound property
 FireOnChanged(dispid); // add this line to inform the container of changes
 Fire_OnChange(); // this was the original call to fire the event in the container
};

After the control is registered and imported, it can be used to display data.

Creating a property page for an ActiveX control
A property page is a dialog box similar to the C++Builder Object Inspector in which
users can change the properties of an ActiveX control. A property page dialog allows
you to group many properties for a control together to be edited at once. Or, you can
provide a dialog box for more complex properties.

Typically, users access the property page by right-clicking the ActiveX control and
choosing Properties.

The process of creating a property page is similar to creating a form, you

1 Create a new property page.

2 Add controls to the property page.

3 Associate the controls on the property page with the properties of an ActiveX
control.

4 Connect the property page to the ActiveX control.

Note When adding properties to an ActiveX control or ActiveForm, you must publish the
properties that you want to persist. If they are not published in the underlying VCL
control, you must make a custom descendant of the VCL control that redeclares the
properties as published and then use the ActiveX control wizard to create an ActiveX
control from the descendant class.

Creating a new property page

You use the Property Page wizard to create a new property page.

To create a new property page,

1 Choose File|New|Other.

2 Select the ActiveX tab.

3 Double-click the Property Page icon.

The wizard creates a new form and implementation unit for the property page. The
form is a descendant of TPropertyPage, which lets you associate the form with the
ActiveX control whose properties it edits. In addition, the implementation unit
declares an implementation object (using the PROPERTYPAGE_IMPL macro). This

43-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a p r o p e r t y p a g e f o r a n A c t i v e X c o n t r o l

implementation object implements the property page interfaces, passing appropriate
calls to the form.

Adding controls to a property page

You must add a control to the property page for each property of the ActiveX control
that you want the user to access.

For example, the following illustration shows a property page for setting the
MaskEdit property of an ActiveX control.

Figure 43.1 Mask Edit property page in design mode

The list box allows the user to select from a list of sample masks. The edit controls
allow the user to test the mask before applying it to the ActiveX control. You add
controls to the property page the same as you would to a form.

Associating property page controls with ActiveX control properties

After adding the controls you need to the property page, you must associate each
control with its corresponding property. You make this association by adding code to
the property page’s UpdatePropertyPage and UpdateObject methods.

Updating the property page
Add code to the UpdatePropertyPage method to update the control on the property
page when the properties of the ActiveX control change. You must add code to the
UpdatePropertyPage method to update the property page with the current values of
the ActiveX control’s properties.

You can access the ActiveX control using the property page’s OleObject property,
which is an OleVariant that contains the ActiveX control’s interface.

For example, the following code updates the property page’s edit control
(InputMask) with the current value of the ActiveX control’s EditMask property:

void __fastcall TPropertyPage1::UpdatePropertyPage(void)
{

InputMask->Text = OleObject.OlePropertyGet("EditMask");
}

C r e a t i n g a n A c t i v e X c o n t r o l 43-15

R e g i s t e r i n g a n A c t i v e X c o n t r o l

Note It is also possible to write a property page that represents more than one ActiveX
control. In this case, you don’t use the OleObject property. Instead, you must iterate
through a list of interfaces that is maintained by the OleObjects property.

Updating the object
Add code to the UpdateObject method to update the property when the user changes
the controls on the property page. You must add code to the UpdateObject method in
order to set the properties of the ActiveX control to their new values.

Once again you use the OleObject property to access the ActiveX control.

For example, the following code sets the EditMask property of the ActiveX control
using the value in the property page’s edit box control (InputMask):

void __fastcall TPropertyPage1::UpdateObject(void)
{

// Update OleObject from your control
OleObject.OlePropertySet<WideString>("EditMask", WideString(InputMast->Text).Copy());

}

Connecting a property page to an ActiveX control

To connect a property page to an ActiveX control,

1 Between the BEGIN_PROPERTY_MAP and END_PROPERTY_MAP statements in
the ActiveX control’s implementation unit, add a PROP_PAGE macro call, passing
it the property page’s GUID. (The GUID is defined in the property page’s
implementation unit; it is generated automatically by the Property Page wizard.)

For example, if the GUID for the property page is defined as
CLSID_PropertyPage1 (the default), then the property map section for an ActiveX
control based on a VCL form should look like this:

BEGIN_PROPERTY_MAP(TActiveFormXImpl)
// Define property pages here. Property pages are defined using
// the PROP_PAGE macro with the class id of the page. For example,
// PROP_PAGE(CLSID_ActiveFormXPage)

 PROP_PAGE(CLSID_PropertyPage1)
END_PROPERTY_MAP()

2 Include the property page unit in the ActiveX control’s unit.

Registering an ActiveX control
After you have created your ActiveX control, you must register it so that other
applications can find and use it.

To register an ActiveX control:

• Choose Run|Register ActiveX Server.

Note Before you remove an ActiveX control from your system, you should unregister it.

43-16 D e v e l o p e r ’ s G u i d e

T e s t i n g a n A c t i v e X c o n t r o l

To unregister an ActiveX control:

• Choose Run|Unregister ActiveX Server.

As an alternative, you can use the tregsvr command from the command line or run
the regsvr32.exe from the operating system.

Testing an ActiveX control
To test your control, add it to a package and import it as an ActiveX control. This
procedure adds the ActiveX control to the C++Builder component palette. You can
drop the control on a form and test as needed.

Your control should also be tested in all target applications that will use the control.

To debug the ActiveX control, select Run|Parameters and type the client name in the
Host Application edit box.

The parameters then apply to the host application. Selecting Run|Run will run the
host or client application and allow you to set breakpoints in the control.

Deploying an ActiveX control on the Web
Before the ActiveX controls that you create can be used by Web clients, they must be
deployed on your Web server. Every time you make a change to the ActiveX control,
you must recompile and redeploy it so that client applications can see the changes.

Before you can deploy your ActiveX control, you must have a Web Server that will
respond to client messages.

To deploy your ActiveX control, use the following steps:

1 Select Project|Web Deployment Options.

2 On the Project page, set the Target Dir to the location of the ActiveX control DLL
as a path on the Web server. This can be a local path name or a UNC path, for
example, C:\INETPUB\wwwroot.

3 Set the Target URL to the location as a Uniform Resource Locators (URL) of the
ActiveX control DLL (without the file name) on your Web Server, for example,
http://mymachine.inprise.com/. See the documentation for your Web Server for
more information on how to do this.

4 Set the HTML Dir to the location (as a path) where the HTML file that contains a
reference to the ActiveX control should be placed, for example, C:\INETPUB\
wwwroot. This path can be a standard path name or a UNC path.

5 Set desired Web deployment options as described in “Setting options” on
page 43-17.

6 Choose OK.

7 Choose Project|Web Deploy.

C r e a t i n g a n A c t i v e X c o n t r o l 43-17

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

This creates a deployment code base that contains the ActiveX control in an
ActiveX library (with the OCX extension). Depending on the options you specify,
this deployment code base can also contain a cabinet (with the CAB extension) or
information (with the INF extension).

The ActiveX library is placed in the Target Directory you specified in step 2. The
HTML file has the same name as the project file but with the HTM extension. It is
created in the HTML Directory specified in step 4. The HTML file contains a URL
reference to the ActiveX library at the location specified in step 3.

Note If you want to put these files on your Web server, use an external utility such as
ftp.

8 Invoke your ActiveX-enabled Web browser and view the created HTML page.

When this HTML page is viewed in the Web browser, your form or control is
displayed and runs as an embedded application within the browser. That is, the
library runs in the same process as the browser application.

Setting options

Before deploying an ActiveX control, specify the Web deployment options that
should be followed when creating the ActiveX library.

Web deployment options include settings to allow you to set the following:

• Including additional files: If your ActiveX control depends on any packages or
other additional files, you can indicate that these should be deployed with the
project. By default, these files use the same options that you specify for the entire
project, but you can override these settings using the Packages or Additional files
tab. When you include packages or additional files, C++Builder creates a file with
the .INF extension (for INFormation). This file specifies the various files that need
to be downloaded and set up for the ActiveX library to run. The syntax of the INF
file allows URLs pointing to packages or additional files to download.

• CAB file compression: A cabinet is a single file, usually with a CAB file extension,
that stores compressed files in a file library. Cabinet compression can dramatically
decrease download time (up to 70%) of a file. During installation, the browser
decompresses the files stored in a cabinet and copies them to the user’s system.
Each file that you deploy can be CAB file compressed. You can specify that the
ActiveX library use CAB file compression on the Project tab of the Web
Deployment options dialog.

• Version information: You can specify that you want version information included
with your ActiveX control. This information is set in the VersionInfo page of the
Project Options dialog. Part of this information is the release number, which you
can have automatically updated every time you deploy your ActiveX control. If
you include additional packages or files, their Version information resources can
get added to the INF file as well.

43-18 D e v e l o p e r ’ s G u i d e

D e p l o y i n g a n A c t i v e X c o n t r o l o n t h e W e b

Depending on whether you include additional files and whether you use CAB file
compression, the resulting ActiveX library may be an OCX file, a CAB file containing
an OCX file, or an INF file. The following table summarizes the results of choosing
different combinations.

Packages and/or
additional files

CAB file
compression Result

No No An ActiveX library (OCX) file.

No Yes A CAB file containing an ActiveX library file.

Yes No An INF file, an ActiveX library file, and any additional files
and packages.

Yes Yes An INF file, a CAB file containing an ActiveX library, and a
CAB file each for any additional files and packages.

C r e a t i n g M T S o r C O M + o b j e c t s 44-1

C h a p t e r

44
Chapter44Creating MTS or COM+ objects

C++Builder uses the term transactional objects to refer to objects that take advantage
of the transaction services, security, and resource management supplied by Microsoft
Transaction Server (MTS) (for versions of Windows prior to Windows 2000) or
COM+ (for Windows 2000 and later). These objects are designed to work in a large,
distributed environment. They are not available for use in cross-platform
applications due to their dependence on Windows-specific technology.

C++Builder provides a wizard that creates transactional objects so that you can take
advantage of the benefits of COM+ attributes or the MTS environment. These
features make creating COM clients and servers, particularly remote servers, easier
to implement.

Note For database applications, C++Builder also provides a Transactional Data Module.
For more information, see Chapter 29, “Creating multi-tiered applications.”

Transactional objects make use of a number of low-level services, such as

• Managing system resources, including processes, threads, and database
connections so that your server application can handle many simultaneous users

• Automatically initiating and controlling transactions so that your application is
reliable.

• Creating, executing, and deleting server components when needed.

• Providing role-based security so that only authorized users can access your
application.

• Managing events so that clients can respond to conditions that arise on the server
(COM+ only).

44-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t r a n s a c t i o n a l o b j e c t s

By letting MTS or COM+ provide these underlying services, you can concentrate on
developing the specifics for your particular distributed application. Which
technology you choose (MTS or COM+) depends on the server on which you choose
to run your application. To clients, the difference between the two (or, for that matter,
the fact that the server object uses any of these services) is transparent (unless the
client explicitly manipulates transactional services via a special interface).

Understanding transactional objects
Typically, transactional objects are small, and are used for discrete business
functions. They can implement an application’s business rules, providing views and
transformations of the application state. Consider, for example, the case of a medical
application. Medical records stored in various databases represent the persistent
state of the application, such as a patient’s health history. Transactional objects
update that state to reflect such changes as new patients, test results, and X-ray files.

Transactional objects are distinguished from other COM objects in that they use a set
of attributes supplied by MTS or COM+ for handling issues that arise in a distributed
computing environment. Some of these attributes require the transactional object to
implement the IObjectControl interface. IObjectControl defines methods that are called
when the object is activated or deactivated, where you can manage resources such as
database connections. It also is required for object pooling, which is described in
“Object pooling” on page 44-9.

Note If you are using MTS, your transactional objects must implement IObjectControl.
Under COM+, IObjectControl is not required, but is highly recommended. The
Transactional Object wizard provides an object that derives from IObjectControl.

A client of a transactional object is called a base client. From a base client’s
perspective, a transactional object looks like any other COM object.

Under MTS, the transactional object must be built into a library (DLL), which is then
installed in the MTS runtime environment (the MTS executive, mtxex.exe). That is,
the server object runs in the MTS runtime process space. The MTS executive can be
running in the same process as the base client, as a separate process on the same
machine as the base client, or as a remote server process on a separate machine.

Under COM+, the server application need not be an in-process server. Because the
various services are integrated into the COM libraries, there is no need for a separate
MTS process to intercept calls to the server. Instead, COM itself (or, rather, COM+)
provides the resource management, transaction support, and so on. However, the
server application must still be installed, this time into a COM+ application.

The connection between the base client and the transactional object is handled by a
proxy on the client and a stub on the server, just as with any out-of-process server.
Connection information is maintained by the proxy. The connection between the
base client and proxy remains open as long as the client requires a connection to the
server, so it appears to the client that it has continued access to the server. In reality,
though, the proxy may deactivate and reactivate the object, conserving resources so
that other clients may use the connection. For details on activating and deactivating,
see “Just-in-time activation” on page 44-4.

C r e a t i n g M T S o r C O M + o b j e c t s 44-3

M a n a g i n g r e s o u r c e s

Requirements for a transactional object

In addition to the COM requirements, a transactional object must meet the following
requirements:

• The object must have a standard class factory. This is automatically supplied by
the wizard when you create the object.

• The server must expose its class object by exporting the standard DllGetClassObject
method. Code to do this is supplied by the wizard.

• All object interfaces and CoClasses must be described by a type library, which is
created automatically by the wizard. You can add methods and properties to
interfaces in the type library by using the Type Library editor. The information in
the type library is used by the MTS Explorer or COM+ Component Manager to
extract information about the installed components at runtime.

• The server must only export interfaces that use standard COM marshaling. This is
automatically supplied by the Transactional Object wizard. C++Builder’s support
of transactional objects does not allow manual marshaling for custom interfaces.
All interfaces must be implemented as dual interfaces that use COM’s automatic
marshaling support.

• The server must export the DllRegisterServer function and perform self-registration
of its CLSID, ProgID, interfaces, and type library in this routine. This is provided
by the Transactional Object wizard.

When using MTS rather than COM+, the following conditions apply as well:

• MTS requires that the server be a dynamic-link library (DLL). Servers that are
implemented as executable files (.EXE files) cannot execute in the MTS runtime
environment.

• The object must implement the IObjectControl interface. Support for this interface
is automatically added by the Transactional Object wizard.

• A server running in the MTS process space cannot aggregate with COM objects
not running in MTS.

Managing resources
Transactional objects can be administered to better manage the resources used by
your application. These resources include everything from the memory for the object
instances themselves to any resources they use (such as database connections).

In general, you configure how your application manages resources by the way you
install and configure your object. You set your transactional object so that it takes
advantage of the following:

• Just-in-time activation
• Resource pooling
• Object pooling (COM+ only)

If you want your object to take full advantage of these services, however, it must use
the IObjectContext interface to indicate when resources can safely be released.

44-4 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

Accessing the object context

As with any COM object, a transactional object must be created before it is used.
COM clients create an object by calling the COM library function, CoCreateInstance.

Each transactional object must have a corresponding context object. This context
object is implemented automatically by MTS or COM+ and is used to manage the
transactional object. The context object’s interface is IObjectContext. Transactional
objects created by the Transactional object wizard automatically fetch the object
context when they are activated. The object context is stored in a member variable
called m_spObjectContext. For example, you can use the object context pointer as
follows:

BOOL flags;
m_spObjectContext->IsCallerInRole(OLESTR("Manager"), &flags);

You can also obtain a pointer to the object context by calling the Get_ObjectContext
method of TMtsDll. The TMtsDll object adapts your call to fetch the object context so
that it work whether your application runs under MTS or COM+:

IObjectContext* IAmWatchingYou = NULL;
TMtsDll MTSDLL;
HRESULT hr = MTSDLL.Get_ObjectContext(&IAmWatchingYou);
if (! (SUCCEEDED(hr)))
{

// do something useful with the error
}

BOOL flags;
IAmWatchingYou->IsCallerInRole(OLESTR("Manager"), &flags);

Warning Use the Get_ObjectContext method of TMtsDll rather than the GetObjectContext macro
defined in comsvcs.h. The latter is undefined by VCL headers to avoid redefining the
GetObjectContext method of TDatabase.

Note The m_spObjectContext member is assigned using the TMtsDll method, so it works
under both MTS and COM+.

Just-in-time activation

The ability for an object to be deactivated and reactivated while clients hold
references to it is called just-in-time activation. From the client's perspective, only a
single instance of the object exists from the time the client creates it to the time it is
finally released. Actually, it is possible that the object has been deactivated and
reactivated many times. By having objects deactivated, clients can hold references to
the object for an extended time without affecting system resources. When an object is
deactivated, all its resources can be released. For example, when an object is
deactivated, it can release its database connection so that other objects can use it.

A transactional object is created in a deactivated state and becomes active upon
receiving a client request. When the transactional object is created, a corresponding
context object is also created. This context object exists for the entire lifetime of the
transactional object, across one or more reactivation cycles. The context object,

C r e a t i n g M T S o r C O M + o b j e c t s 44-5

M a n a g i n g r e s o u r c e s

accessed by the IObjectContext interface, keeps track of the object during deactivation
and coordinates transactions.

Transactional objects are deactivated as soon as it is safe to do so. This is called as-
soon-as-possible deactivation. A transactional object is deactivated when any of the
following occurs:

• The object requests deactivation with SetComplete or SetAbort: An object calls
the IObjectContext SetComplete method when it has successfully completed its work
and it does not need to save the internal object state for the next call from the
client. An object calls SetAbort to indicate that it cannot successfully complete its
work and its object state does not need to be saved. That is, the object’s state rolls
back to the state prior to the current transaction. Often, objects can be designed to
be stateless, which means that objects deactivate upon return from every method.

• A transaction is committed or aborted: When an object's transaction is committed
or aborted, the object is deactivated. Of these deactivated objects, the only ones
that continue to exist are the ones that have references from clients outside the
transaction. Subsequent calls to these objects reactivate them and cause them to
execute in a new transaction.

• The last client releases the object: Of course, when a client releases the object, the
object is deactivated, and the object context is also released.

Note If you install the transactional object under COM+ from the IDE, you can specify
whether object supports just-in-time activation using the COM+ page of the Type
Library editor. Just select the object (CoClass) in the Type Library editor, go to the
COM+ page, and check or uncheck the box for Just In Time Activation. Otherwise, a
system administrator specifies this attribute using the COM+ Component Manager
or MTS Explorer. (The system administrator can also override any settings you
specify using the Type Library editor.)

Resource pooling

Since idle system resources are freed during a deactivation, the freed resources are
available to other server objects. For example, a database connection that is no longer
used by a server object can be reused by another client. This is called resource
pooling. Pooled resources are managed by a resource dispenser.

A resource dispenser caches resources, so that transactional objects that are installed
together can share them. The resource dispenser also manages nondurable shared
state information. In this way, resource dispensers are similar to resource managers
such as the SQL Server, but without the guarantee of durability.

When writing your transactional object, you can take advantage of two types of
resource dispenser that are provided for you already:

• Database resource dispensers

• Shared Property Manager

Before other objects can use pooled resources, you must explicitly release them.

44-6 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

Database resource dispensers
Opening and closing connections to a database can be time-consuming. By using a
resource dispenser to pool database connections, your object can reuse existing
database connections rather than create new ones. For example, if you have a
database lookup and a database update component running in a customer
maintenance application, you can install those components together, and then they
can share database connections. In this way, your application does not need as many
connections and new object instances can access the data more quickly by using a
connection that is already open but not in use.

• If you are using BDE components to connect to your data, the resource dispenser
is the Borland Database Engine (BDE). This resource dispenser is only available
when your transactional object is installed with MTS. To enable the resource
dispenser, use the BDE administrator to turn on MTS POOLING in the System/
Init area of the configuration.

• If you are using the ADO database components to connect to your data, the
resource dispenser is provided by ADO.

Note There is no built-in resource pooling if you are using InterbaseExpress components
for your database access.

For remote transactional data modules, connections are automatically enlisted on an
object's transactions, and the resource dispenser can automatically reclaim and reuse
connections.

Shared property manager
The Shared Property Manager is a resource dispenser that you can use to share state
among multiple objects within a server process. By using the Shared Property
Manager, you avoid having to add a lot of code to your application for managing
shared data: the Shared Property Manager handles it for you by implementing locks
and semaphores to protect shared properties from simultaneous access. The Shared
Property Manager eliminates name collisions by providing shared property groups,
which establish unique name spaces for the shared properties they contain.

To use the Shared Property Manager resource, you first use the
CreateSharedPropertyGroup helper function to create a shared property group. Then
you can write all the properties to that group and read all the properties from that
group. By using a shared property group, the state information is saved across all
deactivations of a transactional object. In addition, state information can be shared
among all transactional objects installed in the same MTS package or COM+
application. You can install transactional objects into a package as described in
“Installing transactional objects” on page 44-27.

For objects to share state, they all must run in the same process. If you want instances
of different components to share properties, you must install them in the same MTS
package or COM+ application. Because there is a risk that administrators may move
components from one package to another, it's safest to limit the use of a shared
property group to instances of objects that are defined in the same DLL or EXE.

Objects sharing properties must have the same activation attribute. If two
components in the same package have different activation attributes, they generally

C r e a t i n g M T S o r C O M + o b j e c t s 44-7

M a n a g i n g r e s o u r c e s

won't be able to share properties. For example, if one component is configured to run
in a client's process and the other is configured to run in a server process, their objects
will usually run in different processes, even though they're in the same MTS package
or COM+ application.

The following example shows how to add code to support the Shared Property
Manager in a transactional object:

Example: Sharing properties among transactional object instances
This example creates a property group called MyGroup to contain the properties to
be shared among objects and object instances. In this example, there is a Counter
property that is shared. It uses the CreateSharedPropertyGroup helper function to
create the property group manager and property group, and then uses the
CreateProperty method of the Group object to create a property called Counter.

To get the value of a property, you use the PropertyByName method of the Group
object as shown below. You can also use the PropertyByPosition method.

#include "Project1_TLB.H"
#define _MTX_NOFORCE_LIBS
#include <vcl\mtshlpr.h>

class ATL_NO_VTABLE TSharedPropertyExampleImpl :
public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<TSharedPropertyExampleImpl, &CLSID_SharedPropertyExample>,
public IObjectControl,
public IDispatchImpl<ISharedPropertyExample, &IID_ISharedPropertyExample, &LIBID_Project1>

{
private:

ISharedPropertyGroupManager* manager;
ISharedPropertyGroup* PG13;
ISharedProperty* Counter;

public:
TSharedPropertyExampleImpl()
{
}
DECLARE_THREADING_MODEL(otApartment);
DECLARE_PROGID("Project1.SharedPropertyExample");
DECLARE_DESCRIPTION("");

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)
{

TTypedComServerRegistrarT<TSharedPropertyExampleImpl>
regObj(GetObjectCLSID(), GetProgID(), GetDescription());
return regObj.UpdateRegistry(bRegister);

}

DECLARE_NOT_AGGREGATABLE(TSharedPropertyExampleImpl)

BEGIN_COM_MAP(TSharedPropertyExampleImpl)
 COM_INTERFACE_ENTRY(ISharedPropertyExample)
 COM_INTERFACE_ENTRY(IObjectControl)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

public:

44-8 D e v e l o p e r ’ s G u i d e

M a n a g i n g r e s o u r c e s

 STDMETHOD(Activate)();
 STDMETHOD(IncrementCounter());
 STDMETHOD_(BOOL, CanBePooled)();
 STDMETHOD_(void, Deactivate)();

CComPtr<IObjectContext> m_spObjectContext;

public:

};

// SHAREDPROPERTYEXAMPLEIMPL : Implementation of TSharedPropertyExampleImpl

#include <vcl.h>
#pragma hdrstop

#include "SHAREDPROPERTYEXAMPLEIMPL.H"

STDMETHODIMP TSharedPropertyExampleImpl::Activate()
{

static TMtsDll Mts;
HRESULT hr = E_FAIL;
hr = Mts.Get_ObjectContext(&m_spObjectContext);
if (SUCCEEDED(hr))
{

VARIANT_BOOL _false = VARIANT_FALSE;
VARIANT_BOOL _true = VARIANT_TRUE;
CoCreateInstance(CLSID_SharedPropertyGroupManager, NULL, CLSCTX_INPROC_SERVER,

IID_ISharedPropertyGroupManager, (void**)manager);
manager->CreatePropertyGroup(L"Test Group", LockSetGet, Standard, &_false, &PG13);
if ((PG13->CreateProperty(L"Counter", &_true, &Counter)) == S_OK)
{

Counter->put_Value(TVariant(0));
}
return S_OK;

}
return hr;

}

STDMETHODIMP_(BOOL) TSharedPropertyExampleImpl::CanBePooled()
{

return FALSE;
}

STDMETHODIMP_(void) TSharedPropertyExampleImpl::Deactivate()
{

PG13->Release();
manager->Release();
m_spObjectContext.Release();

}

STDMETHODIMP TSharedPropertyExampleImpl::IncrementCounter()
{

try
{

TVariant temp;
Counter->get_Value(&temp);
temp=(int)temp+1;;
Counter->put_Value(temp);

C r e a t i n g M T S o r C O M + o b j e c t s 44-9

M a n a g i n g r e s o u r c e s

}
catch(Exception &e)
{

return Error(e.Message.c_str(), IID_ISharedPropertyExample);
}
return S_OK;

};

Releasing resources
You are responsible for releasing resources of an object. Typically, you do this by
calling the IObjectContext methods SetComplete and SetAbort after servicing a client
request. These methods release the resources allocated by the resource dispenser.

At this same time, you must release references to all other resources, including
references to other objects (including transactional objects and context objects) and
memory held by any instances of the component (freeing the component).

The only time you would not include these calls is if you want to maintain state
between client calls. For details, see “Stateful and stateless objects” on page 44-12.

Object pooling

Just as you can pool resources, under COM+ you can also pool objects. When an
object is deactivated, COM+ calls the IObjectControl interface method, CanBePooled,
which indicates that the object can be pooled for reuse. If CanBePooled is returns true,
then instead of being destroyed on deactivation, the object is moved to the object
pool. It remains in the object pool for a specified time-out period, during which time
it is available for use to any client requesting it. Only when the object pool is empty is
a new instance of the object created. Objects that return false or that do not support
the IObjectControl interface are destroyed when they are deactivated.

Object pooling is not available under MTS. MTS calls CanBePooled as described, but
no pooling takes place. Because of this, when the wizard creates transactional objects
the generated CanBePooled method always returns false. If your object will only run
under COM+ and you want to allow object pooling, locate this method in the
implementation unit and edit it so that it returns true.

Even if an object’s CanBePooled method returns true, it can be configured so that
COM+ does not move it to the object pool. If you install the transactional object
under COM+ from the IDE, you can specify whether COM+ tries to pool the object
using the COM+ page of the Type Library editor. Just select the object (CoClass) in
the type library editor, go to the COM+ page, and check or uncheck the box for
Object Pooling. Otherwise, a system administrator specifies this attribute using the
COM+ Component Manager or MTS Explorer.

Similarly, you can configure the time a deactivated object remains in the object pool
before it is freed If you are installing from the IDE, you can specify this duration
using the Creation TimeOut setting on the COM+ page of the type library editor.
Otherwise, a system administrator specifies this attribute using the COM+
Component Manager.

44-10 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

MTS and COM+ transaction support
The transaction support that gives transactional objects their name lets you group
actions into transactions. For example, in a medical records application, if you had a
Transfer component to transfer records from one physician to another, you could
include your Add and Delete methods in the same transaction. That way, either the
entire Transfer works or it can be rolled back to its previous state. Transactions
simplify error recovery for applications that must access multiple databases.

Transactions ensure that

• All updates in a single transaction are either committed or get aborted and rolled
back to their previous state. This is referred to as atomicity.

• A transaction is a correct transformation of the system state, preserving the state
invariants. This is referred to as consistency.

• Concurrent transactions do not see each other's partial and uncommitted results,
which might create inconsistencies in the application state. This is referred to as
isolation. Resource managers use transaction-based synchronization protocols to
isolate the uncommitted work of active transactions.

• Committed updates to managed resources (such as database records) survive
failures, including communication failures, process failures, and server system
failures. This is referred to as durability. Transactional logging allows you to
recover the durable state after disk media failures.

An object's associated context object indicates whether the object is executing within
a transaction and, if so, the identity of the transaction. When an object is part of a
transaction, the services that resource managers and resource dispensers perform on
its behalf execute under the transaction as well. Resource dispensers use the context
object to provide transaction-based services. For example, when an object executing
within a transaction allocates a database connection by using the ADO or BDE
resource dispenser, the connection is automatically enlisted on the transaction. All
database updates using this connection become part of the transaction, and are either
committed or aborted.

Work from multiple objects can be composed into a single transaction. Allowing an
object to either live in its own transaction or be part of a larger group of objects that
belong to a single transaction is a major advantage of MTS and COM+. It allows an
object to be used in various ways, so that application developers can reuse
application code in different applications without rewriting the application logic. In
fact, developers can determine how objects are used in transactions when installing
the transactional object. They can change the transaction behavior simply by adding
an object to a different MTS package or COM+ application. For details about
installing transactional objects, see “Installing transactional objects” on page 44-27.

C r e a t i n g M T S o r C O M + o b j e c t s 44-11

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Transaction attributes

Every transactional object has a transaction attribute that is recorded in the MTS
catalog or that is registered with COM+.

C++Builder lets you set the transaction attribute at design time using the
Transactional Object wizard or the Type Library editor.

Each transaction attribute can be set to these settings:

Setting the transaction attribute
You can set a transaction attribute when you first create a transactional object using
the Transactional Object wizard.

You can also set (or change) the transaction attribute using the Type Library editor.
To change the transaction attribute in the Type Library editor,

1 Choose View|Type Library to open the Type Library editor.

2 Select the class corresponding to the transactional object.

3 Click the COM+ tab and choose the desired transaction attribute.

Requires a
transaction

Objects must execute within the scope of a transaction. When a new
object is created, its object context inherits the transaction from
the context of the client. If the client does not have a transaction
context, a new one is automatically created.

Requires a new
transaction

Objects must execute within their own transactions. When a new
object is created, a new transaction is automatically created for
the object, regardless of whether its client has a transaction. An
object never runs inside the scope of its client's transaction.
Instead, the system always creates independent transactions for
the new objects.

Supports
transactions

Objects can execute within the scope of their client's transactions.
When a new object is created, its object context inherits the
transaction from the context of the client. This enables multiple
objects to be composed in a single transaction. If the client does
not have a transaction, the new context is also created without
one.

Transactions
Ignored

Objects do not run within the scope of transactions. When a new
object is created, its object context is created without a
transaction, regardless of whether the client has a transaction.
This setting is only available under COM+.

Does not support
transactions

The meaning of this setting varies, depending on whether you
install the object under MTS or COM+. Under MTS, this setting
has the same meaning as Transactions Ignored under COM+.
Under COM+, not only is the object context created without a
transaction, this setting prevents the object from being activated if
the client has a transaction.

44-12 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Warning When you set the transaction attribute, C++Builder inserts a special GUID for the
specified attribute as custom data in the type library. This value is not recognized
outside of C++Builder. Therefore, it only has an effect if you install the transactional
object from the IDE. Otherwise, a system administrator must set this value using the
MTS Explorer or COM+ Component Manager.

Note: If the transactional object is already installed, you must first uninstall the object and
reinstall it when changing the transaction attribute. Use Run|Install MTS objects or
Run|Install COM+ objects to do so.

Stateful and stateless objects

Like any COM object, transactional objects can maintain internal state across multiple
interactions with a client. For example, the client could set a property value in one
call, and expect that property value to remain unchanged when it makes the next call.
Such an object is said to be stateful. Transactional objects can also be stateless, which
means the object does not hold any intermediate state while waiting for the next call
from a client.

When a transaction is committed or aborted, all objects that are involved in the
transaction are deactivated, causing them to lose any state they acquired during the
course of the transaction. This helps ensure transaction isolation and database
consistency; it also frees server resources for use in other transactions. Completing a
transaction enables the resources held by an object to be reclaimed when the object is
deactivated. See the following section for information on how to control when the
object’s state is released.

Maintaining state on an object requires the object to remain activated, holding
potentially valuable resources such as database connections.

Influencing how transactions end

A transactional object uses the IObjectContext methods as shown in the following
table to influence how a transaction completes. These methods, together with the
object’s transaction attribute, allow you to enlist one or more objects into a single
transaction.

Table 44.1 IObjectContext methods for transaction support

Method Description

SetComplete Indicates that the object has successfully completed its work for the
transaction. The object is deactivated upon return from the method that first
entered the context. The object reactivates on the next call that requires object
execution.

SetAbort Indicates that the object's work can never be committed and the transaction
should be rolled back. The object is deactivated upon return from the method
that first entered the context. The object reactivates on the next call that
requires object execution.

C r e a t i n g M T S o r C O M + o b j e c t s 44-13

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

Initiating transactions

Transactions can be controlled in three ways:

• They can be controlled by the client.

Clients can have direct control over transactions by using a transaction context
object (using the ITransactionContext interface).

• They can be controlled by the server.

Servers can control transactions explicitly creating an object context for them.
When the server creates an object this way, the created object is automatically
enlisted in the current transaction.

• Transactions can occur automatically as a result of the object’s transaction
attribute.

Transactional objects can be declared so that their objects always execute within a
transaction, regardless of how the objects are created. This way, objects do not
need to include any logic to handle transactions. This feature also reduces the
burden on client applications. Clients do not need to initiate a transaction simply
because the component that they are using requires it.

Setting up a transaction object on the client side
A client-based application can control transaction context through the
ITransactionContextEx interface. The following code example shows how a client
application uses CreateTransactionContextEx to create the transaction context. This
method returns an interface to this object.

EnableCommit Indicates that the object's work is not necessarily done, but that its
transactional updates can be committed in their current form. Use this to retain
state across multiple calls from a client while still allowing transactions to
complete. The object is not deactivated until it calls SetComplete or SetAbort.
EnableCommit is the default state when an object is activated. This is why an
object should always call SetComplete or SetAbort before returning from a method,
unless you want the object to maintain its internal state for the next call from a
client.

DisableCommit Indicates that the object's work is inconsistent and that it cannot complete its
work until it receives further method invocations from the client. Call this
before returning control to the client to maintain state across multiple client
calls while keeping the current transaction active.
DisableCommit prevents the object from deactivating and releasing its
resources on return from a method call. Once an object has called
DisableCommit, if a client attempts to commit the transaction before the object
has called EnableCommit or SetComplete, the transaction will abort.

Table 44.1 IObjectContext methods for transaction support (continued)

Method Description

44-14 D e v e l o p e r ’ s G u i d e

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

#include <vcl\mtshlpr.h>

int main(int argc, char* argv[])
{

// first, create a transactional object. [requires COM+ or local installation of MTS]

TCOMITransactionClientExample first_client = CoTransactionClientExample::Create();

//then, check to see if it's in a transaction.

ITransactionContext* TCTX;
HRESULT happily_transacting = first_client->QueryInterface(IID_ITransactionContext,

(void**)&TCTX);

// if it is in a transaction, you can do your data access calls from here
// and then call Commit or Abort yourself instead of waiting for the
// transactional object to do so.

if (happily_transacting)
{

TVariant database = "name";
TVariant record = "data";
TVariant flag;
first_client.UpdateData(&database, &record, &flag);
flag ? TCTX->Commit() : TCTX->Abort();

}
else
{

// otherwise, you can create a transaction:
ITransactionContextEx* TXCTX = CreateTransactionContextEx();

// and an object. any objects you create in this fashion
// will be enlisted in the transaction represented by this object.

TCOMITransactionClientExample* second_client;
TXCTX->CreateInstance(CLSID_TransactionClientExample, IID_ITransactionClientExample,

(void**)&second_client);

// and then perform your data access and commit or abort.

TVariant database = "name";
TVariant record = "data";
TVariant flag;
second_client->UpdateData(&database, &record, &flag);
flag ? TXCTX->Commit() : TXCTX->Abort();

}
return 0;

}

Setting up a transaction object on the server side
To control transaction context from the server side, you create an instance of
ObjectContext. In the following example, the Transfer method is in the transactional
object. In using ObjectContext this way, the instance of the object we are creating will
inherit all the transaction attributes of the object that creates it.

C r e a t i n g M T S o r C O M + o b j e c t s 44-15

M T S a n d C O M + t r a n s a c t i o n s u p p o r t

#include <vcl\mtshlpr.h>

STDMETHODIMP TTransactionServerExampleImpl::DoTransactionContext(long execflag)
{

if (m_spObjectContext->IsInTransaction())
{

// this means the current object has a transaction, and can pass
// its transaction information to its children.
// for simplicity, this object simply creates another object of its
// own type, within the same transaction.
// NOTE: you are still responsible for aggregating, if appropriate;

if (execflag)
{

TCOMITransactionServerExample* inner;
m_spObjectContext->CreateInstance(CLSID_TransactionServerExample,

IID_ITransactionServerExample, (void**)&inner);
inner->DoTransactionContext(false);

// add data access code here. data_access_succeeded() below is
// an unimplemented placeholder.

data_access_succeeded() ? m_spObjectContext->EnableCommit()
: m_spObjectContext->DisableCommit();

}
}
else
{

//this means the current object has no transaction, and must
//create one the way a client would.

ITransactionContextEx* TCTX = CreateTransactionContextEx();
TCOMITransactionServerExample* inner;

// afterwards, follow the same steps.

TCTX->CreateInstance(CLSID_TransactionServerExample,
IID_ITransactionServerExample, (void**)&inner);

inner->DoTransactionContext(true);

// add data access code here. data_access_succeeded() below is
// an unimplemented placeholder.
data_access_succeeded() ? TCTX->Commit() : TCTX->Abort();

}
}

Transaction time-out

The transaction time-out sets how long (in seconds) a transaction can remain active.
The system automatically aborts transactions that are still alive after the time-out. By
default, the time-out value is 60 seconds. You can disable transaction time-outs by
specifying a value of 0, which is useful when debugging transactional objects.

To set the time-out value on your computer,

1 In the MTS Explorer or COM+ Component Manager, select Computer, My
Computer.

By default, My Computer corresponds to the local computer.

44-16 D e v e l o p e r ’ s G u i d e

R o l e - b a s e d s e c u r i t y

2 Right-click and choose Properties and then choose the Options tab.

The Options tab is used to set the computer's transaction time-out property.

3 Change the time-out value to 0 to disable transaction time-outs.

4 Click OK to save the setting.

For more information on debugging MTS applications, see “Debugging and testing
transactional objects” on page 44-26.

Role-based security
MTS and COM+ provide role-based security where you assign a role to a logical
group of users. For example, a medical information application might define roles for
Physician, X-ray technician, and Patient.

You define authorization for each object and interface by assigning roles. For
example, in the physicians’ medical application, only the Physician may be
authorized to view all medical records; the X-ray Technician may view only X-rays;
and Patients may view only their own medical record.

Typically, you define roles during application development and assign roles for each
MTS package or COM+ Application. These roles are then assigned to specific users
when the application is deployed. Administrators can configure the roles using the
MTS Explorer or COM+ Component Manager.

If you want to control access to blocks of code rather than entire objects, you can
provide more fine-grained security by using the IObjectContext method,
IsCallerInRole. This method only works if security is enabled, which can be checked
by calling the IObjectContext method IsSecurityEnabled. For example,

if (m_spObjectContext.IsSecurityEnabled()) // check if security is enabled
{

if (!m_spObjectContext.IsCallerInRole("Physician")) // check caller’s role
{ // If not a physician, do something appropriate here.
}
else
{ // execute the call normally
}

}
else // no security enabled
{ // do something appropriate
}

Note For applications that require stronger security, context objects implement the
ISecurityProperty interface, whose methods allow retrieval of the Window’s security
identifier (SID) for the direct caller and creator of the object, as well as the SID for the
clients which are using the object.

C r e a t i n g M T S o r C O M + o b j e c t s 44-17

O v e r v i e w o f c r e a t i n g t r a n s a c t i o n a l o b j e c t s

Overview of creating transactional objects
The process of creating transactional object is as follows:

1 Use the Transactional Object wizard to create the transactional object.

2 Add methods and properties to the object’s interface using the Type Library
editor. For details on adding methods and properties using the Type Library editor,
see Chapter 39, “Working with type libraries.”

3 When implementing your object’s methods, you can use the IObjectContext
interface to manage transactions, persistent state, and security. In addition, if you
are passing object references, you will need to use extra care so that they are
correctly handled. (See “Passing object references” on page 24.)

4 Debug and test the transactional object.

5 Install the transactional object into an MTS package or COM+ application.

6 Administer your objects using the MTS Explorer or COM+ Component Manager.

Using the Transactional Object wizard
Use the Transactional Object wizard to create a COM object that can take advantage
of the resource management, transaction processing, and role-based security
provided by MTS or COM+.

To bring up the Transactional Object wizard,

1 Choose File|New|Other.

2 Select the tab labeled ActiveX.

3 Double-click the Transactional Object icon.

In the wizard, you must specify the following:

• A threading model that indicates how client applications can call your object’s
interface. The threading model determines how the object is registered. You are
responsible for ensuring that the object’s implementation adheres to the selected
model. For more information on threading models, see “Choosing a threading
model for a transactional object” on page 44-18.

• A transaction model

• An indication of whether your object notifies clients of events. Event support is
only provided for traditional events, not COM+ events.

When you complete this procedure, a new unit is added to the current project that
contains the definition for the transactional object. In addition, the wizard adds a
type library to the project and opens it in the Type Library editor. Now you can
expose the properties and methods of the interface through the type library. You
define the interface as you would define any COM object as described in “Defining a
COM object’s interface” on page 41-9.

44-18 D e v e l o p e r ’ s G u i d e

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

The transactional object implements a dual interface, which supports both early
(compile-time) binding through the vtable and late (runtime) binding through the
IDispatch interface.

The generated transactional object implements the IObjectControl interface methods,
Activate, Deactivate, and CanBePooled.

It is not strictly necessary to use the transactional object wizard. You can convert any
Automation object into a COM+ transactional object (and any in-process Automation
object into an MTS transactional object) by using the COM+ page of the Type Library
editor and then installing the object into an MTS package or COM+ application.
However, the transactional object wizard provides certain benefits:

• It automatically implements the IObjectControl interface, adding OnActivate and
OnDeactivate events to the object so that you can create event handlers that
respond when the object is activated or deactivated.

• It automatically generates an m_spObjectContext member so that it is easy for
your object to access the IObjectContext methods to control activation and
transactions.

Choosing a threading model for a transactional object

The MTS runtime environment or COM+ manages threads for you. Transactional
objects should not create threads. They must also never terminate a thread that calls
into a DLL.

When you specify the threading model using the Transactional object wizard, you
specify how objects are assigned to threads for method execution.

Table 44.2 Threading models for transactional objects

Threading model Description Implementation pros and cons

Single No thread support. Client requests
are serialized by the calling
mechanism.
All objects of a single-threaded
component execute on the main
thread.
This is compatible with the default
COM threading model, which is
used for components that do not
have a Threading Model Registry
attribute or for COM components
that are not reentrant. Method
execution is serialized across all
objects in the component and
across all components in a process.

 Allows components to use libraries
that are not reentrant.
Very limited scalability.
Single-threaded, stateful components
are prone to deadlocks. You can
eliminate this problem by using
stateless objects and calling
SetComplete before returning from
any method.

C r e a t i n g M T S o r C O M + o b j e c t s 44-19

U s i n g t h e T r a n s a c t i o n a l O b j e c t w i z a r d

Note These threading models are similar to those defined by COM objects. However,
because the MTS and COM+ provide more underlying support for threads, the
meaning of each threading model differs here. Also, the free threading model does
not apply to transactional objects due to the built-in support for activities.

Activities
In addition to the threading model, transactional objects achieve concurrency
through activities. Activities are recorded in an object’s context, and the association
between an object and an activity cannot be changed. An activity includes the
transactional object created by the base client, as well as any transactional objects
created by that object and its descendants. These objects can be distributed across one
or more processes, executing on one or more computers.

For example, a physician’s medical application may have a transactional object to
add updates and remove records to various medical databases, each represented by a
different object. This record object may use other objects as well, such as a receipt
object to record the transaction. This results in several transactional objects that are
either directly or indirectly under the control of a base client. These objects all belong
to the same activity.

MTS or COM+ tracks the flow of execution through each activity, preventing
inadvertent parallelism from corrupting the application state. This feature results in a
single logical thread of execution throughout a potentially distributed collection of
objects. By having one logical thread, applications are significantly easier to write.

When a transactional object is created from an existing context, using either a
transaction context object or an object context, the new object becomes a member of
the same activity. In other words, the new context inherits the activity identifier of
the context used to create it.

Only a single logical thread of execution is allowed within an activity. This is similar
in behavior to a COM apartment threading model, except that the objects can be
distributed across multiple processes. When a base client calls into an activity, all

Apartment
(or Single-threaded
apartment)

Each object is assigned to a thread
apartment, which lasts for the life
of the object; however, multiple
threads can be used for multiple
objects. This is a standard COM
concurrency model. Each
apartment is tied to a specific
thread and has a Windows
message pump.

Provides significant concurrency
improvements over the single
threading model.
Two objects can execute concurrently
as long as they are not in the same
activity.
Similar to a COM apartment, except
that the objects can be distributed
across multiple processes.

Both Same as Apartment, except that
callbacks to clients are serialized.

Same advantages as Apartment. In
addition, this model is required if
you want to use Object Pooling.

Table 44.2 Threading models for transactional objects (continued)

Threading model Description Implementation pros and cons

44-20 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g e v e n t s u n d e r C O M +

other requests for work in the activity (such as from another client thread) are
blocked until after the initial thread of execution returns back to the client.

Under MTS, every transactional object belongs to one activity. Under COM+, you can
configure the way the object participates in activities by setting the call
synchronization. The following options are available:

Generating events under COM+
Many COM-based technologies, such as the ActiveX scripting engine and ActiveX
controls, use event sinks and COM's connection point interfaces to generate events.
Event sinks and connection points are examples of a tightly coupled event model. In
such a model, applications that generate events (called publishers in COM+
terminology, and sinks in previous COM terminology) are aware of those
applications that respond to events (called subscribers), and vice versa. The lifetime
of publishers and subscribers coincides; they must be active at the same time. The
collection of subscribers, and the mechanism that notifies them when events occur,
must be maintained and implemented in the publisher.

COM+ introduces a new system for managing events. Instead of burdening each
publisher with the management and notification of each subscriber, the underlying
system (COM+) steps in and takes over this process. The COM+ Events model is
loosely coupled, allowing publishers and subscribers to be developed, deployed, and
activated independently of each other.

Although the COM+ event model greatly simplifies communication between
publishers and subscribers, it also introduces some additional administrative tasks to
manage the new layer of software that now exists between them. Information on
events and subscribers is maintained in a part of the COM+ Catalog known as the

Table 44.3 Call synchronization options

Option Meaning

Disabled COM+ does not assign activities to the object but it may inherit them with the
caller’s context. If the caller has no transaction or object context, the object is
not assigned to an activity. The result is the same as if the object was not
installed in a COM+ application. This option should not be used if any object
in the application uses a resource manager or if the object supports
transactions or just-in-time activation.

Not Supported COM+ never assigns the object to an activity, regardless of the status of its
caller. This option should not be used if any object in the application uses a
resource manager or if the object supports transactions or just-in-time
activation.

Supported COM+ assigns the object to the same activity as its caller. If the caller does not
belong to an activity, the object does not either. This option should not be used
if any object in the application uses a resource manager or if the object
supports transactions or just-in-time activation.

Required COM+ always assigns the object to an activity, creating one if necessary. This
option must be used if the transaction attribute is Supported or Required.

Requires New COM+ always assigns the object to a new activity, which is distinct from its
caller’s.

C r e a t i n g M T S o r C O M + o b j e c t s 44-21

G e n e r a t i n g e v e n t s u n d e r C O M +

event store. Tools such as the Component Services manager are used to perform
these administrative tasks. The Component Services tool is completely scriptable,
allowing much of the administration to be automated. For example, an installation
script can perform these tasks during its execution. In addition, the event store can be
administered programmatically using the TComAdminCatalog object. The COM+
components can also be installed directly from C++Builder, by selecting Run|Install
COM+ objects.

As with the tightly coupled event model, an event is simply a method in an interface.
Therefore, you must first create an interface for your event methods. You can use
C++ Builder's COM+ Event Object wizard to create a project containing a COM+
event object. Then, using the Component Services administrative tool (or
TComAdminCatalog, or the IDE), create a COM+ application that houses an event
class component. When you create the event class component in the COM+
application, you will select your event object. The event class is the glue that COM+
uses to bind the publisher to the list of subscribers.

The interesting thing about a COM+ event object is that it contains no
implementation of the event interface. A COM+ event object simply defines the
interface that publishers and subscribers will use to communicate. When you create a
COM+ event object with C++Builder, you will use the type library editor to define
your interface. The interface is implemented when you create a COM+ application
and its the event class component. The event class then, contains a reference, and
provides access to the implementation provided by COM+. At runtime, the publisher
creates an instance of the event class with the usual COM mechanisms (e.g.
CoCreateInstance). The COM+ implementation of your interface is such that all a
publisher has to do is call a method on the interface (through the instance of the event
class) to generate an event that will notify all subscribers.

Note A publisher need not be a COM component itself. A publisher is simply any
application that creates an instance of the event class, and generates events by calling
methods on the event interface.

The subscriber component must also be installed in the COM+ Catalog. Again, this
can be done either programatically with TComAdminCatalog, the IDE, or with the
Component Services administration tool. The subscriber component can be installed
in a separate COM+ application, or it can be installed in the same application used to
contain the event class component. After installing the component, a subscription
must be created for each event interface supported by the component. After creating
the subscription, select those event classes (i.e. publishers) you want the component
to listen to. A subscriber component can select individual event classes, or all event
classes.

Unlike the COM+ event object, a COM+ subscription object does contain its own
implementation of an event interface; this is where the actual work is done to
respond to the event when it is generated. C++ Builder's COM+ Event Subscription
Object wizard can be used to create a project that contains a subscriber component.

44-22 D e v e l o p e r ’ s G u i d e

G e n e r a t i n g e v e n t s u n d e r C O M +

The following figure depicts the interaction between publishers, subscribers, and the
COM+ Catalog:

Figure 44.1 The COM+ Events system

Using the Event Object wizard

You can create event objects using the Event Object wizard. The wizard first checks
whether the current project contains any implementation code, because projects
containing COM+ event objects do not include an implementation. They can only
contain event object definitions. (You can, however, include multiple COM+ event
objects in a single project.)

To bring up the Event Object wizard,

1 Choose File|New |Other.

2 Select the tab labeled ActiveX.

3 Double-click the COM+ Event Object icon.

In the Event Object wizard, specify the name of the event object, the name of the
interface that defines the event handlers, and (optionally) a brief description of the
events.

Subscriber

Event Store

COM+ Catalog

COM+ Events

COM+ Application

Subscription
Event

Interface

Event
Interface

COM+ Application

Event Object

Publisher
Event Class

TCOMAdminCatalog or Component Services tool

Manages

Generate
event

Instantiates Delivers
event

C r e a t i n g M T S o r C O M + o b j e c t s 44-23

G e n e r a t i n g e v e n t s u n d e r C O M +

When you exit, the wizard creates a project containing a type library that defines
your event object and its interface. Use the Type Library editor to define the methods
of that interface. These methods are the event handlers that clients implement to
respond to events.

The Event object project includes the project file, _ATL unit to import the ATL
template classes, and the _TLB unit to define the type library information. It does not
include an implementation unit, however, because COM+ event objects have no
implementation. The implementation of the interface is the responsibility of the
client. When your server object calls a COM+ event object, COM+ intercepts the call
and dispatches it to registered clients. Because COM+ event objects require no
implementation object, all you need to do after defining the object’s interface in the Type
Library editor is compile the project and install it with COM+

COM+ places certain restrictions on the interfaces of event objects. The interface you
define in the Type Library editor for your event object must obey the following rules:

• The event object’s interface must derive from IDispatch.

• All method names must be unique across all interfaces of the event object.

• All methods on the event object’s interface must return an HRESULT value.

• The modifier for all parameters of methods must be [in].

Using the COM+ Event Subscription object wizard

You can create the subscriber component using C++Builder’s COM+ Subscription
Object wizard. To bring up the wizard,

1 Choose File|New | Other.

2 Select the tab labeled ActiveX.

3 Double-click the COM+ Subscription Object icon.

In the wizard dialog, enter the name of the class that will implement the event
interface. Choose the threading model from the combo box. In the Interface field, you
can type the name of your event interface, or click on the Browse button to bring up a
list of all event classes currently installed in the COM+ Catalog. The COM+ Event
Interface Selection dialog also contains a browse button. You can use this button to
search for and select a type library containing the event interface. When you select an
existing event class (or type library), the wizard will give you the option of
automatically implementing the interface supported by that event class. If you check
the Implement Existing Interface checkbox, the wizard will automatically stub out
each method in the interface for you. You can elect to have the wizard implement
inherited interfaces by checking the Implement Ancestor Interfaces checkbox. Three
ancestor interfaces are never implemented by the wizard: IUnknown, IDispatch, and
IAppServer. To complete the wizard, enter a brief description of your event subscriber
component, and click on OK.

44-24 D e v e l o p e r ’ s G u i d e

P a s s i n g o b j e c t r e f e r e n c e s

Firing events using a COM+ event object

To fire an event, a publisher first creates an instance of the event class, with the usual
COM mechanisms (e.g. CoCreateInstance). Remember, the event class contains its
own implementation of the event interface, so, generating an event amounts to
simply calling the appropriate method on the interface.

The COM+ Events system takes over from there. Calling an event method causes the
system to look up all the subscribers in the COM+ Catalog, and each subscriber is
notified. On the subscriber’s side, the event appears to be nothing more to a call on
the event method.

When a publisher generates an event, subscribers are notified synchronously, one at
a time. There is no way to specify the order of notification, nor can you rely on the
order being the same each time an event is fired. When an event class is installed in
the COM+ Catalog, the administrator can select the FireInParallel option to request
the event to be delivered using multiple threads. This does not guarantee
simultaneous delivery; it is simply a request to the system to permit this to happen.

The value returned to the publisher is an aggregate of all the return codes from each
subscriber. There is no direct way for a publisher to find out which subscriber failed.
To do so, a publisher must implement a publisher filter. See the Microsoft MSDN
documentation for more information on this subect. The following table summarizes
the possible return codes:

Passing object references
Note Information on passing object references applies only to MTS, not COM+. This

mechanism is needed under MTS because it is necessary to ensure that all pointers to
objects running under MTS are routed through interceptors. Because interceptors are
built into COM+, you do not need to pass object references.

Under MTS, you can pass object references, (for example, for use as a callback) only
in the following ways:

• Through return from an object creation interface, such as CoCreateInstance (or its
equivalent), ITransactionContext::CreateInstance, or IObjectContext::CreateInstance.

• Through a call to QueryInterface.

Table 44.4 Event publisher return codes

Return Code Meaning

S_OK All subscribers succeeded.

EVENT_S_SOME_SUBSCRIBERS_FAILED Some subscribers either could not be invoked, or
returned a failure code (note this is not an error
condition).

EVENT_E_ALL_SUBSCRIBERS_FAILED None of the subscribers could be invoked, or all
of the subscribers returned a failure code.

EVENT_S_NOSUBSCRIBERS There are no subscriptions in the COM+ Catalog
(note this is not an error condition).

C r e a t i n g M T S o r C O M + o b j e c t s 44-25

P a s s i n g o b j e c t r e f e r e n c e s

• Through a method that has called SafeRef to obtain the object reference.

An object reference that is obtained in the above ways is called a safe reference.
Methods invoked using safe references are guaranteed execute within the correct
context.

The MTS runtime environment requires calls to use safe references so that it can
manage context switches and allows transactional objects to have lifetimes that are
independent of client references. Safe references are not necessary under COM+.

Using the SafeRef method
An object can use the SafeRef function to obtain a reference to itself that is safe to pass
outside its context. This function is available as a method of the TMtsDll object,
which checks whether your server is running under MTS or COM+ and returns the
appropriate pointer accordingly.

SafeRef takes as input

• A reference to the interface ID (RIID) of the interface that the current object wants
to pass to another object or client.

• A reference to the current object’s IUnknown interface.

SafeRef returns a pointer to the interface specified in the RIID parameter that is safe to
pass outside the current object's context. It returns NULL if the object is requesting a
safe reference on an object other than itself, or the interface requested in the RIID
parameter is not implemented.

When an MTS object wants to pass a self-reference to a client or another object (for
example, for use as a callback), it should always call SafeRef first and then pass the
reference returned by this call. An object should never pass a self pointer, or a self-
reference obtained through an internal call to QueryInterface, to a client or to any
other object. Once such a reference is passed outside the object's context, it is no
longer a valid reference.

Calling SafeRef on a reference that is already safe returns the safe reference
unchanged, except that the reference count on the interface is incremented.

When a client calls QueryInterface on a reference that is safe, the reference returned
to the client is also a safe reference.

An object that obtains a safe reference must release the safe reference when finished
with it.

For details on SafeRef see the SafeRef topic in the Microsoft documentation.

Callbacks
Objects can make callbacks to clients and to other transactional objects. For example,
you can have an object that creates another object. The creating object can pass a
reference of itself to the created object; the created object can then use this reference
to call the creating object.

44-26 D e v e l o p e r ’ s G u i d e

D e b u g g i n g a n d t e s t i n g t r a n s a c t i o n a l o b j e c t s

If you choose to use callbacks, note the following restrictions:

• Calling back to the base client or another package requires access-level security on
the client. Additionally, the client must be a DCOM server.

• Intervening firewalls may block calls back to the client.

• Work done on the callback executes in the environment of the object being called.
It may be part of the same transaction, a different transaction, or no transaction.

• Under MTS, the creating object must call SafeRef and pass the returned reference to
the created object in order to call back to itself.

Debugging and testing transactional objects
You can debug local and remote transactional objects. When debugging transactional
objects, you may want to turn off transaction time-outs.

The transaction time-out sets how long (in seconds) a transaction can remain active.
Transactions that are still alive after the time-out are automatically aborted by the
system. By default, the time-out value is 60 seconds. You can disable transaction
time-outs by specifying a value of 0, which is useful when debugging.

For information on remote debugging, see the Remote Debugging topic in Online
help.

When testing a transactional object that you intend to run under MTS, you may first
want to test your object outside the MTS environment to simplify your test
environment.

While developing your server, you cannot rebuild the server when it is still in
memory. You may get a compiler error like, “Cannot write to DLL while executable
is loaded.” To avoid this, you can set the MTS package or COM+ application
properties to shut down the server when it is idle.

To shut down the server when idle,

1 In the MTS Explorer or COM+ Component Manager, right-click the MTS package
or COM+ application in which your transactional object is installed and choose
Properties.

2 Select the Advanced tab.

The Advanced tab determines whether the server process associated with a
package always runs, or whether it shuts down after a certain period of time.

3 Change the time-out value to 0, which shuts down the server as soon as no longer
has a client to service.

4 Click OK to save the setting.

C r e a t i n g M T S o r C O M + o b j e c t s 44-27

I n s t a l l i n g t r a n s a c t i o n a l o b j e c t s

Installing transactional objects
MTS applications consist of a group of in-process MTS objects running in a single
instance of the MTS executive (EXE). A group of COM objects that all run in the same
process is called a package. A single machine can be running several different
packages, where each package is running within a separate MTS EXE.

Under COM+, you work with a similar group, called a COM+ application. In a
COM+ application, the objects need not be in-process, and there is no separate
runtime environment.

You can group your application components into a single MTS package or COM+
application to be managed by a single process. You might want to distribute your
components into different MTS packages or COM+ applications to partition your
application across multiple processes or machines.

To install transactional objects into an MTS package or COM+ application,

1 If your system supports COM+, choose Run|Install COM+ objects. If your system
does not support COM+ but you have MTS installed on your system, choose Run|
Install MTS objects. If your system supports neither MTS nor COM+, you will not
see a menu item for installing transactional objects.

2 In the Install Object dialog box, check the objects to be installed.

3 If you are installing MTS objects, click the Package button to get a list of MTS
packages on your system. If you are installing COM+ objects, click the Application
button. Indicate the MTS package or COM+ application into which you are
installing your objects. You can choose Into New Package or Into New Application
to create a new MTS package or COM+ application in which to install the object.
You can choose Into Existing Package or Into Existing Application to install the
object into an existing listed MTS package or COM+ application.

4 Choose OK to refresh the catalog, which makes the objects available at runtime.

MTS packages can contain components from multiple DLLs, and components from a
single DLL can be installed into different packages. However, a single component
cannot be distributed among multiple packages.

Similarly, COM+ applications can contain components from multiple executables
and different components from a single executable can be installed into different
COM+ applications.

Note You can also install your transactional object using the COM+ Component Manager
or MTS Explorer. Be sure when installing the object with one of these tools that you
apply the settings for the object that appear on the COM+ page of the Type Library
editor. These settings are not applied automatically when you do not install from the
IDE.

44-28 D e v e l o p e r ’ s G u i d e

A d m i n i s t e r i n g t r a n s a c t i o n a l o b j e c t s

Administering transactional objects
Once you have installed transactional objects, you can administer these runtime
objects using the MTS Explorer (if they are installed into an MTS package) or the
COM+ Component Manager (if they are installed into a COM+ application). Both
tools are identical, except that the MTS Explorer operates on the MTS runtime
environment and the COM+ Component Manager operates on COM+ objects.

The COM+ Component Manager and MTS Explorer have a graphical user interface
for managing and deploying transactional objects. Using one of these tools, you can

• Configure transactional objects, MTS packages or COM+ applications, and roles

• View properties of components in an package or COM+ application and view the
MTS packages or COM+ applications installed on a computer

• Monitor and manage transactions for objects that comprise transactions

• Move MTS packages or COM+ applications between computers

• Make a remote transactional object available to a local client

For more details on these tools, see the appropriate Administrator’s Guide from
Microsoft.

C r e a t i n g c u s t o m c o m p o n e n t s

P a r t

V
Part VCreating custom components

The chapters in “Creating custom components” present concepts necessary for
designing and implementing custom components in C++Builder.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-1

C h a p t e r

45
Chapter45Overview of component creation

This chapter provides an overview of component design and the process of writing
components for C++Builder applications. The material here assumes that you are
familiar with C++Builder and its standard components.

• Class libraries
• Components and classes
• How do you create components?
• What goes into a component?
• Creating a new component
• Testing uninstalled components
• Testing installed components
• Installing a component on the Component palette

For information on installing new components, see “Installing component packages”
on page 15-5.

Class libraries
C++Builder’s components reside in two class hierarchies called the Visual
Component Library (VCL) and the Component Library for Cross Platform (CLX).
Figure 45.1 shows the relationship of selected classes that make up the VCL. The CLX
hierarchy is similar to the VCL but Windows controls are called widgets (therefore
TWinControl is called TWidgetControl, for example), and there are other differences.
For a more detailed discussion of class hierarchies and the inheritance relationships
among classes, see Chapter 46, “Object-oriented programming for component
writers.” For an overview of how CLX differs from the VCL, see “CLX versus VCL”
on page 14-5 and refer to the CLX online reference for details on the components.

The TComponent class is the shared ancestor of every component in the VCL and
CLX. TComponent provides the minimal properties and events necessary for a
component to work in C++Builder. The various branches of the library provide other,
more specialized capabilities.

45-2 D e v e l o p e r ’ s G u i d e

C o m p o n e n t s a n d c l a s s e s

Figure 45.1 Visual Component Library class hierarchy

When you create a component, you add to the VCL or CLX by deriving a new class
from one of the existing class types in the hierarchy.

Components and classes
Because components are classes, component writers work with objects at a different
level from application developers. Creating new components requires that you
derive new classes.

Briefly, there are two main differences between creating components and using them
in applications. When creating components,

• You access parts of the class that are inaccessible to application programmers.
• You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions and think
about how application developers will use the components you write.

How do you create components?
A component can be almost any program element that you want to manipulate at
design time. Creating a component means deriving a new class from an existing one.
You can derive a new component in several ways:

• Modifying existing controls
• Creating windowed controls
• Creating graphic controls
• Subclassing Windows controls
• Creating nonvisual components

TCustomControl

TApplication

TObject

TPersistent

TComponent

TControl

TGraphicControl TWinControl

TScrollingWinControl

TCustomForm
TForm

TActiveForm

Exception TStream TComObject

TCollection TStringsTGraphicTGraphicObject

TDataSet TMenu TCommonDialog TField

Most visual controls
inherit from

TWinControl.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-3

H o w d o y o u c r e a t e c o m p o n e n t s ?

Table 45.1 summarizes the different kinds of components and the classes you use as
starting points for each.

You can also derive classes that are not components and cannot be manipulated on a
form, such as TRegIniFile and TFont.

Modifying existing controls

The simplest way to create a component is to customize an existing one. You can
derive a new component from any of the components provided with C++Builder.

Some controls, such as list boxes and grids, come in several variations on a basic
theme. In these cases, the VCL and CLX includes an abstract class (with the word
“custom” in its name, such as TCustomGrid) from which to derive customized
versions.

For example, you might want to create a special list box that does not have some of
the properties of the standard TListBox class. You cannot remove (hide) a property
inherited from an ancestor class, so you need to derive your component from
something above TListBox in the hierarchy. Rather than force you to start from the
abstract TWinControl (or TWidgetControl in CLX) class and reinvent all the list box
functions, the VCL or CLX provides TCustomListBox, which implements the
properties of a list box but does not publish all of them. When you derive a
component from an abstract class like TCustomListBox, you publish only the
properties you want to make available in your component and leave the rest
protected.

Chapter 47, “Creating properties,” explains publishing inherited properties.
Chapter 53, “Modifying an existing component,” and Chapter 55, “Customizing a
grid,” show examples of modifying existing controls.

Creating windowed controls

Windowed controls in the VCL and CLX are objects that appear at runtime and that
the user can interact with. Each windowed control has a window handle, accessed
through its Handle property, that lets the operating system identify and operate on
the control. If using VCL controls, the handle allows the control to receive input focus
and can be passed to Windows API functions. In CLX, these controls are widget-

Table 45.1 Component creation starting points

To do this Start with this type

Modify an existing component Any existing component, such as TButton or TListBox, or
an abstract component type, such as TCustomListBox

Create a windowed (or widget-
based in CLX) control

TWinControl (TWidgetControl in CLX)

Create a graphic control TGraphicControl

Subclassing a control Any Windows (VCL) or widget-based (CLX) control

Create a nonvisual component TComponent

45-4 D e v e l o p e r ’ s G u i d e

H o w d o y o u c r e a t e c o m p o n e n t s ?

based controls. Each widget-based control has a handle, accessed through its Handle
property, that identifies the underlying widget.

All windowed controls descend from the TWinControl (TWidgetControl in CLX) class.
These include most standard windowed controls, such as pushbuttons, list boxes,
and edit boxes. While you could derive an original control (one that’s not related to
any existing control) directly from TWinControl (TWidgetControl in CLX), C++Builder
provides the TCustomControl component for this purpose. TCustomControl is a
specialized windowed control that makes it easier to draw complex visual images.

Chapter 55, “Customizing a grid,” presents an example of creating a windowed
control.

Creating graphic controls

If your control does not need to receive input focus, you can make it a graphic
control. Graphic controls are similar to windowed controls, but have no window
handles, and therefore consume fewer system resources. Components like TLabel,
which never receive input focus, are graphic controls. Although these controls cannot
receive focus, you can design them to react to mouse messages.

C++Builder supports the creation of custom controls through the TGraphicControl
component. TGraphicControl is an abstract class derived from TControl. Although you
can derive controls directly from TControl, it is better to start from TGraphicControl,
which provides a canvas to paint on and on Windows, handles WM_PAINT
messages; all you need to do is override the Paint method.

Chapter 54, “Creating a graphic control,” presents an example of creating a graphic
control.

Subclassing Windows controls

In traditional Windows programming, you create custom controls by defining a new
window class and registering it with Windows. The window class (which is similar to
the objects or classes in object-oriented programming) contains information shared
among instances of the same sort of control; you can base a new window class on an
existing class, which is called subclassing. You then put your control in a dynamic-
link library (DLL), much like the standard Windows controls, and provide an
interface to it.

Using C++Builder, you can create a component “wrapper” around any existing
window class. So if you already have a library of custom controls that you want to
use in C++Builder applications, you can create C++Builder components that behave
like your controls, and derive new controls from them just as you would with any
other component.

For examples of the techniques used in subclassing Windows controls, see the
components in the StdCtls header file that represent standard Windows controls,
such as TEdit. For CLX examples, see QStdCtls.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-5

W h a t g o e s i n t o a c o m p o n e n t ?

Creating nonvisual components

Nonvisual components are used as interfaces for elements like databases (TDataSet or
TSQLConnection) and system clocks (TTimer), and as placeholders for dialog boxes
(TCommonDialog (VCL) or TDialog (CLX) and its descendants). Most of the
components you write are likely to be visual controls. Nonvisual components can be
derived directly from TComponent, the abstract base class for all components.

What goes into a component?
To make your components reliable parts of the C++Builder environment, you need to
follow certain conventions in their design. This section discusses the following topics:

• Removing dependencies
• Setting properties, methods, and events
• Encapsulating graphics
• Registering components

Removing dependencies

One quality that makes components usable is the absence of restrictions on what they
can do at any point in their code. By their nature, components are incorporated into
applications in varying combinations, orders, and contexts. You should design
components that function in any situation, without preconditions.

An excellent example of removing dependencies is the Handle property of
TWinControl. If you have written Windows applications before, you know that one of
the most difficult and error-prone aspects of getting a program running is making
sure that you do not try to access a windowed control until you have created it by
calling the CreateWindow API function. C++Builder windowed controls relieve users
from this concern by ensuring that a valid window handle is always available when
needed. By using a property to represent the window handle, the control can check
whether the window has been created; if the handle is not valid, the control creates a
window and returns the handle. Thus, whenever an application’s code accesses the
Handle property, it is assured of getting a valid handle.

By removing background tasks like creating the window, C++Builder components
allow developers to focus on what they really want to do. Before passing a window
handle to an API function, there is no need to verify that the handle exists or to create
the window. The application developer can assume that things will work, instead of
constantly checking for things that might go wrong.

Although it can take time to create components that are free of dependencies, it is
generally time well spent. It not only spares you from repetition and drudgery, but it
reduces your documentation and support burdens.

45-6 D e v e l o p e r ’ s G u i d e

W h a t g o e s i n t o a c o m p o n e n t ?

Setting properties, methods, and events

Aside from the visible image manipulated in the Form designer, the most obvious
attributes of a component are its properties, events, and methods. Each of these has a
chapter devoted to it in this book, but the discussion that follows explains some of
the motivation for their use.

Properties
Properties give the application developer the illusion of setting or reading the value
of a variable, while allowing the component writer to hide the underlying data
structure or to implement special processing when the value is accessed.

There are several advantages to using properties:

• Properties are available at design time. The application developer can set or
change initial values of properties without having to write code.

• Properties can check values or formats as the application developer assigns them.
Validating input at design time prevents errors.

• The component can construct appropriate values on demand. Perhaps the most
common type of error programmers make is to reference a variable that has not
been initialized. By representing data with a property, you can ensure that a value
is always available on demand.

• Properties allow you to hide data under a simple, consistent interface. You can
alter the way information is structured in a property without making the change
visible to application developers.

Chapter 47, “Creating properties,” explains how to add properties to your
components.

Events
An event is a special property that invokes code in response to input or other activity
at runtime. Events give the application developer a way to attach specific blocks of
code to specific runtime occurrences, such as mouse actions and keystrokes. The code
that executes when an event occurs is called an event handler.

Events allow application developers to specify responses to different kinds of input
without defining new components.

Chapter 48, “Creating events,” explains how to implement standard events and how
to define new ones.

Methods
Class methods are functions that operate on a class rather than on specific instances
of the class. For example, every component’s constructor method is a class method.
Component methods are functions that operate on the component instances
themselves. Application developers use methods to direct a component to perform a
specific action or return a value not contained by any property.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-7

W h a t g o e s i n t o a c o m p o n e n t ?

Because they require execution of code, methods can be called only at runtime.
Methods are useful for several reasons:

• Methods encapsulate the functionality of a component in the same object where
the data resides.

• Methods can hide complicated procedures under a simple, consistent interface. An
application developer can call a component’s AlignControls method without
knowing how the method works or how it differs from the AlignControls method
in another component.

• Methods allow updating of several properties with a single call.

Chapter 49, “Creating methods,” explains how to add methods to your components.

Encapsulating graphics

C++Builder simplifies Windows graphics by encapsulating various graphics tools
into a canvas. The canvas represents the drawing surface of a window or control and
contains other classes, such as a pen, a brush, and a font. A canvas is like a Windows
device context, but it takes care of all the bookkeeping for you.

If you have written a graphical Windows application, you are familiar with the
requirements imposed by Windows’ graphics device interface (GDI). For example,
GDI limits the number of device contexts available and requires that you restore
graphic objects to their initial state before destroying them.

With C++Builder, you do not have to worry about these things. To draw on a form or
other component, you access the component’s Canvas property. If you want to
customize a pen or brush, you set its color or style. When you finish, C++Builder
disposes of the resources. C++Builder caches resources to avoid recreating them if
your application frequently uses the same kinds of resource.

You still have full access to the Windows GDI, but you will often find that your code
is simpler and runs faster if you use the canvas built into C++Builder components.
Graphics features are detailed in Chapter 50, “Using graphics in components.”

CLX graphics encapsulation works differently. A canvas is a painter instead. To draw
on a form or other component, you access the component’s Canvas property. Canvas
is a property and it is also an object called TCanvas. TCanvas is a wrapper around a Qt
painter that is accessible through the Handle property. You can use the handle to
access low-level Qt graphics library functions.

If you want to customize a pen or brush, you set its color or style. When you finish,
C++Builder disposes of the resources. CLX also caches the resources.

You can use the canvas built into CLX components by descending from them. How
graphics images work in the component depends on the canvas of the object from
which your component descends.

45-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

Registering components

Before you can install your components in the C++Builder IDE, you have to register
them. Registration tells C++Builder where to place the component on the Component
palette. You can also customize the way C++Builder stores your components in the
form file. For information on registering a component, see Chapter 52, “Making
components available at design time.”

Creating a new component
You can create a new component two ways:

• Creating a component with the Component wizard
• Creating a component manually

You can use either of these methods to create a minimally functional component
ready to install on the Component palette. After installing, you can add your new
component to a form and test it at both design time and runtime. You can then add
more features to the component, update the Component palette, and continue
testing.

There are several basic steps that you perform whenever you create a new
component. These steps are described below; other examples in this document
assume that you know how to perform them.

1 Create a unit for the new component.

2 Derive your component from an existing component type.

3 Add properties, methods, and events.

4 Register your component with C++Builder.

5 Create a Help file for your component and its properties, methods, and events.

Note Creating a Help file to instruct component users on how to use the component is
optional.

6 Create a package (a special dynamic-link library) so that you can install your
component in the C++Builder IDE.

When you finish, the complete component includes the following files:

• A package (.BPL) or package collection (.PCE) file
• A library (.LIB) for the package
• A Borland import library (.BPI) file for the package
• A compiled unit (.OBJ) file
• A compiled resource (.RES) file for the palette map
• A Help (.HLP) file

You can also create a bitmap to represent your new component. See “Creating a
bitmap for a component” on page 45-14.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-9

C r e a t i n g a n e w c o m p o n e n t

The chapters in the rest of Part V explain all the aspects of building components and
provide several complete examples of writing different kinds of components.

Creating a component with the Component wizard

The Component wizard simplifies the initial stages of creating a component. When
you use the Component wizard, you need to specify:

• The class from which it is derived.
• The class name for the new component.
• The Component palette page where you want it to appear.
• The name of the unit in which the component is created.
• The search path where the unit is found.
• The name of the package in which you want to place the component.

The Component wizard performs the same tasks you would when creating a
component manually:

• Creating a unit (a .CPP file and its associated header).
• Deriving the component.
• Declaring a new constructor.
• Registering the component.

The Component wizard cannot add new components to an existing unit (consisting
of a .CPP file and an associated header file). If you want to add new components, you
must add them to the unit manually.

1 To start the Component wizard, choose one of these two methods:

• Choose Component|New Component.
• Choose File|New|Other and double-click Component.

Figure 45.2 Component wizard

Fill in the fields in the Component wizard:

1 In the Ancestor Type field, specify the class from which you are deriving your new
component.

Note In the drop-down list, many components are listed twice with different unit
names, one for VCL and one for CLX. The CLX-specific units begin with Q (such
as QGraphics instead of Graphics). Be sure to descend from the correct
component.

45-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

2 In the Class Name field, specify the name of your new component class.

3 In the Palette Page field, specify the page on the Component palette on which you
want the new component to be installed.

4 In the Unit file name field, specify the name of the unit you want the component
class declared in.

5 If the unit is not on the search path, edit the search path in the Search Path field as
necessary.

6 To place the component in a new or existing package, click Component|Install
and use the dialog box that appears to specify a package.

Warning If you derive a component from a VCL or CLX class whose name begins with
“custom” (such as TCustomControl), do not try to place the new component on a
form until you have overridden any abstract methods in the original component.
C++Builder cannot create instance objects of a class that has abstract properties or
methods.

7 After you fill in the fields in the Component wizard, choose OK. C++Builder
creates a new unit consisting of a .cpp file and an associated header file.

The .cpp file appears in the Code editor. It contains a constructor for the component
and the Register function that registers the component, informing C++Builder which
component to add to the component library and on which page of the Component
palette it should appear. The file also contains an include statement that specifies the
header file that was created. For example:

#include <vcl.h>
#pragma hdrstop
#include "NewComponent.h"
#pragma package(smart_init);
//---
// ValidCtrCheck is used to assure that the components created do not have
// any pure virtual functions.
//

static inline void ValidCtrCheck(TNewComponent *)
{
 new TNewComponent(NULL);
}
//---
__fastcall TNewComponent::TNewComponent(TComponent* Owner)

: TComponent(Owner)
{
}
//---
namespace Newcomponent
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TNewComponent)};
RegisterComponents("Samples", classes, 0); //In CLX use a different page than Samples

}
}

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-11

C r e a t i n g a n e w c o m p o n e n t

CLX Names and locations of some of the header files differ in CLX applications. For
example, <vcl\controls.hpp> is <clx\qcontrols.hpp> in CLX.

To open the header file in the Code editor, place your cursor on the header file name,
click your right mouse button to display the context menu, and choose Open File at
Cursor on the menu.

The header file contains the new class declaration, including a constructor
declaration, and several #include statements to support the new class. For example,

#ifndef NewComponentH
#define NewComponentH
//---
#include <SysUtils.hpp>
#include <Controls.hpp>
#include <Classes.hpp>
#include <Forms.hpp>
//---
class PACKAGE TNewComponent : public TComponent
{
private:
protected:
public:

__fastcall TNewComponent(TComponent* Owner);
__published:
};
//---
#endif

Save the .cpp file, with a meaningful name, before proceeding.

Creating a component manually

The easiest way to create a new component is to use the Component wizard. You can,
however, perform the same steps manually.

To create a component manually, follow these steps:

1 Creating a unit file
2 Deriving the component
3 Declaring a new constructor
4 Registering the component

Creating a unit file
A C++Builder unit is comprised of a .CPP file and a .H file combination that is
compiled into an .OBJ file. C++Builder uses units for a number of purposes. Every
form has its own unit, and most components (or logical groups of components) have
their own units as well.

When you create a component, you either create a new unit for the component or add
the new component to an existing unit.

45-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

1 To create a unit for a component, choose one of these methods:

• Choose File|New|Unit.

• Choose File|New|Other to display the New Items dialog box, select Unit, and
choose OK.

C++Builder creates a .CPP file and a header file and displays the .CPP file in the
Code editor. Save the file with a meaningful name.

2 To open the header file, place your cursor on header file name in the Code editor,
right-click, and choose Open File at Cursor from the pop-up menu.

3 To open an existing unit, choose File|Open and select the source code unit that
you want to add your component to.

Note When adding a component to an existing unit, make sure that the unit contains
only component code. For example, adding component code to a unit that contains
a form causes errors in the Component palette.

4 Once you have either a new or existing unit for your component, you can derive
the component class.

Deriving the component
Every component is a class derived from TComponent, from one of its more
specialized descendants (such as TControl or TGraphicControl), or from an existing
component class. “How do you create components?” on page 45-2 describes which
class to derive different kinds of components from.

Deriving classes is explained in more detail in the section “Defining new classes” on
page 46-1.

To derive a component class, add a class declaration to the header file.

A simple component class is a nonvisual component descended directly from
TComponent.

To create a simple component class, add the following class declaration to your
header file:

class PACKAGE TNewComponent : public TComponent
{
};

The PACKAGE macro expands to a statement that allows classes to be imported and
exported. You should also add the necessary include statements that specify the .HPP
files needed by the new component. These are the most common include statements
you need:

#include <vcl\SysUtils.hpp>
#include <vcl\Controls.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Forms.hpp>

So far the new component does nothing different from TComponent. You have created
a framework on which to build your new component.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-13

C r e a t i n g a n e w c o m p o n e n t

Declaring a new constructor
Each new component must have a constructor that overrides the constructor of the
class from which it was derived. When you write the constructor for your new
component, it must always call the inherited constructor.

Within the class declaration, declare a virtual constructor in the public section of the
class. You can learn more about the public section in “Controlling access” on
page 46-4. For example,

class PACKAGE TNewComponent : public TComponent
{
public:

virtual __fastcall TNewComponent(TComponent* AOwner);
};

In the .CPP file, implement the constructor:

__fastcall TNewComponent::TNewComponent(TComponent* AOwner): TComponent(AOwner)
{
}

Within the constructor, you add the code you want to execute when the component is
created.

Registering the component
Registration is a simple process that tells C++Builder which components to add to its
component library, and on which pages of the Component palette they should
appear. For a more detailed discussion of the registration process, see Chapter 52,
“Making components available at design time.”

To register a component,

1 Add a function named Register to the unit’s .CPP file, placing it within a
namespace. The namespace is the name of the file the component is in, minus the
file extension, with all lowercase letters except the first letter.

For example, this code exists within a Newcomp namespace, whereas Newcomp is
the name of the .CPP file:

namespace Newcomp
{

void __fastcall PACKAGE Register()
{
}

}

2 Within the Register function, declare an open array of type TComponentClass that
holds the array of components you are registering. The syntax should look like
this:

TComponentClass classes[1] = {__classid(TNewComponent)};

In this case, the array of classes contains just one component, but you can add all
the components you want to register to the array.

45-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n e w c o m p o n e n t

3 Within the Register function, call RegisterComponents for each component you want
to register.

RegisterComponents is a function that takes three parameters: the name of a
Component palette page, the array of component classes, and the size – 1 of the
component classes. If you’re adding a component to an existing registration, you
can either add the new component to the set in the existing statement, or add a
new statement that calls RegisterComponents.

You can register multiple components with just one RegisterComponents call if all
components go on the same page on the Component palette.

To register a component named TNewComponent and place it on the Samples page of
the Component palette, add the following Register function to the .CPP file of the unit
that declares TNewComponent:

namespace Newcomp
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TNewComponent)};
RegisterComponents("Samples", classes, 0);

}
}

This Register call places TNewComponent on the Samples page of the Component
palette.

Once you register a component, you can test the component, and finally install the
component onto the Component palette. This is described in more detail in the
section “Installing a component on the Component palette” on page 45-18.

Creating a bitmap for a component

When you create a new component, you can define your own bitmaps for custom
components.

1 Choose Tools|Image Editor.

2 In the Image Editor dialog box, choose File|New|Component Resource File (.dcr).

3 In the untitled1.dcr dialog box, right-click Contents. Choose New|Bitmap.

4 In the Bitmaps Properties dialog box, change both the Width and Height to 24
pixels. Make sure VGA (16 colors) is checked. Click OK.

5 Bitmap and Bitmap1 appear below Contents. Select Bitmap1, right-click, and
choose Rename. Give the bitmap the same name as the class name for your new
component, including the T, using all uppercase letters. For example, if your new
class name is going to be TMyNewButton, name the bitmap TMYNEWBUTTON.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-15

C r e a t i n g a n e w c o m p o n e n t

Note You must name all uppercase letters, no matter how you spell the class name in
the New Component dialog box.

6 Double-click TMYNEWBUTTON to display a dialog box with an empty bitmap.

7 Use the color palette at the bottom of the Image Editor to design your icon.

8 Choose File|Save As and give the resource file (.dcr or .res) the same base name as
the unit you want the component class declared in. For example, name the
resource file MyNewButton.dcr.

9 Choose Component|New Component. Follow the instructions for creating a new
component using the Component wizard on page 45-9. Make sure that the
component source, MyNewButton.cpp, is in the same directory as
MyNewButton.dcr.

The Component wizard, for a class named TMyNewButton, names the component
source, or unit, MyNewButton.cpp with a default placement in the LIB directory.
Click the Browse button to find the new location for the generated component
unit.

Note If you are using a .res file for the bitmap rather than a .dcr file, then add a reference
to the component source to bind the resource. For example, if your .res file is
named MyNewButton.res, after ensuring that the .cpp and .res are in the same
directory, add the following in MyNewButton.cpp:

#pragma resource “*.res”

10 Choose Component|Install Component to install your component into a new or
existing package. Click OK.

Your new package is built and then installed. The bitmap representing your new
component appears on the Component palette page you designated in the
Component wizard.

45-16 D e v e l o p e r ’ s G u i d e

T e s t i n g u n i n s t a l l e d c o m p o n e n t s

Testing uninstalled components
You can test the runtime behavior of a component before you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing already installed components,
see “Testing installed components” on page 45-18.

Testing your components without installing has the added benefit of generating
compile-time errors that are seen only when the class is instantiated. For example,
trying to create an instance of an abstract class yields an error directing you to the
pure virtual that must be overloaded.

You test an uninstalled component by emulating the actions performed by
C++Builder when the component is selected from the palette and placed on a form.

To test an uninstalled component, do the following:

1 Create a new application or open an existing one.

2 Choose Project|Add to Project to add the component unit to your project.

3 Include the .H file of the component unit in the header file of a form unit.

4 Add a data member to the form to represent the component.

This is one of the main differences between the way you add components and the
way C++Builder does it. You add the data member to the public part at the bottom
of the form’s class declaration. C++Builder would add it above, in the published
part of the class declaration that it manages.

You should never add data members to the C++Builder-managed part of the
form’s class declaration. The items in that part of the class declaration correspond
to the items stored in the form file. Adding the names of components that do not
exist on the form can render your form file invalid.

5 Construct the component in the form’s constructor.

When you call the component’s constructor, you must pass a parameter specifying
the owner of the component (the component responsible for destroying the
component when the time comes). You nearly always pass this as the owner. In a
method, this is a reference to the class that contains the method. In this case, in the
form’s OnCreate handler, this refers to the form.

6 Assign the Parent property.

Setting the Parent property is always the first thing to do after constructing a
control. The parent is the component that visually contains the control, which is
most often the form, but might be a group box or panel. Normally, you’ll set Parent
to this, that is, the form. Always set Parent before setting other properties of the
control.

7 Set any other component properties as desired.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-17

T e s t i n g u n i n s t a l l e d c o m p o n e n t s

Suppose you want to test a new component of class TNewControl in a unit named
NewCtrl. Create a new project, then follow the steps to end up with a header file for
the form that looks like this:

//---
#ifndef TestFormH
#define TestFormH
//---
#include <vcl\Classes.hpp>
#include <vcl\Controls.hpp>
#include <vcl\StdCtrls.hpp>
#include <vcl\Forms.hpp>
#include "NewCtrl.h"
//---
class TForm1 : public TForm
{
__published: // IDE-managed Components
private: // User declarations
public: // User declarations

TNewControl* NewControl1;
__fastcall TForm1(TComponent* Owner);

};
//---
extern TForm1 *Form1;
//---
#endif

The #include statement that includes the NEWCTRL.H file assumes that the
component resides in the directory of the current project or in a directory that is on
the include path of the project.

This is the .CPP file of the form unit:

#include <vcl\vcl.h>
#pragma hdrstop
#include "TestForm.h"
#include "NewCtrl.h"
//---
#pragma package(smart_init);
#pragma resource "*.dfm"
TForm1 *Form1;
//---
static inline TNewControl *ValidCtrCheck()
{

return new TNewControl(NULL);
}
//---
__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)
{

NewControl1 = new TNewControl(this);
NewControl1->Parent = this;
NewControl1->Left = 12;

}

45-18 D e v e l o p e r ’ s G u i d e

T e s t i n g i n s t a l l e d c o m p o n e n t s

//---
namespace Newctrl
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TNewControl)};
RegisterComponents("Samples", classes, 0);

}
}

Testing installed components
You can test the design-time behavior of a component after you install it on the
Component palette. This is particularly useful for debugging newly created
components, but the same technique works with any component, whether or not it is
on the Component palette. For information on testing components that have not yet
been installed, see “Testing uninstalled components” on page 45-16.

Testing your components after installing allows you to debug the component that
only generates design-time exceptions when dropped on a form.

Test an installed component using a second running instance of C++Builder:

1 From the C++Builder IDE menu select Project|Options|and on the Directories/
Conditionals page, set the Debug Source Path to the component’s source file.

2 Then select Tools|Debugger Options. On the Language Exceptions page, enable
the exceptions you want to track.

3 Open the component source file and set breakpoints.

4 Select Run|Parameters and set the Host Application field to the name and location
of the C++Builder executable file.

5 In the Run Parameters dialog, click the Load button to start a second instance of
C++Builder.

6 Then drop the components to be tested on the form, which should break on your
breakpoints in the source.

Installing a component on the Component palette
There are two parts to the process of adding a component to the Component Palette:

• Making source files available.
• Adding the component.

O v e r v i e w o f c o m p o n e n t c r e a t i o n 45-19

I n s t a l l i n g a c o m p o n e n t o n t h e C o m p o n e n t p a l e t t e

Making source files available

All source files used by a component should be located in the same directory. These
files include source code files (.CPP and .PAS) and binary files (.DFM, .RES, .RC, and
.DCR). Header files (.H and .HPP) should be located in the Include directory (or in a
location on the search path for the IDE or a project).

The process of adding a component results in the creation of a number of files. These
files are automatically put in directories specified in the IDE environment options
(use the menu command Tools|Environment Options, navigate to the Library tab
page). The .LIB files are placed in the BPI/LIB output directory. If adding the
component entails creating a new package (as opposed to installing it into an existing
package), the .BPL file is put in the BPL output directory and .BPI files in the BPI/LIB
output directory.

Adding the component

To add components to the component library:

1 Choose Component|Install Component.

The Install Component dialog box appears.

2 Elect to install the new component into an existing or a new package by selecting
the applicable page.

3 Enter the name of the .CPP file containing the new component or choose Browse to
find the unit.

4 Adjust the search path if the .CPP file for the new component is not in the default
location shown.

5 Enter the name of the package into which to install the component or choose
Browse to find the package.

6 If the component is installed into a new package, optionally enter a meaningful
description of the package.

7 Choose OK to close the Install Component dialog box. This compiles/rebuilds the
package and installs the component on the Component Palette.

Note Newly installed components initially appear on the page of the Component palette
that was specified by the component writer. You can move the components to a
different page after they have been installed on the palette with the Component|
Configure Palette dialog box.

45-20 D e v e l o p e r ’ s G u i d e

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 46-1

C h a p t e r

46
Chapter 46Object-oriented programming for

component writers
If you have written applications with C++Builder, you know that a class contains
both data and code, and that you can manipulate classes at design time and at
runtime. In that sense, you’ve become a component user.

When you create new components, you deal with classes in ways that application
developers never need to. You also try to hide the inner workings of the component
from the developers who will use it. By choosing appropriate ancestors for your
components, designing interfaces that expose only the properties and methods that
developers need, and following the other guidelines in this chapter, you can create
versatile, reusable components.

Before you start creating components, you should be familiar with these topics,
which are related to object-oriented programming (OOP):

• Defining new classes
• Ancestors, descendants, and class hierarchies
• Controlling access
• Dispatching methods
• Abstract class members
• Classes and pointers

Defining new classes
The difference between component writers and application developers is that
component writers create new classes while application developers manipulate
instances of classes.

A class is essentially a type. As a programmer, you are always working with types
and instances, even if you do not use that terminology. For example, you create
variables of a type, such as int. Classes are usually more complex than simple data

46-2 D e v e l o p e r ’ s G u i d e

D e f i n i n g n e w c l a s s e s

types, but they work the same way: By assigning different values to instances of the
same type, you can perform different tasks.

For example, it is quite common to create a form containing two buttons, one labeled
OK and one labeled Cancel. Each is an instance of the class TButton, but by assigning
different values to their Caption properties and different handlers to their OnClick
events, you make the two instances behave differently.

Deriving new classes

There are two reasons to derive a new class:

• To change class defaults to avoid repetition
• To add new capabilities to a class

In either case, the goal is to create reusable objects. If you design components with
reuse in mind, you can save work later on. Give your classes usable default values,
but allow them to be customized.

To change class defaults to avoid repetition
Most programmers try to avoid repetition. Thus, if you find yourself rewriting the
same lines of code over and over, you place the code in a function, or build a library
of routines that you can use in many programs. The same reasoning holds for
components. If you find yourself changing the same properties or making the same
method calls, you can create a new component that does these things by default.

For example, suppose that each time you create an application, you add a dialog box
to perform a particular operation. Although it is not difficult to recreate the dialog
each time, it is also not necessary. You can design the dialog once, set its properties,
and install a wrapper component associated with it onto the Component palette. By
making the dialog into a reusable component, you not only eliminate a repetitive
task, but you encourage standardization and reduce the likelihood of errors each
time the dialog is recreated.

Chapter 53, “Modifying an existing component,” shows an example of changing a
component’s default properties.

Note If you want to modify only the published properties of an existing component, or to
save specific event handlers for a component or group of components, you may be
able to accomplish this more easily by creating a component template.

To add new capabilities to a class
A common reason for creating new components is to add capabilities not found in
existing components. When you do this, you derive the new component from either
an existing component or an abstract base class, such as TComponent or TControl.

Derive your new component from the class that contains the closest subset of the
features you want. You can add capabilities to a class, but you cannot take them
away; so if an existing component class contains properties that you do not want to
include in yours, you should derive from that component’s ancestor.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 46-3

A n c e s t o r s , d e s c e n d a n t s , a n d c l a s s h i e r a r c h i e s

For example, if you want to add features to a list box, you could derive your
component from TListBox. However, if you want to add new features but exclude
some capabilities of the standard list box, you need to derive your component from
TCustomListBox, the ancestor of TListBox. Then you can recreate (or make visible)
only the list-box capabilities you want, and add your new features.

Chapter 55, “Customizing a grid,” shows an example of customizing an abstract
component class.

Declaring a new component class

In addition to standard components, C++Builder provides many abstract classes
designed as bases for deriving new components. Table 45.1 on page 45-3 shows the
classes you can start from when you create your own components.

To declare a new component class, add a class declaration to the component’s header
file.

Here is the declaration of a simple graphical component:

class PACKAGE TSampleShape : public TGraphicControl
{
public:

virtual __fastcall TSampleShape(TComponent* Owner);
};

Do not forget to include the PACKAGE macro (defined in Sysmac.h), which allows
classes to be imported and exported.

A finished component declaration includes property, data member, and method
declarations before the final brace, but an empty declaration is also valid, and
provides a starting point for the addition of component features.

Ancestors, descendants, and class hierarchies
Application developers take for granted that every control has properties named Top
and Left that determine its position on the form. To them, it may not matter that all
controls inherit these properties from a common ancestor, TControl. When you create
a component, however, you must know which class to derive it from so that it
inherits the appropriate features. And you must know everything that your control
inherits, so you can take advantage of inherited features without recreating them.

The class from which you derive a component is called its immediate ancestor. Each
component inherits from its immediate ancestor, and from the immediate ancestor of
its immediate ancestor, and so forth. All of the classes from which a component
inherits are called its ancestors; the component is a descendant of its ancestors.

Together, all the ancestor-descendant relationships in an application constitute a
hierarchy of classes. Each generation in the hierarchy contains more than its

46-4 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

ancestors, since a class inherits everything from its ancestors, then adds new
properties and methods or redefines existing ones.

If you do not specify an immediate ancestor, C++Builder derives your component
from the default ancestor, TObject. TObject is the ultimate ancestor of all classes in the
object hierarchy.

The general rule for choosing which object to derive from is simple: Pick the object
that contains as much as possible of what you want to include in your new object, but
which does not include anything you do not want in the new object. You can always
add things to your objects, but you cannot take things out.

Controlling access
There are five levels of access control—also called visibility—on properties, methods,
and data members. Visibility determines which code can access which parts of the
class. By specifying visibility, you define the interface to your components.

Table 46.1 shows the levels of visibility, from most restrictive to most accessible:

Hiding implementation details

Declaring part of a class as private makes that part invisible to code outside the class
unless the functions are friends of the class. Private parts of a class are mostly useful
for hiding details of implementation from users of the class. Because users of the class
cannot access the private parts, you can change the internal implementation of the
class without affecting user code.

If you do not specify any access control on a data member, method, or property, that
part is private.

Here is an example shown in two parts that illustrates how declaring a data member
as private prevents users from accessing information.

Table 46.1 Levels of visibility within an object

Visibility Meaning Used for

private Accessible only to the class where it
is defined.

Hiding implementation details.

protected Accessible to the class where it is
defined and its descendants.

Defining the component writer’s interface.

public Accessible to all code. Defining the runtime interface.

__automated Accessible to all code. Automation
type information is generated.

OLE automation only.

__published Accessible to all code and accessible
from the Object Inspector. Saved in
a form file.

Defining the design-time interface.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 46-5

C o n t r o l l i n g a c c e s s

The first part is a form unit made up of a header file and a .CPP file that assigns a
value to a private data member in the form’s OnCreate event handler. Because the
event handler is declared within the TSecretForm class, the unit compiles without
error.

#ifndef HideInfoH
#define HideInfoH
//---
#include <vcl\SysUtils.hpp>
#include <vcl\Controls.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Forms.hpp>
//---
class PACKAGE TSecretForm : public TForm
{
__published: // IDE-managed Components

void __fastcall FormCreate(TObject *Sender);
private:

int FSecretCode; // declare a private data member
public: // User declarations

__fastcall TSecretForm(TComponent* Owner);
};
//---
extern TSecretForm *SecretForm;
//---
#endif

This is the accompanying .CPP file:

#include <vcl.h>
#pragma hdrstop
#include "hideInfo.h"
//---
#pragma package(smart_init);
#pragma resource "*.dfm"
TSecretForm *SecretForm;
//---
__fastcall TSecretForm::TSecretForm(TComponent* Owner)

: TForm(Owner)
{
}
//---
void __fastcall TSecretForm::FormCreate(TObject *Sender)
{

FSecretCode = 42; // this compiles correctly
}

The second part of this example is another form unit that attempts to assign a value
to the FSecretCode data member in the SecretForm form. This is the header file for the
unit:

#ifndef TestHideH
#define TestHideH
//---
#include <vcl\SysUtils.hpp>

46-6 D e v e l o p e r ’ s G u i d e

C o n t r o l l i n g a c c e s s

#include <vcl\Controls.hpp>
#include <vcl\Classes.hpp>
#include <vcl\Forms.hpp>
//---
class PACKAGE TTestForm : public TForm
{
__published: // IDE-managed Components

void __fastcall FormCreate(TObject *Sender);
public: // User declarations

__fastcall TTestForm(TComponent* Owner);
};
//---
extern TTestForm *TestForm;
//---
#endif

This is the accompanying .CPP file. Because the OnCreate event handler attempts to
assign a value to a data member private to the SecretForm form, the compilation fails
with the error message ‘TSecretForm::FSecretCode’ is not accessible.

#include <vcl.h>
#pragma hdrstop
#include "testHide.h"
#include "hideInfo.h"
//---
#pragma package(smart_init);
#pragma resource "*.dfm"
TTestForm *TestForm;
//---
__fastcall TTestForm::TTestForm(TComponent* Owner)

: TForm(Owner)
{
}
//---
void __fastcall TTestForm::FormCreate(TObject *Sender)
{

SecretForm->FSecretCode = 13; //compiler stops here with error message
}

Although a program using the HideInfo unit can use classes of type TSecretForm, it
cannot access the FSecretCode data member in any of those classes.

CLX Names and locations of some of the header files differ in CLX applications. For
example, <vcl\controls.hpp> is <clx\qcontrols.hpp> in CLX.

Defining the component writer’s interface

Declaring part of a class as protected makes that part visible only to the class itself
and its descendants.

You can use protected declarations to define a component writer’s interface to the class.
Application units do not have access to the protected parts, but derived classes do.
This means that component writers can change the way a class works without
making the details visible to application developers.

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 46-7

C o n t r o l l i n g a c c e s s

Note A common mistake is trying to access protected methods from an event handler.
Event handlers are typically methods of the form, not the component that receives
the event. As a result, they do not have access to the component’s protected methods
(unless the component is declared in the same unit as the form).

Defining the runtime interface

Declaring part of a class as public makes that part visible to any code that has access
to the class as a whole.

Public parts are available at runtime to all code, so the public parts of a class define
its runtime interface. The runtime interface is useful for items that are not meaningful
or appropriate at design time, such as properties that depend on runtime input or
which are read-only. Methods that you intend for application developers to call must
also be public.

Here is an example that shows two read-only properties declared as part of a
component’s runtime interface:

class PACKAGE TSampleComponent : public TComponent
{
private:

int FTempCelsius; // implementation details are private
int GetTempFahrenheit();

public:
ƒ
__property int TempCelsius = {read=FTempCelsius}; // properties are public
__property int TempFahrenheit = {read=GetTempFahrenheit};

};

This is the GetTempFahrenheit method in the .CPP file:

int TSampleComponent::GetTempFahrenheit()
{

return FTempCelsius * (9 / 5) + 32;
}

Defining the design-time interface

Declaring part of a class as published makes that part public and also generates
runtime type information. Among other things, runtime type information allows the
Object Inspector to access properties and events.

Because they show up in the Object Inspector, the published parts of a class define
that class’s design-time interface. The design-time interface should include any aspects
of the class that an application developer might want to customize at design time, but
must exclude any properties that depend on specific information about the runtime
environment.

Read-only properties cannot be part of the design-time interface because the
application developer cannot assign values to them directly. Read-only properties
should therefore be public, rather than published.

46-8 D e v e l o p e r ’ s G u i d e

D i s p a t c h i n g m e t h o d s

Here is an example of a published property called Temperature. Because it is
published, it appears in the Object Inspector at design time.

class PACKAGE TSampleComponent : public TComponent
{
private:

int FTemperature;
ƒ

__published:
__property int Temperature = {read=FTemperature, write=FTemperature};

};

Dispatching methods
Dispatch is the term used to describe how your application determines which class
method should be invoked when it encounters a class method call. When you write
code that calls a class method, it looks like any other function call. Classes, however,
have two different ways of dispatching methods.

The two types of method dispatch are

• Regular (not virtual) methods
• Virtual methods

Regular methods

Class methods are regular (or nonvirtual) unless you specifically declare them as
virtual, or unless they override a virtual method in a base class. The compiler can
determine the exact address of a regular class member at compile time. This is known
as compile-time binding.

A base class regular method is inherited by derived classes. In the following example,
an object of type Derived can call the method Regular() as it were its own method.
Declaring a method in a derived class with the same name and parameters as a
regular method in the class’s ancestor replaces the ancestor’s method. In the following
example, when d->AnotherRegular() is called, it is being dispatched to the Derived
class replacement for AnotherRegular().

class Base
{
public:

void Regular();
void AnotherRegular();
virtual void Virtual();

};

class Derived : public Base
{
public:

void AnotherRegular(); // replaces Base::AnotherRegular()
void Virtual(); // overrides Base::Virtual()

O b j e c t - o r i e n t e d p r o g r a m m i n g f o r c o m p o n e n t w r i t e r s 46-9

D i s p a t c h i n g m e t h o d s

};

void FunctionOne()
{

Derived *d;
d = new Derived;
d->Regular(); // Calling Regular() as it were a member of Derived

// The same as calling d->Base::Regular()
d->AnotherRegular(); // Calling the redefined AnotherRegular(), ...

// ... the replacement for Base::AnotherRegular()
delete d;

}

void FunctionTwo(Base *b)
{

b->Virtual();
b->AnotherRegular();

}

Virtual methods

Unlike regular methods, which are bound at compile time, virtual methods are
bound at runtime. The virtual mechanism of C++ allows a method to be called
depending on the class type that is being used to invoke the method.

In the previous example, if you were to call FunctionTwo() with a pointer to a Derived
object, the function Derived::Virtual() would be called. The virtual mechanism
dynamically inspects the class type of the object you passed at runtime and
dispatches the appropriate method. But the call to the regular function
b->AnotherRegular() will always call Base::AnotherRegular() because the address of
AnotherRegular() was determined at compile time.

To declare a new virtual method, preface the method declaration with the virtual
keyword.

When the compiler encounters the virtual keyword, it creates an entry in the class’s
virtual method table (VMT). The VMT holds the addresses of all the virtual methods
in a class. This lookup table is used at runtime to determine that b->Virtual should
call Derived::Virtual(), and not Base::Virtual().

When you derive a new class from an existing class, the new class receives its own
VMT, which includes the entries from its ancestor’s VMT, plus any additional virtual
methods declared in the new class. In addition, the descendant class can override any
of its inherited virtual methods.

Overriding methods
Overriding methods means extending or refining an ancestor’s method, rather than
replacing it. To override a method in a descendant class, redeclare the method in the
derived class, ensuring that the number and type of arguments are the same.

The following code shows the declaration of two simple components. The first
declares two methods, each with a different kind of dispatching. The other, derived
from the first, replaces the nonvirtual method and overrides the virtual method.

46-10 D e v e l o p e r ’ s G u i d e

A b s t r a c t c l a s s m e m b e r s

class PACKAGE TFirstComponent : public TComponent
{
public:

void Move(); // regular method
virtual void Flash(); // virtual method

};

class PACKAGE TSecondComponent : public TFirstComponent
{
public:

void Move(); // declares new method "hiding" TFirstComponent::Move()
void Flash(); // overrides virtual TFirstComponent::Flash in TFirstComponent

};

Abstract class members
When a method is declared as abstract in an ancestor class, you must surface it (by
redeclaring and implementing it) in any descendant component before you can use
the new component in applications. C++Builder cannot create instances of a class
that contains abstract members. For more information about surfacing inherited parts
of classes, see Chapter 47, “Creating properties,” and Chapter 49, “Creating
methods.”

Classes and pointers
Every class (and therefore every component) is really a pointer. The status of classes
as pointers becomes important when you pass a class as a parameter. In general, you
should pass classes by value rather than by reference. The reason is that classes are
already pointers, which are references; passing a class by reference amounts to
passing a reference to a reference.

C r e a t i n g p r o p e r t i e s 47-1

C h a p t e r

47
Chapter47Creating properties

Properties are the most visible parts of components. The application developer can
see and manipulate them at design time and get immediate feedback as the
components react in the Form Designer. Well-designed properties make your
components easier for others to use and easier for you to maintain.

To make the best use of properties in your components, you should understand the
following:

• Why create properties?
• Types of properties
• Publishing inherited properties
• Defining properties
• Creating array properties
• Storing and loading properties

Why create properties?
From the application developer’s standpoint, properties look like variables.
Developers can set or read the values of properties as if they were data members.
(About the only thing you can do with a variable that you cannot do with a property
is pass it as an argument to a method by reference.)

Properties provide more power than simple data members because

• Application developers can set properties at design time. Unlike methods, which
are available only at runtime, properties let the developer customize components
before running an application. Properties can appear in the Object Inspector,
which simplifies the programmer’s job; instead of handling several parameters to
construct an object, you let C++ Builder read the values from the Object Inspector.
The Object Inspector also validates property assignments as soon as they are
made.

47-2 D e v e l o p e r ’ s G u i d e

T y p e s o f p r o p e r t i e s

• Properties can hide implementation details. For example, data stored internally in
an encrypted form can appear unencrypted as the value of a property; although
the value is a simple number, the component may look up the value in a database
or perform complex calculations to arrive at it. Properties let you attach complex
effects to outwardly simple assignments; what looks like an assignment to a data
member can be a call to a method which implements elaborate processing.

• Properties can be virtual. Hence, what looks like a single property to an
application developer may be implemented differently in different components.

A simple example is the Top property of all controls. Assigning a new value to Top
does not just change a stored value; it repositions and repaints the control. And the
effects of setting a property need not be limited to an individual component; for
example, setting the Down property of a speed button to true sets Down property of
all other speed buttons in its group to false.

Types of properties
A property can be of any type. Different types are displayed differently in the Object
Inspector, which validates property assignments as they are made at design time.

Table 47.1 How properties appear in the Object Inspector

Property type Object Inspector treatment

Simple Numeric, character, and string properties appear as numbers, characters, and
strings. The application developer can edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) appear as editable strings.
The developer can also cycle through the possible values by double-clicking
the value column, and there is a drop-down list that shows all possible values.

Set Properties of set types appear as sets. By double-clicking on the property, the
developer can expand the set and treat each element as a Boolean value (true if
it is included in the set).

Object Properties that are themselves classes often have their own property editors,
specified in the component’s registration procedure. If the class held by a
property has its own published properties, the Object Inspector lets the
developer to expand the list (by double-clicking) to include these properties
and edit them individually. Object properties must descend from TPersistent.

Interface Properties that are interfaces can appear in the Object Inspector as long as the
value is an interface that is implemented by a component (a descendant of
TComponent). Interface properties often have their own property editors.

Array Array properties must have their own property editors; the Object Inspector
has no built-in support for editing them. You can specify a property editor
when you register your components.

C r e a t i n g p r o p e r t i e s 47-3

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

Publishing inherited properties
All components inherit properties from their ancestor classes. When you derive a
new component from an existing one, your new component inherits all the properties
of its immediate ancestor. If you derive from one of the abstract classes, many of the
inherited properties are either protected or public, but not published.

To make a protected or public property available at design time in the Object
Inspector, you must redeclare the property as published. Redeclaring means adding
a declaration for the inherited property to the declaration of the descendant class.

If you derive a VCL component from TWinControl, for example, it inherits the
protected DockSite property. By redeclaring DockSite in your new component, you
can change the level of protection to either public or published.

The following code shows a redeclaration of DockSite as published, making it available
at design time.

class PACKAGE TSampleComponent : public TWinControl
{
__published:

__property DockSite;
};

When you redeclare a property, you specify only the property name, not the type and
other information described in “Defining properties”. You can also declare new
default values and specify whether to store the property.

Redeclarations can make a property less restricted, but not more restricted. Thus you
can make a protected property public, but you cannot hide a public property by
redeclaring it as protected.

Defining properties
This section shows how to declare new properties and explains some of the
conventions followed in the standard components. Topics include:

• The property declaration
• Internal data storage
• Direct access
• Access methods
• Default property values

The property declaration

A property is declared in the declaration of its component class. To declare a
property, you specify three things:

• The name of the property.

• The type of the property.

47-4 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

• The methods used to read and write the value of the property. If no write method
is declared, the property is read-only.

Properties declared in a __published section of the component’s class declaration are
editable in the Object Inspector at design time. The value of a published property is
saved with the component in the form file. Properties declared in a public section are
available at runtime and can be read or set in program code.

Here is a typical declaration for a property called Count.

class PACKAGE TYourComponent : public TComponent
{
private:

int FCount; // data member for storage
int __fastcall GetCount(); // read method
void __fastcall SetCount(int ACount); // write method

public:
__property int Count = {read=GetCount, write=SetCount}; // property declaration

ƒ
};

Internal data storage

There are no restrictions on how you store the data for a property. In general,
however, C++Builder components follow these conventions:

• Property data is stored in class data members.

• The data members used to store property data are private and should be accessed
only from within the component itself. Derived components should use the
inherited property; they do not need direct access to the property’s internal data
storage.

• Identifiers for these data members consist of the letter F followed by the name of
the property. For example, the raw data for the Width property defined in TControl
is stored in a data member called FWidth.

The principle that underlies these conventions is that only the implementation
methods for a property should access the data behind it. If a method or another
property needs to change that data, it should do so through the property, not by
direct access to the stored data. This ensures that the implementation of an inherited
property can change without invalidating derived components.

Direct access

The simplest way to make property data available is direct access. That is, the read and
write parts of the property declaration specify that assigning or reading the property
value goes directly to the internal-storage data member without calling an access
method. Direct access is useful when you want to make a property available in the
Object Inspector but changes to its value trigger no immediate processing.

C r e a t i n g p r o p e r t i e s 47-5

D e f i n i n g p r o p e r t i e s

It is common to have direct access for the read part of a property declaration but use
an access method for the write part. This allows the status of the component to be
updated when the property value changes.

The following component-type declaration shows a property that uses direct access
for both the read and the write parts.

class PACKAGE TSampleComponent : public TComponent
{
private: // internal storage is private

bool FReadOnly; // declare data member to hold value
ƒ

__published: // make property available at design time
__property bool ReadOnly = {read=FReadOnly, write=FReadOnly};

};

Access methods

You can specify an access method instead of a data member in the read and write
parts of a property declaration. Access methods should be protected, and are usually
declared as virtual; this allows descendant components to override the property’s
implementation.

Avoid making access methods public. Keeping them protected ensures that
application developers do not inadvertently modify a property by calling one of
these methods.

Here is a class that declares three properties using the index specifier, which allows
all three properties to have the same read and write access methods:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
 int __fastcall GetDateElement(int Index); // note Index parameter
 void __fastcall SetDateElement(int Index, int Value);
public:
 __property int Day = {read=GetDateElement, write=SetDateElement, index=3, nodefault};
 __property int Month = {read=GetDateElement, write=SetDateElement, index=2, nodefault};
 __property int Year = {read=GetDateElement, write=SetDateElement, index=1, nodefault};
};

Because each element of the date (day, month, and year) is an int, and because setting
each requires encoding the date when set, the code avoids duplication by sharing the
read and write methods for all three properties. You need only one method to read a
date element, and another to write the date element.

Here is the read method that obtains the date element:

int __fastcall TSampleCalendar::GetDateElement(int Index)
{
 unsigned short AYear, AMonth, ADay;
 int result;
 FDate.DecodeDate(&AYear, &AMonth, &Aday); // break date into elements
 switch (Index)
 {

47-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g p r o p e r t i e s

 case 1: result = AYear; break;
 case 2: result = AMonth; break;
 case 3: result = ADay; break;
 default: result = -1;
 }
 return result;
}

This is the write method that sets the appropriate date element:

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{
 unsigned short AYear, AMonth, ADay;
 if (Value > 0) // all elements must be positive
 {
 FDate.DecodeDate(&AYear, &AMonth, &ADay); // get date elements
 switch (Index)
 {
 case 1: AYear = Value; break;
 case 2: AMonth = Value; break;
 case 3: ADay = Value; break;
 default: return;
 }
 }
 FDate = TDateTime(AYear, AMonth, ADay); // encode the modified date
 Refresh();// update the visible calendar
}

The read method
The read method for a property is a function that takes no parameters (except as
noted below) and returns a value of the same type as the property. By convention, the
function’s name is Get followed by the name of the property. For example, the read
method for a property called Count would be GetCount. The read method
manipulates the internal storage data as needed to produce the value of the property
in the appropriate type.

The only exceptions to the no-parameters rule are for array properties and properties
that use index specifiers (see “Creating array properties” on page 47-8), both of
which pass their index values as parameters. (Use index specifiers to create a single
read method that is shared by several properties.)

If you do not declare a read method, the property is write-only. Write-only properties
are seldom used.

The write method
The write method for a property is a member function that takes a single parameter
(except as noted below) of the same type as the property. The parameter can be
passed by reference or by value, and can have any name you choose. By convention,
the write method’s name is Set followed by the name of the property. For example,
the write method for a property called Count would be SetCount. The value passed in
the parameter becomes the new value of the property; the write method must
perform any manipulation needed to put the appropriate data in the property’s
internal storage.

C r e a t i n g p r o p e r t i e s 47-7

D e f i n i n g p r o p e r t i e s

The only exceptions to the single-parameter rule are for array properties and
properties that use index specifiers, both of which pass their index values as a second
parameter. (Use index specifiers to create a single write method that is shared by
several properties.)

If you do not declare a write method, the property is read-only.

Write methods commonly test whether a new value differs from the current value
before changing the property. For example, here is a simple write method for an
integer property called Count that stores its current value in a data member called
FCount.

void __fastcall TMyComponent::SetCount(int Value)
{

if (Value != FCount)
{

FCount = Value;
Update();

}

Default property values

When you declare a property, you can specify a default value for it. C++Builder uses
the default value to determine whether to store the property in a form file. If you do
not specify a default value for a property, C++Builder always stores the property.

To declare a default value for a property, append an equal sign after the property
name and a set of braces that holds the default keyword and the default value. For
example,

__property bool IsTrue = {default=true};

Note Declaring a default value does not set the property to that value. The component’s
constructor method should initialize property values when appropriate. However,
since objects always initialize their data members to 0, it is not strictly necessary for
the constructor to set integer properties to 0, string properties to null, or Boolean
properties to false.

Specifying no default value
When redeclaring a property, you can specify that the property has no default value,
even if the inherited property specified one.

To designate a property as having no default value, append an equal sign after the
property name and a set of braces that holds the nodefault keyword. For example,

__property int NewInteger = {nodefault};

When you declare a property for the first time, there is no need to include nodefault.
The absence of a declared default value means that there is no default.

Here is the declaration of a component that includes a single Boolean property
named IsTrue with a default value of true, including the constructor that sets the
default value.

47-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a r r a y p r o p e r t i e s

class PACKAGE TSampleComponent : public TComponent
{
private:

 bool FIsTrue;
public:

virtual __fastcall TSampleComponent(TComponent* Owner);
__published:

__property bool IsTrue = {read=FIsTrue, write=FIsTrue, default=true};
};

__fastcall TSampleComponent::TSampleComponent (TComponent* Owner)
: TComponent (Owner)

{
FIsTrue = true;

}

Creating array properties
Some properties lend themselves to being indexed like arrays. For example, the Lines
property of TMemo is an indexed list of the strings that make up the text of the memo;
you can treat it as an array of strings. Lines provides natural access to a particular
element (a string) in a larger set of data (the memo text).

Array properties are declared like other properties, except that

• The declaration includes one or more indexes with specified types. The indexes
can be of any type.

• The read and write parts of the property declaration, if specified, must be
methods. They cannot be data members.

The read and write methods for an array property take additional parameters that
correspond to the indexes. The parameters must be in the same order and of the same
type as the indexes specified in the declaration.

There are a few important differences between array properties and arrays. Unlike
the index of an array, the index of an array property does not have to be an integer
type. You can index a property on a string, for example. In addition, you can
reference only individual elements of an array property, not the entire range of the
property.

The following example shows the declaration of a property that returns a string
based on an integer index.

class PACKAGE TDemoComponent : public TComponent
{
private:

System::AnsiString __fastcall GetNumberSize(int Index);
public:

__property System::AnsiString NumberSize[int Index] = {read=GetNumberSize};
ƒ

};

C r e a t i n g p r o p e r t i e s 47-9

C r e a t i n g p r o p e r t i e s f o r s u b c o m p o n e n t s

This is the GetNumberSize method in the .CPP file:

System::AnsiString __fastcall TDemoComponent::GetNumberSize(int Index)
{

System::AnsiString Result;
switch (Index)
{

case 0:
Result = "Zero";
break;

case 100:
Result = "Medium";
break;

case 1000:
Result = "Large";
break;

default: Result = "Unknown size";
}
return Result;

}

Creating properties for subcomponents
By default, when a property’s value is another component, you assign a value to that
property by adding an instance of the other component to the form or data module
and then assigning that component as the value of the property. However, it is also
possible for your component to create its own instance of the object that implements
the property value. Such a dedicated component is called a subcomponent.

Subcomponents can be any persistent object (any descendant of TPersistent). Unlike
separate components that happen to be assigned as the value of a property, the
published properties of subcomponents are saved with the component that creates
them. In order for this to work, however, the following conditions must be met:

• The Owner of the subcomponent must be the component that creates it and uses it
as the value of a published property. For subcomponents that are descendants of
TComponent, you can accomplish this by setting the Owner property of the
subcomponent. For other subcomponents, you must override the GetOwner
method of the persistent object so that it returns the creating component.

• If the subcomponent is a descendant of TComponent, it must indicate that it is a
subcomponent by calling the SetSubComponent method. Typically, this call is made
either by the owner when it creates the subcomponent or by the constructor of the
subcomponent.

Typically, properties whose values are subcomponents are read-only. If you allow a
property whose value is a subcomponent to be changed, the property setter must free
the subcomponent when another component is assigned as the property value. In
addition, the component often re-instantiates its subcomponent when the property is
set to NULL. Otherwise, once the property is changed to another component, the

47-10 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

subcomponent can never be restored at design time. The following example
illustrates such a property setter for a property whose value is a TTimer:

void __fastcall TDemoComponent::SetTimerProp(ExtCtrls::TTimer *Value)
{

if (Value != FTimer)
{

if (Value)
{

if (FTimer && FTimer->Owner == this)
delete FTimer;

FTimer = Value;
FTimer->FreeNotification(this);

}
else // NULL value
{

if (FTimer && FTimer->Owner != this)
{
FTimer = new ExtCtrls::TTimer(this);
FTimer.SetSubComponent(true);
FTimer->FreeNotification(this);

}
}

}
}

Note that the property setter above called the FreeNotification method of the
component that is set as the property value. This call ensures that the component that
is the value of the property sends a notification if it is about to be destroyed. It sends
this notification by calling the Notification method. You handle this call by overriding
the Notification method, as follows:

void __fastcall TDemoComponent::Notification(Classes::TComponent *AComponent,
Classes::TOperation Operation)
{

TComponent::Notification(AComponent, Operation); { call inherited method }
if ((Operation == opRemove) && (AComponent == (TComponent *)FTimer))

FTimer = NULL;
}

Storing and loading properties
C++Builder stores forms and their components in form (.dfm in the VCL and .xfm in
CLX) files. A form file stores the properties of a form and its components. When
C++Builder developers add the components you write to their forms, your
components must have the ability to write their properties to the form file when
saved. Similarly, when loaded into C++Builder or executed as part of an application,
the components must restore themselves from the form file.

Most of the time you will not need to do anything to make your components work
with form files because the ability to store a representation and load from it are part
of the inherited behavior of components. Sometimes, however, you might want to

C r e a t i n g p r o p e r t i e s 47-11

S t o r i n g a n d l o a d i n g p r o p e r t i e s

alter the way a component stores itself or the way it initializes when loaded; so you
should understand the underlying mechanism.

These are the aspects of property storage you need to understand:

• Using the store-and-load mechanism
• Specifying default values
• Determining what to store
• Initializing after loading
• Storing and loading unpublished properties

Using the store-and-load mechanism

The description of a form consists of a list of the form’s properties, along with similar
descriptions of each component on the form. Each component, including the form
itself, is responsible for storing and loading its own description.

By default, when storing itself, a component writes the values of all its published
properties that differ from their default values, in the order of their declaration.
When loading itself, a component first constructs itself, setting all properties to their
default values, then reads the stored, non-default property values.

This default mechanism serves the needs of most components, and requires no action
at all on the part of the component writer. There are several ways you can customize
the storing and loading process to suit the needs of your particular components,
however.

Specifying default values

C++Builder components save their property values only if those values differ from
the defaults. If you do not specify otherwise, C++Builder assumes a property has no
default value, meaning the component always stores the property, whatever its
value.

To specify a default value for a property,

1 Add an equal sign (=) after the property name.

2 After the equal sign, add braces({}).

3 Within the braces, type the keyword default, followed by another equal sign.

4 Specify the new default value.

For example,

__property Alignment = {default=taCenter};

You can also specify a default value when redeclaring a property. In fact, one reason
to redeclare a property is to designate a different default value.

Note Specifying the default value does not automatically assign that value to the property
on creation of the object. You must make sure that the component’s constructor
assigns the necessary value. A property whose value is not set by a component’s

47-12 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

constructor assumes a zero value- that is, whatever value the property assumes when its
storage memory is set to 0. Thus numeric values default to 0, Boolean values to false,
pointers to NULL, and so on. If there is any doubt, assign a value in the constructor
method.

The following code shows a component declaration that specifies a default value for
the Align property and the implementation of the component’s constructor that sets
the default value. In this case, the new component is a special case of the standard
panel component that will be used for status bars in a window, so its default
alignment should be to the bottom of its owner.

class PACKAGE TMyStatusBar : public TPanel
{
public:

virtual __fastcall TMyStatusBar(TComponent* AOwner);
__published:
 __property Align = {default=alBottom};
};

The constructor of the TMyStatusBar component is in the .CPP file:

__fastcall TMyStatusBar::TMyStatusBar (TComponent* AOwner)
 : TPanel(AOwner)
{
 Align = alBottom;
}

Determining what to store

You can control whether C++Builder stores each of your components’ properties. By
default, all properties in the published part of the class declaration are stored. You
can choose not to store a given property at all, or you can designate a function that
determines dynamically whether to store the property.

To control whether C++Builder stores a property:

1 Add an equal sign (=) after the property name.

2 After the equal sign, add braces({}).

3 Within the braces, type the keyword stored, followed by true, false, or the name of
a Boolean function.

The following code shows a component that declares three new properties. One is
always stored, one is never stored, and the third is stored depending on the value of a
Boolean function:

class PACKAGE TSampleComponent : public TComponent
{
protected:

bool __fastcall StoreIt();
public:

ƒ
__published:

__property int Important = {stored=true}; // always stored

C r e a t i n g p r o p e r t i e s 47-13

S t o r i n g a n d l o a d i n g p r o p e r t i e s

__property int Unimportant = {stored=false}; // never stored
__property int Sometimes = {stored=StoreIt}; // storage depends on function value

};

Initializing after loading

After a component reads all its property values from its stored description, it calls a
virtual method named Loaded, which performs any required initializations. The call
to Loaded occurs before the form and its controls are shown, so you do not need to
worry about initialization causing flicker on the screen.

To initialize a component after it loads its property values, override the Loaded
method.

Note The first thing to do in any Loaded method is call the inherited Loaded method. This
ensures that any inherited properties are correctly initialized before you initialize
your own component.

Storing and loading unpublished properties

By default, only published properties are loaded and saved with a component.
However, it is possible to load and save unpublished properties. This allows you to
have persistent properties that do not appear in the Object Inspector. It also allows
components to store and load property values that C++Builder does not know how
to read or write because the value of the property is too complex. For example, the
TStrings object can’t rely on C++Builder’s automatic behavior to store and load the
strings it represents and must use the following mechanism.

You can save unpublished properties by adding code that tells C++Builder how to
load and save your property’s value.

To write your own code to load and save properties, use the following steps:

1 Create methods to store and load the property value.

2 Override the DefineProperties method, passing those methods to a filer object.

Creating methods to store and load property values
To store and load unpublished properties, you must first create a method to store
your property value and another to load your property value. You have two choices:

• Create a method of type TWriterProc to store your property value and a method of
type TReaderProc to load your property value. This approach lets you take
advantage of C++Builder’s built-in capabilities for saving and loading simple
types. If your property value is built out of types that C++Builder knows how to
save and load, use this approach.

• Create two methods of type TStreamProc, one to store and one to load your
property’s value. TStreamProc takes a stream as an argument, and you can use the
stream’s methods to write and read your property values.

47-14 D e v e l o p e r ’ s G u i d e

S t o r i n g a n d l o a d i n g p r o p e r t i e s

For example, consider a property that represents a component that is created at
runtime. C++Builder knows how to write this value, but does not do so
automatically because the component is not created in the form designer. Because the
streaming system can already load and save components, you can use the first
approach. The following methods load and store the dynamically created component
that is the value of a property named MyCompProperty:

void __fastcall TSampleComponent::LoadCompProperty(TReader *Reader)
{

if (Reader->ReadBoolean())
MyCompProperty = Reader->ReadComponent(NULL);

}
void __fastcall TSampleComponent::StoreCompProperty(TWriter *Writer)
{

if (MyCompProperty)
{

Writer->WriteBoolean(true);
Writer->WriteComponent(MyCompProperty);

}
else

Writer->WriteBoolean(false);
}

Overriding the DefineProperties method
Once you have created methods to store and load your property value, you can
override the component’s DefineProperties method. C++Builder calls this method
when it loads or stores the component. In the DefineProperties method, you must call
the DefineProperty method or the DefineBinaryProperty method of the current filer,
passing it the method to use for loading or saving your property value. If your load
and store methods are of type TWriterProc and type TReaderProc, then you call the
filer’s DefineProperty method. If you created methods of type TStreamProc, call
DefineBinaryProperty instead.

No matter which method you use to define the property, you pass it the methods that
store and load your property value as well as a boolean value indicating whether the
property value needs to be written. If the value can be inherited or has a default
value, you do not need to write it.

For example, given the LoadCompProperty method of type TReaderProc and the
StoreCompProperty method of type TWriterProc, you would override DefineProperties
as follows:

void __fastcall TSampleComponent::DefineProperties(TFiler *Filer)
{

// before we do anything, let the base class define its properties.
// Note that this example assumes that TSampleComponent derives directly from TComponent
TComponent::DefineProperties(Filer);
bool WriteValue;
if (Filer->Ancestor) // check for inherited value
{

if ((TSampleComponent *)Filer->Ancestor)->MyCompProperty == NULL)
WriteValue = (MyCompProperty != NULL);

else if ((MyCompProperty == NULL) ||

C r e a t i n g p r o p e r t i e s 47-15

S t o r i n g a n d l o a d i n g p r o p e r t i e s

(((TSampleComponent *)Filer->Ancestor)->MyCompProperty->Name !=
MyCompProperty->Name))

WriteValue = true;
else WriteValue = false;

}
else // no inherited value, write property if not null

WriteValue = (MyCompProperty != NULL);
Filer->DefineProperty("MyCompProperty ",LoadCompProperty,StoreCompProperty, WriteValue);

end;

47-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g e v e n t s 48-1

C h a p t e r

48
Chapter 48Creating events

An event is a link between an occurrence in the system (such as a user action or a
change in focus) and a piece of code that responds to that occurrence. The responding
code is an event handler, and is nearly always written by the application developer.
Events let application developers customize the behavior of components without
having to change the classes themselves. This is known as delegation.

Events for the most common user actions (such as mouse actions) are built into all the
standard components, but you can also define new events. To create events in a
component, you need to understand the following:

• What are events?
• Implementing the standard events
• Defining your own events

Events are implemented as properties, so you should already be familiar with the
material in Chapter 47, “Creating properties,” before you attempt to create or change
a component’s events.

What are events?
An event is a mechanism that links an occurrence to some code. More specifically, an
event is a closure that points to a method in a specific class instance.

From the application developer’s perspective, an event is just a name related to a
system occurrence, such as OnClick, to which specific code can be attached. For
example, a push button called Button1 has an OnClick method. By default,
C++Builder generates an event handler called Button1Click in the form that contains
the button and assigns it to OnClick. When a click event occurs in the button, the
button calls the method assigned to OnClick, in this case, Button1Click.

To write an event, you need to understand the following:

• Events are closures.
• Events are properties.

48-2 D e v e l o p e r ’ s G u i d e

W h a t a r e e v e n t s ?

• Event types are closure types.
• Event handlers have a return type of void
• Event handlers are optional.

Events are closures

C++Builder uses closures to implement events. A closure is a special pointer type
that points to a specific method in a specific class instance. As a component writer,
you can treat the closure as a place holder: your code detects that an event occurs, so
you call the method (if any) specified by the user for that event.

Closures maintain a hidden pointer to a class instance. When the user assigns a
handler to a component’s event, the assignment is not just to a method with a
particular name, but rather to a specific method of a specific class instance. That
instance is usually the form that contains the component, but it need not be.

All controls, for example, inherit a virtual method called Click for handling click
events:

virtual void __fastcall Click(void);

The implementation of Click calls the user’s click-event handler, if one exists. If the
user has assigned a handler to a control’s OnClick event, clicking the control results in
that method being called. If no handler is assigned, nothing happens.

Events are properties

Components use properties to implement their events. Unlike most other properties,
events do not use methods to implement their read and write parts. Instead, event
properties use a private data member the same type as the property.

By convention, the data member’s name is the same as the name of the property, but
preceded by the letter F. For example, the OnClick closure is stored in a data member
called FOnClick of type TNotifyEvent, and the declaration of the OnClick event
property looks like this:

class PACKAGE TControl : public TComponent
{
private:

TNotifyEvent FOnClick;
ƒ

protected:
__property TNotifyEvent OnClick = {read=FOnClick, write=FOnClick};

ƒ
};

To learn about TNotifyEvent and other event types, see the next section, “Event types
are closure types”.

As with any other property, you can set or change the value of an event at runtime.
The main advantage to having events be properties, however, is that component
users can assign handlers to events at design time, using the Object Inspector.

C r e a t i n g e v e n t s 48-3

W h a t a r e e v e n t s ?

Event types are closure types

Because an event is a pointer to an event handler, the type of the event property must
be a closure type. Similarly, any code to be used as an event handler must be an
appropriately typed method of a class.

To be compatible with an event of a given type, an event-handler method must have
the same number and type of parameters, in the same order, passed in the same way.

C++Builder defines closures for all its standard events. When you create your own
events, you can use an existing closure if that is appropriate, or define one of your
own.

Event handlers have a return type of void
Event handlers must have a return type of void only. Even though the handler can
return only void, you can still get information back from the user’s code by passing
arguments by reference. When you do this, make sure you assign a valid value to the
argument before calling the handler so you do not require the user’s code to change
the value.

An example of passing arguments by reference to an event handler is the key-pressed
event, of type TKeyPressEvent. TKeyPressEvent defines two arguments, one to indicate
which object generated the event, and one to indicate which key was pressed:

typedef void __fastcall (__closure *TKeyPressEvent)(TObject *Sender, Char &Key);

Normally, the Key parameter contains the character pressed by the user. Under
certain circumstances, however, the user of the component might want to change the
character. One example might be to force all characters to uppercase in an edit
control. In that case, the user could define the following handler for keystrokes:

void __fastcall TForm1::Edit1KeyPress(TObject *Sender, Char &Key)
{

Key = UpCase(Key);
}

You can also use arguments passed by reference to let the user override the default
handling.

Event handlers are optional

When creating events, remember that developers using your components may not
attach handlers to them. This means that your component should not fail or generate
errors simply because there is no handler attached to a particular event. (The
mechanics of calling handlers and dealing with events that have no attached handler
are explained in “Calling the event” on page 48-8.)

Events happen almost constantly in a GUI application. Just moving the mouse
pointer across a visual component sends numerous mouse-move messages, which
the component translates into OnMouseMove events. In most cases, developers do not
want to handle the mouse-move events, and this should not cause a problem. So the
components you create should not require handlers for their events.

48-4 D e v e l o p e r ’ s G u i d e

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

Moreover, application developers can write any code they want in an event handler.
The components in the VCL and CLX have events written in such a way as to
minimize the chance of an event handler generating errors. Obviously, you cannot
protect against logic errors in application code, but you can ensure that data
structures are initialized before calling events so that application developers do not
try to access invalid data.

Implementing the standard events
The controls that come with C++Builder inherit events for the most common
occurrences. These are called the standard events. Although all these events are built
into the controls, they are often protected, meaning developers cannot attach
handlers to them. When you create a control, you can choose to make events visible
to users of your control.

There are three things you need to consider when incorporating the standard events
into your controls:

• Identifying standard events
• Making events visible
• Changing the standard event handling

Identifying standard events

There are two categories of standard events: those defined for all controls and those
defined only for the standard windowed controls.

Standard events for all controls
The most basic events are defined in the class TControl. All controls, whether
windowed, graphical, or custom, inherit these events. The following events are
available in all controls:

The standard events have corresponding protected virtual methods declared in
TControl, with names that correspond to the event names. For example, OnClick
events call a method named Click, and OnEndDrag events call a method named
DoEndDrag.

OnClick OnDragDrop OnEndDrag OnMouseMove

OnDblClick OnDragOver OnMouseDown OnMouseUp

C r e a t i n g e v e n t s 48-5

I m p l e m e n t i n g t h e s t a n d a r d e v e n t s

Standard events for standard controls
In addition to the events common to all controls, standard windowed controls (those
that descend from TWinControl in the VCL and TWidgetControl in CLX) have the
following events:

Like the standard events in TControl, the windowed control events have
corresponding methods. The standard key events listed above respond to all normal
keystrokes.

VCL To respond to special keystrokes (such as the Alt key), however, you must respond to
the WM_GETDLGCODE or CM_WANTSPECIALKEYS message from Windows. See
Chapter 51, “Handling messages and system notifications” for information on
writing message handlers.

Making events visible

The declarations of the standard events in TControl and TWinControl (TWidgetControl
in CLX) are protected, as are the methods that correspond to them. If you are
inheriting from one of these abstract classes and want to make their events accessible
at runtime or design time, you need to redeclare the events as either public or
published.

Redeclaring a property without specifying its implementation keeps the same
implementation methods, but changes the protection level. You can, therefore, take
an event that is defined in TControl but not made visible, and surface it by declaring it
as public or published.

For example, to create a component that surfaces the OnClick event at design time,
you would add the following to the component’s class declaration.

class PACKAGE TMyControl : public TCustomControl
{

ƒ
__published:

__property OnClick; // Makes OnClick available in the Object Inspector
};

Changing the standard event handling

If you want to change the way your component responds to a certain kind of event,
you might be tempted to write some code and assign it to the event. As an
application developer, that is exactly what you would do. But when you are creating
a component, you must keep the event available for developers who use the
component.

This is the reason for the protected implementation methods associated with each of
the standard events. By overriding the implementation method, you can modify the

OnEnter OnKeyDown OnKeyPress

OnKeyUp OnExit

48-6 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

internal event handling; and by calling the inherited method you can maintain the
standard handling, including the event for the application developer’s code.

The order in which you call the methods is significant. As a rule, call the inherited
method first, allowing the application developer’s event-handler to execute before
your customizations (and in some cases, to keep the customizations from executing).
There may be times when you want to execute your code before calling the inherited
method, however. For example, if the inherited code is somehow dependent on the
status of the component and your code changes that status, you should make the
changes and then allow the user’s code to respond to them.

Suppose you are writing a component and you want to modify the way it responds
to mouse clicks. Instead of assigning a handler to the OnClick event as a application
developer would, you override the protected method Click:

void __fastcall TMyControl::Click()
{

TWinControl::Click(); // perform standard handling, including calling handler
// your customizations go here

}

Defining your own events
Defining entirely new events is relatively unusual. There are times, however, when a
component introduces behavior that is entirely different from that of any other
component, so you will need to define an event for it.

There are the issues you will need to consider when defining an event:

• Triggering the event
• Defining the handler type
• Declaring the event
• Calling the event

Triggering the event

You need to know what triggers the event. For some events, the answer is obvious.
For example, a mouse-down event occurs when the user presses the left button on
the mouse and Windows sends a WM_LBUTTONDOWN message to the application.
Upon receiving that message, a component calls its MouseDown method, which in
turn calls any code the user has attached to the OnMouseDown event.

But some events are less clearly tied to specific external occurrences. For example, a
scroll bar has an OnChange event, which is triggered by several kinds of occurrence,
including keystrokes, mouse clicks, and changes in other controls. When defining
your events, you must ensure that all the appropriate occurrences call the proper
events.

CLX For CLX applications, see “Responding to system notifications using CLX” on
page 51-10.

C r e a t i n g e v e n t s 48-7

D e f i n i n g y o u r o w n e v e n t s

Two kinds of events
There are two kinds of occurrence you might need to provide events for: user
interactions and state changes. User-interaction events are nearly always triggered by
a message from Windows, indicating that the user did something your component
may need to respond to. State-change events may also be related to messages from
Windows (focus changes or enabling, for example), but they can also occur through
changes in properties or other code.

You have total control over the triggering of the events you define. Define the events
with care so that developers are able to understand and use them.

Defining the handler type

Once you determine when the event occurs, you must define how you want the event
handled. This means determining the type of the event handler. In most cases,
handlers for events you define yourself are either simple notifications or event-
specific types. It is also possible to get information back from the handler.

Simple notifications
A notification event is one that only tells you that the particular event happened,
with no specific information about when or where. Notifications use the type
TNotifyEvent, which carries only one parameter, the sender of the event. All a handler
for a notification “knows” about the event is what kind of event it was, and what
component the event happened to. For example, click events are notifications. When
you write a handler for a click event, all you know is that a click occurred and which
component was clicked.

Notification is a one-way process. There is no mechanism to provide feedback or
prevent further handling of a notification.

Event-specific handlers
In some cases, it is not enough to know which event happened and what component
it happened to. For example, if the event is a key-press event, it is likely that the
handler will want to know which key the user pressed. In these cases, you need
handler types that include parameters for additional information.

If your event was generated in response to a message, it is likely that the parameters
you pass to the event handler come directly from the message parameters.

Returning information from the handler
Because all event handlers return void only, the only way to pass information back
from a handler is through a parameter passed by reference. Your components can use
such information to determine how or whether to process an event after the user’s
handler executes.

48-8 D e v e l o p e r ’ s G u i d e

D e f i n i n g y o u r o w n e v e n t s

For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by
reference the value of the key pressed in a parameter named Key. The event handler
can change Key so that the application sees a different key as being involved in the
event. This is a way to force typed characters to uppercase, for example.

Declaring the event

Once you have determined the type of your event handler, you are ready to declare
the closure and the property for the event. Be sure to give the event a meaningful and
descriptive name so that users can understand what the event does. Try to be
consistent with names of similar properties in other components.

Event names start with “On”
The names of most events in C++Builder begin with “On.” This is just a convention;
the compiler does not enforce it. The Object Inspector determines that a property is
an event by looking at the type of the property: all closure properties are assumed to
be events and appear on the Events page.

Developers expect to find events in the alphabetical list of names starting with “On.”
Using other kinds of names is likely to confuse them.

Note The main exception to this rule is that many events that occur before and after some
occurrence begin with “Before” and “After.”

Calling the event

You should centralize calls to an event. That is, create a virtual method in your
component that calls the application’s event handler (if it assigns one) and provides
any default handling.

Putting all the event calls in one place ensures that someone deriving a new
component from yours can customize event handling by overriding a single method,
rather than searching through your code for places where you call the event.

There are two other considerations when calling the event:

• Empty handlers must be valid.
• Users can override default handling.

Empty handlers must be valid
You should never create a situation in which an empty event handler causes an error,
nor should the proper functioning of your component depend on a particular
response from the application’s event-handling code.

An empty handler should produce the same result as no handler at all. So the code
for calling an application’s event handler should look like this:

if (OnClick)
OnClick(this);

// perform default handling }

C r e a t i n g e v e n t s 48-9

D e f i n i n g y o u r o w n e v e n t s

You should never have something like this:

if (OnClick)
OnClick(this);

else
// perform default handling

Users can override default handling
For some kinds of events, developers may want to replace the default handling or
even suppress all responses. To allow this, you need to pass an argument by
reference to the handler and check for a certain value when the handler returns.

This is in keeping with the rule that an empty handler should have the same effect as
no handler at all. Because an empty handler will not change the values of arguments
passed by reference, the default handling always takes place after calling the empty
handler.

When handling key-press events, for example, the user can suppress the
component’s default handling of the keystroke by setting the Key parameter to a null
character. The logic for supporting that looks like this:

if (OnKeyPress)
OnKeyPress(this, &Key);

if (Key != NULL)
//perform default handling

The actual code is a little different from this because it deals with Windows
messages, but the logic is the same. By default, the component calls any user-
assigned handler, then performs its standard handling. If the user’s handler sets Key
to a null character, the component skips the default handling.

48-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g m e t h o d s 49-1

C h a p t e r

49
Chapter49Creating methods

Component methods are no different from any other class’s methods. That is, they
are member functions built into the structure of a component class. Although there
are essentially no restrictions on what you can do with the methods of a component,
C++Builder does use some standards you should follow. These guidelines include:

• Avoiding dependencies
• Naming methods
• Protecting methods
• Making methods virtual
• Declaring methods

In general, components should not contain many methods and you should minimize
the number of methods that an application needs to call. The features you might be
inclined to implement as methods are often better encapsulated into properties.
Properties provide an interface that suits the C++Builder environment and are
accessible at design time.

Avoiding dependencies
At all times when writing components, minimize the preconditions imposed on the
developer. To the greatest extent possible, developers should be able to do anything
they want to a component, whenever they want to do it. There will be times when
you cannot accommodate that, but your goal should be to come as close as possible.

This list gives you an idea of the kinds of dependencies to avoid:

• Methods that the user must call to use the component

• Methods that must execute in a particular order

• Methods that put the component into a state or mode where certain events or
methods could be invalid

49-2 D e v e l o p e r ’ s G u i d e

N a m i n g m e t h o d s

The best way to handle these situations is to ensure that you provide ways out of
them. For example, if calling a method puts your component into a state where
calling another method might be invalid, then write that second method so that if an
application calls it when the component is in a bad state, the method corrects the
state before executing its main code. At a minimum, you should throw an exception
in cases when a user calls a method that is invalid.

In other words, if you create a situation where parts of your code depend on each
other, the burden should be on you to be sure that using the code in incorrect ways
does not cause problems. A warning message, for example, is preferable to a system
failure if the user does not accommodate your dependencies.

Naming methods
C++Builder imposes no restrictions on what you name methods or their parameters.
There are a few conventions that make methods easier for application developers,
however. Keep in mind that the nature of a component architecture dictates that
many different kinds of people can use your components.

If you are accustomed to writing code that only you or a small group of programmers
use, you might not think too much about how you name things. It is a good idea to
make your method names clear because people unfamiliar with your code (and even
unfamiliar with coding) might have to use your components.

Here are some suggestions for making clear method names:

• Make names descriptive. Use meaningful verbs.

A name like PasteFromClipboard is much more informative than simply Paste or
PFC.

• Function names should reflect the nature of what they return.

Although it might be obvious to you as a programmer that a function named X
returns the horizontal position of something, a name like GetHorizontalPosition is
more universally understandable.

• If a function return type is void, the function name should be active.

Use active verbs in your function names. For example, ReadFileNames is much
more helpful than DoFiles.

As a final consideration, make sure the method really needs to be a method. A good
guideline is that method names have verbs in them. If you find that you create a lot of
methods that do not have verbs in their names, consider whether those methods
ought to be properties.

C r e a t i n g m e t h o d s 49-3

P r o t e c t i n g m e t h o d s

Protecting methods
All parts of classes, including data members, methods, and properties, have a level of
protection or “visibility,” as explained in “Controlling access” on page 46-4.
Choosing the appropriate visibility for a method is simple.

Most methods you write in your components are public or protected. You rarely
need to make a method private, unless it is truly specific to that type of component,
to the point that even derived components should not have access to it.

Note There is generally no reason for declaring a method (other than an event handler) as
__published. Doing so looks to the end user exactly as if the method were public.

Methods that should be public

Any method that application developers need to call must be declared as public.
Keep in mind that most method calls occur in event handlers, so methods should
avoid tying up system resources or putting the operating system in a state where it
cannot respond to the user.

Note Constructors and destructors should always be public.

Methods that should be protected

Any implementation methods for the component should be protected so that
applications cannot call them at the wrong time. If you have methods that application
code should not call, but that are called in derived classes, declare them as protected.

For example, suppose you have a method that relies on having certain data set up for
it beforehand. If you make that method public, there is a chance that applications
will call it before setting up the data. On the other hand, by making it protected, you
ensure that applications cannot call it directly. You can then set up other, public
methods that ensure that data setup occurs before calling the protected method.

Property-implementation methods should be declared as virtual protected methods.
Methods that are so declared allow the application developers to override the
property implementation, either augmenting its functionality or replacing it
completely. Such properties are fully polymorphic. Keeping access methods
protected ensures that developers do not accidentally call them, inadvertently
modifying a property.

Making methods virtual
You make methods virtual when you want different types to be able to execute
different code in response to the same method call.

If you create components intended to be used directly by application developers, you
can probably make all your methods nonvirtual. On the other hand, if you create

49-4 D e v e l o p e r ’ s G u i d e

D e c l a r i n g m e t h o d s

abstract components from which other components will be derived, consider making
the added methods virtual. This way, derived components can override the inherited
virtual methods.

Declaring methods
Declaring a method in a component is the same as declaring any class method.

To declare a new method in a component, you do these things:

• Add the declaration to the component’s class declaration in the component’s
header file.

• Write the code that implements the method in the .CPP file of the unit.

The following code shows a component that defines two new methods, one
protected method and one public virtual method. This is the interface definition in
the .H file:

class PACKAGE TSampleComponent : public TControl
{
protected:

void __fastcall MakeBigger();
public:

virtual int __fastcall CalculateArea();
ƒ

};

This is the code in the .CPP file of the unit that implements the methods:

void __fastcall TSampleComponent::MakeBigger()
{

Height = Height + 5;
Width = Width + 5;

}

int __fastcall TSampleComponent::CalculateArea()
{

return Width * Height;
}

U s i n g g r a p h i c s i n c o m p o n e n t s 50-1

C h a p t e r

50
Chapter50Using graphics in components

Windows provides a powerful graphics device interface (GDI) for drawing device-
independent graphics. The GDI, however, imposes extra requirements on the
programmer, such as managing graphic resources. C++Builder takes care of all the
GDI drudgery, allowing you to focus on productive work instead of searching for
lost handles or unreleased resources.

As with any part of the Windows API, you can call GDI functions directly from your
C++Builder application. But you will probably find that using C++Builder’s
encapsulation of the graphic functions is faster and easier.

CLX GDI functions are Windows-specific and do not apply to CLX or cross-platform
applications. However, CLX components use the Qt library.

The topics in this section include:

• Overview of graphics
• Using the canvas
• Working with pictures
• Off-screen bitmaps
• Responding to changes

Overview of graphics
C++Builder encapsulates the Windows GDI (Qt in CLX) at several levels. The most
important to you as a component writer is the way components display their images
on the screen. When calling GDI functions directly, you need to have a handle to a
device context, into which you have selected various drawing tools such as pens,
brushes, and fonts. After rendering your graphic images, you must restore the device
context to its original state before disposing of it.

Instead of forcing you to deal with graphics at a detailed level, C++Builder provides
a simple yet complete interface: your component’s Canvas property. The canvas
ensures that it has a valid device context, and releases the context when you are not

50-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f g r a p h i c s

using it. Similarly, the canvas has its own properties representing the current pen,
brush, and font.

The canvas manages all these resources for you, so you need not concern yourself
with creating, selecting, and releasing things like pen handles. You just tell the
canvas what kind of pen it should use, and it takes care of the rest.

One of the benefits of letting C++Builder manage graphic resources is that it can
cache resources for later use, which can speed up repetitive operations. For example,
if you have a program that repeatedly creates, uses, and disposes of a particular kind
of pen tool, you need to repeat those steps each time you use it. Because C++Builder
caches graphic resources, chances are good that a tool you use repeatedly is still in
the cache, so instead of having to recreate a tool, C++Builder uses an existing one.

An example of this is an application that has dozens of forms open, with hundreds of
controls. Each of these controls might have one or more TFont properties. Though
this could result in hundreds or thousands of instances of TFont objects, most
applications wind up using only two or three font handles, thanks to a font cache.

Here are two examples of how simple C++Builder’s graphics code can be. The first
uses standard GDI functions to draw a yellow ellipse outlined in blue on a window,
the way you would using other development tools. The second uses a canvas to draw
the same ellipse in an application written with C++Builder.

This is the ObjectWindows code:

void TMyWindow::Paint(TDC& PaintDC, bool erase, TRect& rect)
{

HPEN PenHandle, OldPenHandle;
HBRUSH BrushHandle, OldBrushHandle;
PenHandle = CreatePen(PS_SOLID, 1, RGB(0, 0, 255));
OldPenHandle = SelectObject(PaintDC, PenHandle);
BrushHandle = CreateSolidBrush(RGB(255, 255, 0));
OldBrushHandle = SelectObject(PaintDC, BrushHandle);
Ellipse(10, 20, 50, 50);
SelectObject(OldBrushHandle);
DeleteObject(BrushHandle);
SelectObject(OldPenHandle);
DeleteObject(PenHandle);

)

This C++Builder code accomplishes the same thing:

void __fastcall TForm1::FormPaint(TObject *Sender)
{

Canvas->Pen->Color = clBlue;
Canvas->Brush->Color = clYellow;
Canvas->Ellipse(10, 20, 50, 50);

}

U s i n g g r a p h i c s i n c o m p o n e n t s 50-3

U s i n g t h e c a n v a s

Using the canvas
The canvas class encapsulates graphics controls at several levels, including high-level
functions for drawing individual lines, shapes, and text; intermediate properties for
manipulating the drawing capabilities of the canvas; and in the VCL, provides low-
level access to the Windows GDI.

Table 50.1 summarizes the capabilities of the canvas.

For detailed information on canvas classes and their methods and properties, see
online Help.

Working with pictures
Most of the graphics work you do in C++Builder is limited to drawing directly on the
canvases of components and forms. C++Builder also provides for handling stand-
alone graphic images, such as bitmaps, metafiles, and icons, including automatic
management of palettes.

There are three important aspects to working with pictures in C++Builder:

• Using a picture, graphic, or canvas
• Loading and storing graphics
• Handling palettes

Using a picture, graphic, or canvas

There are three kinds of classes in C++Builder that deal with graphics:

• A canvas represents a bitmapped drawing surface on a form, graphic control,
printer, or bitmap. A canvas is always a property of something else, never a stand-
alone class.

Table 50.1 Canvas capability summary

Level Operation Tools

High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle,
and Ellipse

Displaying and measuring text TextOut, TextHeight, TextWidth, and
TextRect methods

Filling areas FillRect and FloodFill methods

Intermediate Customizing text and graphics Pen, Brush, and Font properties

Manipulating pixels Pixels property.

Copying and merging images Draw, StretchDraw, BrushCopy, and
CopyRect methods; CopyMode property

Low Calling Windows GDI functions Handle property

50-4 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h p i c t u r e s

• A graphic represents a graphic image of the sort usually found in a file or resource,
such as a bitmap, icon, or metafile. C++Builder defines classes TBitmap, TIcon, and
TMetafile (VCL only), all descended from a generic TGraphic. You can also define
your own graphic classes. By defining a minimal standard interface for all
graphics, TGraphic provides a simple mechanism for applications to use different
kinds of graphics easily.

• A picture is a container for a graphic, meaning it could contain any of the graphic
classes. That is, an item of type TPicture can contain a bitmap, an icon, a metafile,
or a user-defined graphic type, and an application can access them all in the same
way through the picture class. For example, the image control has a property
called Picture, of type TPicture, enabling the control to display images from many
kinds of graphics.

Keep in mind that a picture class always has a graphic, and a graphic might have a
canvas. (The only standard graphic that has a canvas is TBitmap.) Normally, when
dealing with a picture, you work only with the parts of the graphic class exposed
through TPicture. If you need access to the specifics of the graphic class itself, you can
refer to the picture’s Graphic property.

Loading and storing graphics

All pictures and graphics in C++Builder can load their images from files and store
them back again (or into different files). You can load or store the image of a picture
at any time.

CLX You can also load images from and save them to a Qt MIME source, or a stream
object if creating CLX components.

To load an image into a picture from a file, call the picture’s LoadFromFile method. To
save an image from a picture into a file, call the picture’s SaveToFile method.

LoadFromFile and SaveToFile each take the name of a file as the only parameter.
LoadFromFile uses the extension of the file name to determine what kind of graphic
object it will create and load. SaveToFile saves whatever type of file is appropriate for
the type of graphic object being saved.

To load a bitmap into an image control’s picture, for example, pass the name of a
bitmap file to the picture’s LoadFromFile method:

void __fastcall TForm1::FormCreate(TObject *Sender)
{

Image1->Picture->LoadFromFile("c:\\windows\\athena.bmp");
}

The picture recognizes .bmp as the standard extension for bitmap files, so it creates
its graphic as a TBitmap, then calls that graphic’s LoadFromFile method. Because the
graphic is a bitmap, it loads the image from the file as a bitmap.

U s i n g g r a p h i c s i n c o m p o n e n t s 50-5

W o r k i n g w i t h p i c t u r e s

Handling palettes

For VCL and CLX components, when running on a palette-based device (typically, a
256-color video mode), C++Builder controls automatically support palette
realization. That is, if you have a control that has a palette, you can use two methods
inherited from TControl to control how Windows accommodates that palette.

Palette support for controls has these two aspects:

• Specifying a palette for a control
• Responding to palette changes

Most controls have no need for a palette, but controls that contain “rich color”
graphic images (such as the image control) might need to interact with Windows and
the screen device driver to ensure the proper appearance of the control. Windows
refers to this process as realizing palettes.

Realizing palettes is the process of ensuring that the foremost window uses its full
palette, and that windows in the background use as much of their palettes as
possible, then map any other colors to the closest available colors in the “real”
palette. As windows move in front of one another, Windows continually realizes the
palettes.

Note C++Builder itself provides no specific support for creating or maintaining palettes,
other than in bitmaps. If you have a palette handle, however, C++Builder controls
can manage it for you.

Specifying a palette for a control
To specify a palette for a VCL and CLX control, override the control’s GetPalette
method to return the handle of the palette.

Specifying the palette for a control does these things for your application:

• It tells the application that your control’s palette needs to be realized.
• It designates the palette to use for realization.

Responding to palette changes
If your VCL and CLX control specifies a palette by overriding GetPalette, C++Builder
automatically takes care of responding to palette messages from Windows. The
method that handles the palette messages is PaletteChanged.

The primary role of PaletteChanged is to determine whether to realize the control’s
palette in the foreground or the background. Windows handles this realization of
palettes by making the topmost window have a foreground palette, with other
windows resolved in background palettes. C++Builder goes one step further, in that
it also realizes palettes for controls within a window in tab order. The only time you
might need to override this default behavior is if you want a control that is not first in
tab order to have the foreground palette.

50-6 D e v e l o p e r ’ s G u i d e

O f f - s c r e e n b i t m a p s

Off-screen bitmaps
When drawing complex graphic images, a common technique in graphics
programming is to create an off-screen bitmap, draw the image on the bitmap, and
then copy the complete image from the bitmap to the final destination onscreen.
Using an off-screen image reduces flicker caused by repeated drawing directly to the
screen.

The bitmap class in C++Builder, which represents bitmapped images in resources
and files, can also work as an off-screen image.

There are two main aspects to working with off-screen bitmaps:

• Creating and managing off-screen bitmaps.
• Copying bitmapped images.

Creating and managing off-screen bitmaps

When creating complex graphic images, avoid drawing them directly on a canvas
that appears onscreen. Instead of drawing on the canvas for a form or control, you
can construct a bitmap object, draw on its canvas, and then copy its completed image
to the onscreen canvas. The most common use of an offscreen bitmap is in the Paint
method of a graphic control.

For an example of painting a complex image on an offscreen bitmap, see the source
code for the Gauge control from the Samples page of the Component palette. The
gauge draws its different shapes and text on an offscreen bitmap before copying
them to the screen. Source code for the gauge is in the file Cgauges.cpp in the
Examples\Controls\Source subdirectory.

Copying bitmapped images

C++Builder provides four different ways to copy images from one canvas to another.
Depending on the effect you want to create, you call different methods.

Table 50.2 summarizes the image-copying methods in canvas objects.

Table 50.2 Image-copying methods

To create this effect Call this method

Copy an entire graphic. Draw

Copy and resize a graphic. StretchDraw

Copy part of a canvas. CopyRect

Copy a bitmap with raster operations. BrushCopy (VCL)

Copy a graphic repeatedly to tile an area. TiledDraw(CLX)

U s i n g g r a p h i c s i n c o m p o n e n t s 50-7

R e s p o n d i n g t o c h a n g e s

Responding to changes
All graphic objects, including canvases and their owned objects (pens, brushes, and
fonts) have events built into them for responding to changes in the object. By using
these events, you can make your components (or the applications that use them)
respond to changes by redrawing their images.

Responding to changes in graphic objects is particularly important if you publish
them as part of the design-time interface of your components. The only way to
ensure that the design-time appearance of the component matches the properties set
in the Object Inspector is to respond to changes in the objects.

To respond to changes in a graphic object, assign a method to the class’s OnChange
event.

The shape component publishes properties representing the pen and brush it uses to
draw its shape. The component’s constructor assigns a method to the OnChange
event of each, causing the component to refresh its image if either the pen or brush
changes. Although the shape component is written in Object Pascal, the following is a
C++ translation of the shape component with a new name, TMyShape.

This is the class declaration in the header file:

class PACKAGE TMyShape : public TGraphicControl
{
private:
protected:
public:

virtual __fastcall TMyShape(TComponent* Owner);
__published:

TPen *FPen;
TBrush *FBrush;
void __fastcall StyleChanged(TObject *Sender);

};

This is the code in the .CPP file:

__fastcall TMyShape::TMyShape(TComponent* Owner)
: TGraphicControl(Owner)

{
Width = 65;
Height = 65;
FPen = new TPen;
FPen->OnChange = StyleChanged;
FBrush = new TBrush;
FBrush->OnChange = StyleChanged;

}

void __fastcall TMyShape::StyleChanged(TObject *Sender)
{

Invalidate();
}

50-8 D e v e l o p e r ’ s G u i d e

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-1

C h a p t e r

51
Chapter51Handling messages and system

notifications
Components often need to respond to notifications from the underlying operating
system. The operating system informs the application of occurrences such as what the
user does with the mouse and keyboard. Some controls also generate notifications, such
as the results from user actions such as selecting an item in a list box. The VCL and CLX
handle most of the common notifications already. It is possible, however, that you will
need to write your own code for handling such notifications.

In the VCL, notifications arrive in the form of messages. These messages can come
from any source, including Windows, VCL components, and components you have
defined. There are three aspects to working with messages:

• Understanding the message-handling system
• Changing message handling
• Creating new message handlers

In CLX, notifications arrive in the form of signals and system events instead of
Windows messages. See “Responding to system notifications using CLX” on
page 51-10 for details on how to work with system notifications in CLX.

Understanding the message-handling system
All VCL classes have a built-in mechanism for handling messages, called message-
handling methods or message handlers. The basic idea of message handlers is that the
class receives messages of some sort and dispatches them, calling one of a set of
specified methods depending on the message received. If no specific method exists
for a particular message, there is a default handler.

51-2 D e v e l o p e r ’ s G u i d e

U n d e r s t a n d i n g t h e m e s s a g e - h a n d l i n g s y s t e m

The following diagram shows the message-dispatch system:

The Visual Component Library defines a message-dispatching system that translates
all Windows messages (including user-defined messages) directed to a particular
class into method calls. You should never need to alter this message-dispatch
mechanism. All you will need to do is create message-handling methods. See the
section “Declaring a new message-handling method” on page 51-7 for more on this
subject.

What’s in a Windows message?

A Windows message can be thought of as a data structure that contains several
useful data members. The most important of these is an integer-size value that
identifies the message. Windows defines a lot of messages, and the MESSAGES.HPP
file declares identifiers for all of them.

Windows programmers are used to working with the Windows definitions that
identify a message, such as WM_COMMAND or WM_PAINT. A traditional
Windows program contains a window procedure that serves as a callback for system
generated messages. In this window procedure there is usually a large switch
statement with case labels for each message this window intends to handle.

Additional useful information is passed to this window procedure in two
parameters, wParam and lParam, for word parameter and long parameter. Often, each
parameter contains more than one piece of information and it is necessary to pull out
the relevant portions with Windows macros such as LOWORD and HIWORD. For
example, calling HIWORD(lParam) yields the high word of this parameter.

Originally, Windows programmers had to remember or look up in the Windows API
what information each parameter contained. Now Windows uses message crackers to
simplify the syntax associated with handling a Windows message and its associated
parameters. With message crackers, instead of using a large switch statement that
unpacks all of the information into the parameters, you can simply associate a
handler function with the message. If you include WINDOWSX.H into a standard
Windows program, the HANDLE_MSG macro is available to your program so you
can write code like this:

void MyKeyDownHandler(HWND hwnd, UINT nVirtKey, BOOL fDown, int CRepeat, UINT flags)
{

ƒ
}

LRESULT MyWndProc(HWND hwnd, UINT Message, WPARAM wParam, LPARAM lParam)
{

switch(Message)
{

HANDLE_MSG(hwnd, WM_KEYDOWN, MyKeyDownHandler);
ƒ

}

Event MainWndProc WndProc Dispatch Handler

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-3

U n d e r s t a n d i n g t h e m e s s a g e - h a n d l i n g s y s t e m

Using this style of message cracking makes it clearer that messages are being
dispatched to a particular handler. Also, you can give significant names to the
parameter list for your handler function. It is easier to understand a function that
takes a parameter called nVirtKey, which is the value for wParam in a
WM_KEYDOWN message.

Dispatching messages

When an application creates a window, it registers a window procedure with the
Windows kernel. The window procedure is the routine that handles messages for the
window. Traditionally, the window procedure contains a huge switch statement
with entries for each message the window has to handle. Keep in mind that
“window” in this sense means just about anything on the screen: each window, each
control, and so on. Every time you create a new type of window, you have to create a
complete window procedure.

The VCL simplifies message dispatching in several ways:

• Each component inherits a complete message-dispatching system.

• The dispatch system has default handling. You define handlers only for messages
you need to respond to specially.

• You can modify small parts of the message handling and rely on inherited
methods for most processing.

The greatest benefit of this message dispatch system is that you can safely send any
message to any component at any time. If the component does not have a handler
defined for the message, the default handling takes care of it, usually by ignoring the
message.

Tracing the flow of messages
The VCL registers a method called MainWndProc as the window procedure for each
type of component in an application. MainWndProc contains an exception-handling
block, passing the message structure from Windows to a virtual method called
WndProc and handling any exceptions by calling the application class’s
HandleException method.

MainWndProc is a nonvirtual method that contains no special handling for any
particular messages. Customizations take place in WndProc, since each component
type can override the method to suit its particular needs.

WndProc methods check for any special conditions that affect their processing so they
can “trap” unwanted messages. For example, while being dragged, components
ignore keyboard events, so the WndProc method of TWinControl passes along
keyboard events only if the component is not being dragged. Ultimately, WndProc
calls Dispatch, a nonvirtual method inherited from TObject, which determines which
method to call to handle the message.

Dispatch uses the Msg data member of the message structure to determine how to
dispatch a particular message. If the component defines a handler for that particular
message, Dispatch calls the method. If the component does not define a handler for
that message, Dispatch calls DefaultHandler.

51-4 D e v e l o p e r ’ s G u i d e

C h a n g i n g m e s s a g e h a n d l i n g

Changing message handling
Before changing the message handling of your components, make sure that is what
you really want to do. The VCL translates most Windows messages into events that
both the component writer and the component user can handle. Rather than
changing the message-handling behavior, you should probably change the event-
handling behavior.

To change message handling in VCL components, you override the message-
handling method. You can also prevent a component from handling a message under
certain circumstances by trapping the message.

Overriding the handler method

To change the way a component handles a particular message, you override the
message-handling method for that message. If the component does not already
handle the particular message, you need to declare a new message-handling method.

To override a message-handling method,

1 Declare a new method in your component with the same name as the method it
overrides in the protected part of the component declaration.

2 Map the method to the message it overrides by using three macros.

The macros take this form:

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(parameter1, parameter2, parameter3)

END_MESSAGE_MAP

Parameter1 is the message index as Windows defines it, parameter2 is the message
structure type, and parameter3 is the name of the message method.

You can include as many MESSAGE_HANDLER macros as you want between the
BEGIN_MESSAGE_MAP and END_MESSAGE_MAP macros.

For example, to override a component’s handling of the WM_PAINT message, you
redeclare the WMPaint method, and with three macros, map the method to the
WM_PAINT message:

class PACKAGE TMyComponent : public TComponent
{
protected:

void __fastcall WMPaint(TWMPaint* Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(WM_PAINT, TWMPaint, WMPaint)

END_MESSAGE_MAP(TComponent)
};

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-5

C h a n g i n g m e s s a g e h a n d l i n g

Using message parameters

Once inside a message-handling method, your component has access to all the
parameters of the message structure. Because the parameter passed to the message
handler is a pointer, the handler can change the values of the parameters if necessary.
The only parameter that changes frequently is the return value for the message: the
value returned by the SendMessage call that sends the message.

Because the type of the Message parameter in the message-handling method varies
with the message being handled, you should refer to the documentation on Windows
messages for the names and meanings of individual parameters. If for some reason
you need to refer to the message parameters by their old-style names (WParam,
LParam, and so on), you can typecast Message to the generic type TMessage, which
uses those parameter names.

Trapping messages

Under some circumstances, you might want your components to ignore messages.
That is, you want to keep the component from dispatching the message to its
handler. To trap a message, you override the virtual method WndProc.

For VCL components, the WndProc method screens messages before passing them to
the Dispatch method, which in turn determines which method gets to handle the
message. By overriding WndProc, your component gets a chance to filter out
messages before dispatching them. An override of WndProc for a control derived
from TWinControl looks like this:

void __fastcall TMyControl::WndProc(TMessage& Message)
{

 // tests to determine whether to continue processing
if(Message.Msg != WM_LBUTTONDOWN)

TWinControl::WndProc(Message);
}

The TControl component defines entire ranges of mouse messages that it filters when
a user is dragging and dropping controls. Overriding WndProc helps this in two
ways:

• It can filter ranges of messages instead of having to specify handlers for each one.

• It can preclude dispatching the message at all, so the handlers are never called.

Here is part of the WndProc method for TControl as it is implemented in VCL in
Object Pascal:

procedure TControl.WndProc(var Message: TMessage);
begin

ƒ
if (Message.Msg >= WM_MOUSEFIRST) and (Message.Msg <= WM_MOUSELAST) then

if Dragging then { handle dragging specially }
DragMouseMsg(TWMMouse(Message))

51-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g n e w m e s s a g e h a n d l e r s

else
ƒ { handle others normally }

end;
ƒ { otherwise process normally }
end;

Creating new message handlers
Because the VCL provides handlers for most common messages, the time you will
most likely need to create new message handlers is when you define your own
messages. Working with user-defined messages has three aspects:

• Defining your own messages.

• Declaring a new message-handling method.

• Sending messages.

Defining your own messages

A number of the standard components define messages for internal use. The most
common reasons for defining messages are broadcasting information not covered by
standard messages and notification of state changes. You can define your own
messages in the VCL.

Defining a message is a two-step process. The steps are:

1 Declaring a message identifier.

2 Declaring a message-structure type.

Declaring a message identifier
A message identifier is an integer-sized constant. Windows reserves the messages
below 1,024 for its own use, so when you declare your own messages you should
start above that level.

The constant WM_APP represents the starting number for user-defined messages.
When defining message identifiers, you should base them on WM_APP.

Be aware that some standard Windows controls use messages in the user-defined
range. These include list boxes, combo boxes, edit boxes, and command buttons. If
you derive a component from one of these and want to define a new message for it,
be sure to check the MESSAGES.HPP file to see which messages Windows already
defines for that control.

The following code shows two user-defined messages.

#define MY_MYFIRSTMESSAGE (WM_APP + 400)
#define MY_MYSECONDMESSAGE (WM_APP + 401)

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-7

C r e a t i n g n e w m e s s a g e h a n d l e r s

Declaring a message-structure type
If you want to give useful names to the parameters of your message, you need to
declare a message-structure type for that message. The message-structure is the type
of the parameter passed to the message-handling method. If you do not use the
message’s parameters, or if you want to use the old-style parameter notation
(wParam, lParam, and so on), you can use the default message-structure, TMessage.

To declare a message-structure type, follow these conventions:

1 Name the structure type after the message, preceded by a T.

2 Call the first data member in the structure Msg, of type TMsgParam.

3 Define the next two bytes to correspond to the Word parameter, and the next two
bytes as unused.

Or

Define the next four bytes to correspond to the Longint parameter.

4 Add a final data member called Result, of type Longint.

For example, here is the message structure for all mouse messages, TWMKey:

struct TWMKey
{

Cardinal Msg; // first parameter is the message ID
Word CharCode; // this is the first wParam
Word Unused;
Longint KeyData; // this is the lParam
Longint Result; // this is the result data member

};

Declaring a new message-handling method

There are two sets of circumstances that require you to declare new message-
handling methods:

• Your component needs to handle a Windows message that is not already handled
by the standard components.

• You have defined your own message for use by your components.

To declare a message-handling method, do the following:

1 Declare the method in a protected part of the component’s class declaration using
the BEGIN_MESSAGE_MAP ... END_MESSAGE_MAP macros.

2 Be sure that the method returns void.

3 Name the method after the message it handles, but without any underline
characters.

4 Pass a pointer called Message of the type of the message structure.

5 Map the method to the message using macros.

51-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g n e w m e s s a g e h a n d l e r s

6 Within the message method implementation, write code for any handling specific
to the component.

7 Call the inherited message handler.

Here is the declaration, for example, of a message handler for a user-defined message
called CM_CHANGECOLOR.

#define CM_CHANGECOLOR (WM_APP + 400)

class TMyControl : public TControl
{
protected:

void __fastcall CMChangeColor(TMessage &Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(CM_CHANGECOLOR, TMessage, CMChangeColor)

END_MESSAGE_MAP(TControl)
};

void __fastcall TMyControl::CMChangeColor(TMessage &Message)
{

Color = Message.LParam; // set color from long parameter
TControl::CMChangeColor(Message); // call the inherited message handler

}

Sending messages

Typically, an application sends message to send notifications of state changes or to
broadcast information. Your component can broadcast messages to all the controls in
a form, send messages to a particular control (or to the application itself), or even
send messages to itself.

There are several different ways to send a Windows message. Which method you use
depends on why you are sending the message. The following topics describe the
different ways to send Windows messages.

Broadcasting a message to all controls in a form
When your component changes global settings that affect all of the controls in a form
or other container, you may want to send a message to those controls so that they can
update themselves appropriately. Not every control may need to respond to the
notification, but by broadcasting the message, you can inform all controls that know
how to respond and allow the other controls to ignore the message.

To broadcast a message to all the controls in another control, use the Broadcast
method. Before you broadcast a message, you fill out a message structure with the
information you want to convey. (See “Declaring a message-structure type” on
page 51-7 for information on message structures.)

TMessage Msg;
Msg.Msg = MY_MYCUSTOMMESSAGE;
Msg.WParam = 0;
Msg.LParam = (int)(this);
Msg.Result = 0;

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-9

C r e a t i n g n e w m e s s a g e h a n d l e r s

Then, pass this message structure to the parent of all the controls you want to notify.
This can be any control in the application. For example, it can be the parent of the
control you are writing:

Parent->Broadcast(Msg);

It can be the form that contains your control:

GetParentForm(this)->Broadcast(Msg);

It can be the active form:

Screen->ActiveForm->Broadcast(Msg);

It can even be all the forms in your application:

for (int i = 0; i < Screen->FormCount; i++)
Screen->Forms[i]->Broadcast(Msg);

Calling a control’s message handler directly
Sometimes there is only a single control that needs to respond to your message. If
you know the control that should receive your message, the simplest and most
straightforward way to send the message is to call the control’s Perform method.

There are two main reasons why you call a control’s Perform method:

• You want to trigger the same response that the control makes to a standard
Windows (or other) message. For example, when a grid control receives a
keystroke message, it creates an inline edit control and then sends the keystroke
message on to the edit control.

• You may know what control you want to notify, but not know what type of
control it is. Because you don’t know the type of the target control, you can’t any
of its specialized methods, but all controls have message-handling capabilities so
you can always send a message. If the control has a message handler for the
message you send, it will respond appropriately. Otherwise, it will ignore the
message you send and return 0.

To call the Perform method, you do not need to create a message structure. You need
only pass the message identifier, WParam, and LParam as parameters. Perform
returns the message result.

Sending a message using the Windows message queue
In a multithreaded application, you can’t just call the Perform method because the
target control is in a different thread than the one that is executing. However, by
using the Windows message queue, you can safely communicate with other threads.
Message handling always occurs in the main VCL thread, but you can send a
message using the Windows message queue from any thread in the application. A
call to SendMessage is synchronous. That is, SendMessage does not return until the
target control has handled the message, even if it is in another thread.

Use the Windows API call, SendMessage, to send a message to a control using the
Windows message queue. SendMessage takes the same parameters as the Perform

51-10 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X

method, except that you must identify the target control by passing its Window
handle. Thus, instead of writing

MsgResult = TargetControl->Perform(MY_MYMESSAGE, 0, 0);

you would write

MsgResult = SendMessage(TargetControl->Handle, MYMESSAGE, 0, 0);

For more information on the SendMessage function, see the Microsoft MSDN
documentation. For more information on writing multiple threads that may be
executing simultaneously, see “Coordinating threads” on page 11-7.

Sending a message that does not execute immediately
There are times you may want to send a message but you do not know whether it is
safe for the target of the message to execute right away. For example, if the code that
sends a message is called from an event handler on the target control, you may want
to make sure that the event handler has finished executing before the control
executes your message. You can handle this situation as long as you do not need to
know the message result.

Use the Windows API call, PostMessage, to send a message to a control but allow the
control to wait until it has finished any other messages before it handles yours.
PostMessage takes exactly the same parameters as SendMessage.

For more information on the PostMessage function, see the Microsoft MSDN
documentation.

Responding to system notifications using CLX
When using Windows, the operating system sends notifications directly to your
application and the controls it contains using Windows messages. This approach,
however, is not appropriate for CLX, because CLX is a cross-platform library, and
Windows messages are not used on Linux. Instead, CLX uses a platform-neutral way
to respond to system notifications

On CLX, the analog to Windows messages is a system of signals from the underlying
widget layer. Whereas in the VCL, Windows messages can originate either from the
operating system or from the native Windows controls that the VCL wraps, the
widget layer that CLX uses makes a distinction between these two. If the notification
originates from a widget, it is called a signal. If the notification originates with the
operating system, it is called a system event. The widget layer communicates system
events to your CLX components as a signal of type event.

Responding to signals

The underlying widget layer emits a variety of signals, each of which represents a
different type of notification. These signals include system events (the event signal)
as well as notifications that are specific to the widget that generates them. For
example, all widgets generate a destroyed signal when the widget is freed, trackbar

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-11

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X

widgets generate a valueChanged signal, header controls generate a sectionClicked
signal, and so on.

Each CLX component responds to signals from its underlying widget by assigning a
method as the handler for the signal. It does this using a special hook object that is
associated with the underlying widget. The hook object is a lightweight object that is
really just a collection of method pointers, each method pointer specific to a
particular signal. When a method of the CLX component has been assigned to the
hook object as the handler for a specific signal, then every time the widget generates
the specific signal, the method on the CLX component gets called.This is illustrated in
Figure 51.1.

Figure 51.1 Signal routing

Note The methods for each hook object are declared in the Qt unit. Check qt.hpp to see the
methods available for a given hook object. The methods are flattened into global
routines with names that reflect the hook object to which they belong. For example,
all methods on the hook object associated with the application widget (QApplication)
begin with ‘QApplication_hook.’ This flattening is necessary so that the Object Pascal
CLX object can access the methods of the C++ hook object.

Assigning custom signal handlers
Many CLX controls already assign methods to handle signals from the underlying
widget. Typically, these methods are private and not virtual. Thus, if you want to
write your own method to respond to a signal, you must assign your own method to
the hook object associated with your widget. To do this, override the HookEvents
method.

Note If the signal to which you want to respond is a system event notification, you must
not use an override of the HookEvents method. For details on how to respond to
system events, see “Responding to system events” later.

In your override of the HookEvents method, declare a variable of type TMethod. Then
for each method you want to assign to the hook object as a signal handler, do the
following:

1 Initialize the variable of type TMethod to represent a method handler for the signal.

2 Assign this variable to the hook object. You can access the hook object using the
Hooks property that your component inherits from THandleComponent or
TWidgetControl.

In your override, always call the inherited HookEvents method so that the signal
handlers that base classes assign are also hooked up.

QWidget

QHook (Widget)

TWidgetControl

MethodEvent
Filter

51-12 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X

The following code is a translation of the HookEvents method of TTrackBar. It
illustrates how to override the HookEvents method to add custom signal handlers.

virtual void __fastcall TTrackBar::HookEvents(void)
{

TMethod Method;
// initialize Method to represent a handler for the QSlider valueChanged signal
// ValueChangedHook is a method of TTrackBar that responds to the signal.
QSlider_valueChanged_Event(Method) = @ValueChangedHook;
// Assign Method to the hook object. Note that you can cast Hooks to the
// type of hook object associated with the underlying widget.
QSlider_hook_hook_valueChanged(dynamic_cast<QSlider_hookH>(Hooks), Method);
// Repeat the process for the sliderMoved event:
QSlider_sliderMoved_Event(Method) := @ValueChangedHook;
QSlider_hook_hook_valueChanged(dynamic_cast<QSlider_hookH>(Hooks), Method);
// Call the inherited method so that inherited signal handlers are hooked up:
TWidgetControl::HookEvents();

}

Responding to system events

When the widget layer receives an event notification from the operating system, it
generates a special event object (QEvent or one of its descendants) to represent the
event. The event object contains read-only information about the event that occurred.
The type of the event object indicates the type of event that occurred.

The widget layer notifies your CLX component of system events using a special
signal of type event. It passes the QEvent object to the signal handler for the event.
The processing of the event signal is a bit more complicated than processing other
signals because it goes first to the application object. This means an application has
two opportunities to respond to a system event: once at the application level
(TApplication) and once at the level of the individual component (your
TWidgetControl or THandleComponent descendant.) All of these classes (TApplication,
TWidgetControl, and THandleComponent) already assign a signal handler for the event
signal from the widget layer. That is, all system events are automatically directed to
the EventFilter method, which plays a role similar to the WndProc method on VCL
controls. The handling of system events is illustrated in Figure 51.2.

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-13

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X

Figure 51.2 System event routing

EventFilter handles most of the commonly used system notifications, translating them
into the events that are introduced by your component’s base classes. Thus, for
example, the EventFilter method of TWidgetControl responds to mouse events
(QMouseEvent) by generating the OnMouseDown, OnMouseMove, and OnMouseUp
events, to keyboard events (QKeyEvent) by generating the OnKeyDown, OnKeyPress,
OnKeyString, and OnKeyUp events, and so on.

Commonly used events
The EventFilter method of TWidgetControl handles many of the common system
notifications by calling on protected methods that are introduced in TControl or
TWidgetControl. Most of these methods are virtual, so that you can override them
when writing your own components and implement your own responses to the
system event. When overriding these methods, you do not need to worry about
working with the event object or (in most cases) any of the other objects in the
underlying widget layer.

When you want your CLX component to respond to system notifications, it is a good
idea to first check whether there is a protected method that already responds to the
notification. You can check the documentation for TControl or TWidgetControl (and
any other base classes from which you derive your component) to see if there is a
protected method that responds to the event in which you are interested. Table 51.1
lists many of the most commonly used protected methods from TControl and
TWidgetControl that you can use.

Table 51.1 TWidgetControl protected methods for responding to system notifications

Method Description

BeginAutoDrag Called when the user clicks the left mouse button if the control has a
DragMode of dmAutomatic.

Click Called when the user releases the mouse button over the control.

DblClick Called when the user double-clicks with the mouse over the control.

DoMouseWheel Called when the user rotates the mouse wheel.

QApplication

QHook(App)

TApplication

QEvent EventFilter()

Default Processing

QWidget

QHook (Widget)

TWidgetControl

EventFilter()

Default Processing

?

?

Operating
system

(XWindows
MSWindows)

51-14 D e v e l o p e r ’ s G u i d e

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X

In the override, call the inherited method so that any default processes still take
place.responds to signals

Note In addition to the methods that respond to system events, controls include a number
of similar methods that originate with TControl or TWidgetControl to notify the
control of various events. Although these do not respond to system events, they
perform the same task as many Windows messages that are sent to VCL controls.
Table 51.1 lists some of these methods.

Overriding the EventFilter method
If you want to respond to an event notification and there is no protected method for
that event that you can override, you can override the EventFilter method itself. In
your override, check the type of the Event parameter of the EventFilter method, and
perform your special processing when it represents the type of notification to which

DragOver Called when the user drags the mouse cursor over the control.

KeyDown Called when the user presses a key while the control has focus.

KeyPress Called after KeyDown if KeyDown does not handle the keystroke.

KeyString Called when the user enters a keystroke when the system uses a multibyte
character system.

KeyUp Called when the user releases a key while the control has focus.

MouseDown Called when the user clicks the mouse button over the control.

MouseMove Called when the user moves the mouse cursor over the control.

MouseUp Called when the user releases the mouse button over the control.

PaintRequest Called when the system needs to repaint the control.

WidgetDestroyed Called when a widget underlying a control is destroyed.

Table 51.1 TWidgetControl protected methods for responding to system notifications (continued)

Method Description

Table 51.2 TWidgetControl protected methods for responding to events from controls

Method Description

BoundsChanged Called when the control is resized.

ColorChanged Called when the color of the control changes.

CursorChanged Called when the cursor changes shape. The mouse cursor assumes this
shape when it's over this widget.

EnabledChanged Called when an application changes the enabled state of a window or
control.

FontChanged Called when the collection of font resources changes.

PaletteChanged Called when the widget’s palette changes.

ShowHintChanged Called when Help hints are displayed or hidden on a control.

StyleChanged Called when the window or control’s GUI styles change.

TabStopChanged Called when the tab order on the form changes.

TextChanged Called when the control’s text changes.

VisibleChanged Called when a control is hidden or shown.

H a n d l i n g m e s s a g e s a n d s y s t e m n o t i f i c a t i o n s 51-15

R e s p o n d i n g t o s y s t e m n o t i f i c a t i o n s u s i n g C L X

you want to respond. You can prevent further processing of the event notification by
having your EventFilter method return true.

Note See the Qt documentation from TrollTech for details about the different types of
QEvent objects.

The following code is a translation of the EventFilter method on TCustomControl. It
illustrates how to obtain the event type from the QEvent object when overriding
EventFilter. Note that, although it is not shown here, you can cast the QEvent object to
an appropriate specialized QEvent descendant (such as QMouseEvent) once you have
identified the event type.

virtual bool __fastcall TCustomControl::EventFilter(Qt::QObjectH* Sender, Qt::QEventH*
Event)
{

bool retval = TWidgetControl::EventFilter(Sender, Event);
switch (QEvent_type(Event))
{

case QEventType_Resize:
case QEventType_FocusIn:
case QEventType_FocusOut:

UpdateMask();
}
return retval;

}

Generating Qt events
Similar to the way a VCL control can define and send custom Windows messages,
you can make your CLX control define and generate Qt system events. The first step
is to define a unique ID for the event (similar to the way you must define a message
ID when defining a custom Windows message):

static const MyEvent_ID = (int) QCLXEventType_ClxUser + 50;

In the code where you want to generate the event, use the QCustomEvent_create
function (declared in Qt.hpp) to create an event object with your new event ID. An
optional second parameter lets you supply the event object with a data value that is a
pointer to information you want to associate with the event:

QCustomEventH *MyEvent = QCustomEvent_create(MyEvent_ID, this);

Once you have created the event object, you can post it by calling the
QApplication_postEvent method:

QApplication_postEvent(Application->Handle, MyEvent);

For any component to respond to this notification, it need only override its EventFilter
method, checking for an event type of MyEvent_ID. The EventFilter method can
retrieve the data you supplied to the constructor by calling the QCustomEvent_data
method that is declared in Qt.hpp.

51-16 D e v e l o p e r ’ s G u i d e

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-1

C h a p t e r

52
Chapter52Making components available at

design time
This chapter describes the steps for making the components you create available in
the IDE. Making your components available at design time requires several steps:

• Registering components
• Adding palette bitmaps
• Providing Help for your component
• Adding property editors
• Adding component editors
• Compiling components into packages

Not all these steps apply to every component. For example, if you don’t define any
new properties or events, you don’t need to provide Help for them. The only steps
that are always necessary are registration and compilation.

Once your components have been registered and compiled into packages, they can
be distributed to other developers and installed in the IDE. For information on
installing packages in the IDE, see “Installing component packages” on page 15-5.

Registering components
Registration works on a compilation unit basis, so if you create several components
in a single compilation unit, you can register them all at once.

To register a component, add a Register function to the .CPP file of the unit. Within
the Register function, you register the components and determine where to install
them on the Component palette.

Note If you create your component by choosing Component|New Component in the IDE,
the code required to register your component is added automatically.

52-2 D e v e l o p e r ’ s G u i d e

R e g i s t e r i n g c o m p o n e n t s

The steps for manually registering a component are:

• Declaring the Register function
• Writing the Register function

Declaring the Register function

Registration involves writing a single function in the .CPP file of the unit, which must
have the name Register. The Register function must exist within a namespace. The
namespace is the name of the file the component is in with all lowercase letters except
the first letter.

The following code shows how the Register function is implemented within a
namespace. The namespace is named Newcomp, where the file is named
Newcomp.CPP:

namespace Newcomp
{
 void __fastcall PACKAGE Register()
 {
 }
}

Within the Register function, call RegisterComponents for each component you want to
add to the Component palette. If the header and .CPP file combination contain
several components, you can register them all in one step. The PACKAGE macro
expands to a statement that allows classes to be imported and exported.

Writing the Register function

Inside the Register function of a unit containing components, you must register each
component you want to add to the Component palette. If the unit contains several
components, you can register them at the same time.

To register a component, call the RegisterComponents function once for each page of
the Component palette to which you want to add components. RegisterComponents
involves three important things:

1 Specifying the components
2 Specifying the palette page
3 Using the RegisterComponents function

Specifying the components
Within the Register function, declare an open array of type TComponentClass that
holds the array of components you are registering. The syntax should look like this:

TMetaClass classes[1] = {__classid(TNewComponent)};

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-3

R e g i s t e r i n g c o m p o n e n t s

In this case, the array of classes contains just one component, but you can add all the
components you want to register to the array. For example, this code places two
components in the array:

TMetaClass classes[2] =
 {__classid(TNewComponent), __classid(TAnotherComponent)};

Another way to add a component to the array is to assign the component to the array
in a separate statement. These statements add the same two components to the array
as the previous example:

TMetaClass classes[2];
classes[0] = __classid(TNewComponent);
classes[1] = __classid(TAnotherComponent);

Specifying the palette page
The palette page name is an AnsiString. If the name you give for the palette page
does not already exist, C++Builder creates a new page with that name. C++Builder
stores the names of the standard pages in string-list resources so that international
versions of the product can name the pages in their native languages. If you want to
install a component on one of the standard pages, you should obtain the string for the
page name by calling the LoadStr function, passing the constant representing the
string resource for that page, such as srSystem for the System page.

Using the RegisterComponents function
Within the Register function, call RegisterComponents to register the components in the
classes array. RegisterComponents is a function that takes three parameters: the name
of a Component palette page, the array of component classes, and the index of the
last entry in the array.

The following Register function found in the NEWCOMP.CPP file, registers a
component named TMyComponent and places it on a Component palette page called
Miscellaneous:

namespace Newcomp
{
 void __fastcall PACKAGE Register()
 {
 TMetaClass classes[1] = {__classid(TMyComponent)};
 RegisterComponents("Miscellaneous", classes, 0);
 }
}

Note that the third argument in the RegisterComponents call is 0, which is the index of
the last entry in the classes array (the size of the array minus 1).

You can also register several components on the same page at once, or register
components on different pages, as shown in the following code:

namespace Mycomps
{
 void __fastcall PACKAGE Register()
 {
 // declares an array that holds two components

52-4 D e v e l o p e r ’ s G u i d e

A d d i n g p a l e t t e b i t m a p s

 TMetaClass classes1[2] = {__classid(TFirst), __classid(TSecond)};
 // adds a new palette page with the two components in the classes1 array
 RegisterComponents("Miscellaneous", classes1, 1);
 // declares a second array
 TMetaClass classes2[1];
 // assigns a component to be the first element in the array
 classes2[0] = __classid(TThird);
 // adds the component in the classes2 array to the Samples page
 RegisterComponents("Samples", classes2, 0);
 }
}

In the example two arrays, classes1 and classes2 are declared. In the first
RegisterComponents call the classes1 array has 2 entries, so the third argument is the
index of the second entry, which is 1. In the second RegisterComponents call, the
classes2 array has one element, so the third argument is 0.

Adding palette bitmaps
Every component needs a bitmap to represent the component on the Component
palette. If you don’t specify your own bitmap, C++Builder uses a default bitmap.

Because the palette bitmaps are needed only at design time, you don’t compile them
into the component’s compilation unit. Instead, you supply them in a Windows
resource file with the same name as the .CPP file, but with the extension .DCR
(dynamic component resource). You can create this resource file using the Image
editor in C++Builder. Each bitmap should be 24 pixels square.

For each component you want to install, supply a palette bitmap file, and within each
palette bitmap file, supply a bitmap for each component you register. The bitmap
image has the same name as the component class. Keep the palette bitmap file in the
same directory with the compiled files, so C++Builder can find the bitmaps when it
installs the components on the Component palette.

For example, if you create a component named TMyControl, you need to create a
.DCR or .RES resource file that contains a bitmap called TMYCONTROL. The
resource names are not case-sensitive, but by convention, they are usually in
uppercase letters.

Providing Help for your component
When you select a standard component on a form, or a property or event in the
Object Inspector, you can press F1 to get Help on that item. You can provide
developers with the same kind of documentation for your components if you create
the appropriate Help files.

You can provide a small Help file to describe your components, and your help file
becomes part of the user’s overall C++Builder Help system.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-5

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t

See the section “Creating the Help file” on page 52-5 for information on how to
compose the help file for use with a component.

Creating the Help file

You can use any tool you want to create the source file for a Windows Help file (in
.rtf format). C++Builder includes the Microsoft Help Workshop, which compiles
your Help files and provides an online help authoring guide. You can find complete
information about creating Help files in the online guide for Help Workshop.

Composing help files for components consists of the steps:

• Creating the entries
• Making component help context-sensitive Adding component help files

Creating the entries
To make your component’s Help integrate seamlessly with the Help for the rest of
the components in the library, observe the following conventions:

1 Each component should have a help topic.

The component topic should show which unit the component is declared in and
briefly describe the component. The component topic should link to secondary
windows that describe the component’s position in the object hierarchy and list all
of its properties, events, and methods. Application developers access this topic by
selecting the component on a form and pressing F1. For an example of a
component topic, place any component on a form and press F1.

The component topic must have a # footnote with a value unique to the topic. The
footnote uniquely identifies each topic by the Help system.

The component topic should have a K footnote for keyword searching in the help
system Index that includes the name of the component class. For example, the
keyword footnote for the TMemo component is “TMemo.”

The component topic should also have a $ footnote that provides the title of the
topic. The title appears in the Topics Found dialog box, the Bookmark dialog box,
and the History window.

2 Each component should include the following secondary navigational topics:

• A hierarchy topic with links to every ancestor of the component in the
component hierarchy.

• A list of all properties available in the component, with links to entries
describing those properties.

• A list of all events available in the component, with links to entries describing
those events.

• A list of methods available in the component, with links to entries describing
those methods.

Links to object classes, properties, methods, or events in the C++Builder help
system can be made using Alinks. When linking to an object class, the Alink uses

52-6 D e v e l o p e r ’ s G u i d e

P r o v i d i n g H e l p f o r y o u r c o m p o n e n t

the class name of the object, followed by an underscore and the string “object”. For
example, to link to the TCustomPanel object, use the following:

!AL(TCustomPanel_object,1)

When linking to a property, method, or event, precede the name of the property,
method, or event by the name of the object that implements it and an underscore.
For example, to link to the Text property which is implemented by TControl, use
the following:

!AL(TControl_Text,1)

To see an example of the secondary navigation topics, display the help for any
component and click on the links labeled hierarchy, properties, methods, or
events.

3 Each property, method, and event that is declared within the component should
have a topic.

A property, event, or method topic should show the declaration of the item and
describe its use. Application developers see these topics either by highlighting the
item in the Object Inspector and pressing F1 or by placing the cursor in the Code
editor on the name of the item and pressing F1. To see an example of a property
topic, select any item in the Object Inspector and press F1.

The property, event, and method topics should include a K footnote that lists the
name of the property, method, or event, and its name in combination with the
name of the component. Thus, the Text property of TControl has the following K
footnote:

Text,TControl;TControl,Text;Text,

The property, method, and event topics should also include a $ footnote that
indicates the title of the topic, such as TControl::Text.

All of these topics should have a topic ID that is unique to the topic, entered as a #
footnote.

Making component help context-sensitive
Each component, property, method, and event topic must have an A footnote. The A
footnote is used to display the topic when the user selects a component and presses
F1, or when a property or event is selected in the Object Inspector and the user
presses F1. The A footnotes must follow certain naming conventions:

If the Help topic is for a component, the A footnote consists of two entries separated
by a semicolon using this syntax:

ComponentClass_Object;ComponentClass

where ComponentClass is the name of the component class.

If the Help topic is for a property or event, the A footnote consists of three entries
separated by semicolons using this syntax:

ComponentClass_Element;Element_Type;Element

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-7

A d d i n g p r o p e r t y e d i t o r s

where ComponentClass is the name of the component class, Element is the name of the
property, method, or event, and Type is the either Property, Method, or Event

For example, for a property named BackgroundColor of a component named TMyGrid,
the A footnote is

TMyGrid_BackgroundColor;BackgroundColor_Property;BackgroundColor

Adding component help files
To add your Help file to C++Builder, use the OpenHelp utility (called oh.exe) located
in the bin directory or accessed using Help|Customize in the IDE.

You will find information about using OpenHelp in the OpenHelp.hlp file, including
adding your Help file to the Help system.

Adding property editors
The Object Inspector provides default editing for all types of properties. You can,
however, provide an alternate editor for specific properties by writing and
registering property editors. You can register property editors that apply only to the
properties in the components you write, but you can also create editors that apply to
all properties of a certain type.

At the simplest level, a property editor can operate in either or both of two ways:
displaying and allowing the user to edit the current value as a text string, and
displaying a dialog box that permits some other kind of editing. Depending on the
property being edited, you might find it useful to provide either or both kinds.

Writing a property editor requires these five steps:

1 Deriving a property-editor class
2 Editing the property as text
3 Editing the property as a whole
4 Specifying editor attributes
5 Registering the property editor

Deriving a property-editor class

Both the VCL and CLX define several kinds of property editors, all of which descend
from TPropertyEditor. When you create a property editor, your property-editor class
can either descend directly from TPropertyEditor or indirectly through one of the
property-editor classes described in Table 52.1. The classes in the DesignEditors unit
can be used for both VCL and CLX applications. Some of the property editor classes,
however, supply specialized dialogs and so are specialized to either VCL or CLX.
These can be found in the VCLEditors and CLXEditors units, respectively.

Note All that is absolutely necessary for a property editor is that it descend from
TBasePropertyEditor and that it support the IProperty interface. TPropertyEditor,
however, provides a default implementation of the IProperty interface.

52-8 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

The list in Table 52.1 is not complete. The VCLEditors and CLXEditors units also
define some very specialized property editors used by unique properties such as the
component name. The listed property editors are the ones that are the most useful for
user-defined properties.

The following example shows the declaration of a simple property editor named
TMyPropertyEditor:

class PACKAGE TMyPropertyEditor : public TPropertyEditor
{

public:
 virtual bool __fastcall AllEqual(void);
 virtual System::AnsiString __fastcall GetValue(void);
 virtual void __fastcall SetValue(const System::AnsiString Value);
 __fastcall virtual ~TMyPropertyEditor(void) { }
 __fastcall TMyPropertyEditor(void) : Dsgnintf::TPropertyEditor() { }
};

Editing the property as text

All properties need to provide a string representation of their values for the Object
Inspector to display. Most properties also allow the user to type in a new value for
the property. Property-editor classes provide virtual methods you can override to
convert between the text representation and the actual value.

Table 52.1 Predefined property-editor types

Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated
properties) descend from TOrdinalProperty.

TIntegerProperty All integer types, including predefined and user-defined subranges.

TCharProperty Char-type and subranges of Char, such as ‘A’..’Z’.

TEnumProperty Any enumerated type.

TFloatProperty All floating-point numbers.

TStringProperty AnsiStrings.

TSetElementProperty Individual elements in sets, shown as Boolean values

TSetProperty All sets. Sets are not directly editable, but can expand into a list of set-
element properties.

TClassProperty Classes. Displays the name of the class and allows expansion of the class’s
properties.

TMethodProperty Method pointers, most notably events.

TComponentProperty Components in the same form. The user cannot edit the component’s
properties, but can point to a specific component of a compatible type.

TColorProperty Component colors. Shows color constants if applicable, otherwise
displays hexadecimal value. Drop down list contains the color constants.
Double-click opens the color-selection dialog box.

TFontNameProperty Font names. The drop down list displays all currently installed fonts.

TFontProperty Fonts. Allows expansion of individual font properties as well as access to
the font dialog box.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-9

A d d i n g p r o p e r t y e d i t o r s

The methods you override are called GetValue and SetValue. Your property editor
also inherits a set of methods used for assigning and reading different sorts of values,
as shown in Table 52.2.

When you override a GetValue method, you will call one of the Get methods, and
when you override SetValue, you will call one of the Set methods.

Displaying the property value
The property editor’s GetValue method returns a string that represents the current
value of the property. The Object Inspector uses this string in the value column for
the property. By default, GetValue returns “unknown”.

To provide a string representation of your property, override the property editor’s
GetValue method.

If the property is not a string value, GetValue must convert the value into a string
representation.

Setting the property value
The property editor’s SetValue method takes a string typed by the user in the Object
Inspector, converts it into the appropriate type, and sets the value of the property. If
the string does not represent a proper value for the property, SetValue should throw
an exception and not use the improper value.

To read string values into properties, override the property editor’s SetValue method.

SetValue should convert the string and validate the value before calling one of the Set
methods.

Editing the property as a whole

You can optionally provide a dialog box in which the user can visually edit a
property. The most common use of property editors is for properties that are
themselves classes. An example is the Font property, for which the user can open a
font dialog box to choose all the attributes of the font at once.

To provide a whole-property editor dialog box, override the property-editor class’s
Edit method.

Edit methods use the same Get and Set methods used in writing GetValue and
SetValue methods. In fact, an Edit method calls both a Get method and a Set method.

Table 52.2 Methods for reading and writing property values

Property type Get method Set method

Floating point GetFloatValue SetFloatValue

Closure (event) GetMethodValue SetMethodValue

Ordinal type GetOrdValue SetOrdValue

String GetStrValue SetStrValue

52-10 D e v e l o p e r ’ s G u i d e

A d d i n g p r o p e r t y e d i t o r s

Because the editor is type-specific, there is usually no need to convert the property
values to strings. The editor generally deals with the value “as retrieved.”

When the user clicks the ‘...’ button next to the property or double-clicks the value
column, the Object Inspector calls the property editor’s Edit method.

Within your implementation of the Edit method, follow these steps:

1 Construct the editor you are using for the property.

2 Read the current value and assign it to the property using a Get method.

3 When the user selects a new value, assign that value to the property using a Set
method.

4 Destroy the editor.

Specifying editor attributes

The property editor must provide information that the Object Inspector can use to
determine what tools to display. For example, the Object Inspector needs to know
whether the property has subproperties or can display a list of possible values.

To specify editor attributes, override the property editor’s GetAttributes method.

GetAttributes is a method that returns a set of values of type TPropertyAttributes that
can include any or all of the following values:

Table 52.3 Property-editor attribute flags

Flag Related method Meaning if included

paValueList GetValues The editor can give a list of enumerated values.

paSubProperties GetProperties The property has subproperties that can display.

paDialog Edit The editor can display a dialog box for editing the
entire property.

paMultiSelect N/A The property should display when the user selects
more than one component.

paAutoUpdate SetValue Updates the component after every change instead
of waiting for approval of the value.

paSortList N/A The Object Inspector should sort the value list.

paReadOnly N/A Users cannot modify the property value.

paRevertable N/A Enables the Revert to Inherited menu item on the
Object Inspector’s context menu. The menu item
tells the property editor to discard the current
property value and return to some previously
established default or standard value.

paFullWidthName N/A The value does not need to be displayed. The Object
Inspector uses its full width for the property name
instead.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-11

A d d i n g p r o p e r t y e d i t o r s

Color properties are more versatile than most, in that they allow several ways for
users to choose them in the Object Inspector: typing, selection from a list, and
customized editor. TColorProperty’s GetAttributes method, therefore, includes several
attributes in its return value:

virtual __fastcall TPropertyAttributes TColorProperty::GetAttributes()
{

return TPropertyAttributes() << paMultiSelect << paDialog << paValueList << paRevertable;
}

Registering the property editor

Once you create a property editor, you need to register it with C++Builder.
Registering a property editor associates a type of property with a specific property
editor. You can register the editor with all properties of a given type or just with a
particular property of a particular type of component.

To register a property editor, call the RegisterPropertyEditor function.

RegisterPropertyEditor takes four parameters:

• A type-information pointer for the type of property to edit. Specify the type
information like this:

__typeinfo(TMyComponent)

• The type of the component to which this editor applies. If this parameter is null,
the editor applies to all properties of the given type.

• The name of the property. This parameter only has meaning if the previous
parameter specifies a particular type of component. In that case, you can specify
the name of a particular property in that component type to which this editor
applies.

• The type of property editor to use for editing the specified property.

Here is an excerpt from the function that registers the editors for the standard
components on the Component palette:

namespace Newcomp
{

void __fastcall PACKAGE Register()
{

RegisterPropertyEditor(__typeinfo(TComponent), 0L, "", __classid(TComponentProperty));
RegisterPropertyEditor(__typeinfo(TComponentName), __classid(TComponent), "Name",

paVolatileSubProperties GetProperties The Object Inspector re-fetches the values of all
subproperties any time the property value changes.

paReference GetComponent
Value

The value is a reference to something else. When
used in conjunction with paSubProperties the
referenced object should be displayed as sub
properties to this property.

Table 52.3 Property-editor attribute flags (continued)

Flag Related method Meaning if included

52-12 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

__classid(TComponentNameProperty));
RegisterPropertyEditor(__typeinfo(TMenuItem), __classid(TMenu), "",

__classid(TMenuItemProperty));
ƒ

}
}

The three statements in this function cover the different uses of RegisterPropertyEditor:

• The first statement is the most typical. It registers the property editor
TComponentProperty for all properties of type TComponent (or descendants of
TComponent that do not have their own editors registered). In general, when you
register a property editor, you have created an editor for a particular type, and you
want to use it for all properties of that type, so the second and third parameters are
NULL and an empty string, respectively.

• The second statement is the most specific kind of registration. It registers an editor
for a specific property in a specific type of component. In this case, the editor is for
the Name property (of type TComponentName) of all components.

• The third statement is more specific than the first, but not as limited as the second.
It registers an editor for all properties of type TMenuItem in components of type
TMenu.

Property categories
In the IDE, the Object Inspector lets you selectively hide and display properties based
on property categories. The properties of new custom components can be fit into this
scheme by registering properties in categories. Do this at the same time you register
the component by calling RegisterPropertyInCategory or RegisterPropertiesInCategory.
Use RegisterPropertyInCategory to register a single property. Use
RegisterPropertiesInCategory to register multiple properties in a single function call.
These functions are defined in the unit DesignIntf.

Note that it is not mandatory that you register properties or that you register all of
the properties of a custom component when some are registered. Any property not
explicitly associated with a category is included in the TMiscellaneousCategory
category. Such properties are displayed or hidden in the Object Inspector based on
that default categorization.

In addition to these two functions for registering properties, there is an
IsPropertyInCategory function. This function is useful for creating localization utilities,
in which you must determine whether a property is registered in a given property
category.

Registering one property at a time

Register one property at a time and associate it with a property category using the
RegisterPropertyInCategory function. RegisterPropertyInCategory comes in four

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-13

P r o p e r t y c a t e g o r i e s

overloaded variations, each providing a different set of criteria for identifying the
property in the custom component to be associated with the property category.

The first variation lets you identify the property by the property’s name. The line
below registers a property related to visual display of the component, identifying the
property by its name, “AutoSize”.

RegisterPropertyInCategory(“Visual”, “AutoSize”);

The second variation is much like the first, except that it limits the category to only
those properties of the given name that appear on components of a given type. The
example below registers (into the ‘Help and Hints’ category) a property named
“HelpContext” of a component of the custom class TMyButton.

RegisterPropertyInCategory(“Help and Hints”, __classid(TMyButton), “HelpContext”);

The third variation identifies the property using its type rather than its name. The
example below registers a property based on its type, a special class called
TArrangement.

RegisterPropertyInCategory('Visual', typeid(TArrangement));

The final variation uses both the property’s type and its name to identify the
property. The example below registers a property based on a combination of its type,
TBitmap, and its name, ”Pattern.”

RegisterPropertyInCategory(“Visual”, typeid(TBitmap), “Pattern”);

See the section Specifying property categories for a list of the available property
categories and a brief description of their uses.

Registering multiple properties at once

Register multiple properties at one time and associate them with a property category
using the RegisterPropertiesInCategory function. RegisterPropertiesInCategory comes in
three overloaded variations, each providing a different set of criteria for identifying
the property in the custom component to be associated with property categories.

The first variation lets you identify properties based on property name or type. The
list is passed as an array of constants. In the example below, any property that either
has the name “Text” or belongs to a class of type TEdit is registered in the category
‘Localizable.’

RegisterPropertiesInCategory("Localizable", ARRAYOFCONST("Text", __typeinfo(TEdit)));

The second variation lets you limit the registered properties to those that belong to a
specific component. The list of properties to register include only names, not types.
For example, the following code registers a number of properties into the ‘Help and
Hints’ category for all components:

RegisterPropertyInCategory("Help and Hints", __classid(TComponent),
ARRAYOFCONST("HelpContext", "Hint", "ParentShowHint"));

52-14 D e v e l o p e r ’ s G u i d e

P r o p e r t y c a t e g o r i e s

The third variation lets you limit the registered properties to those that have a
specific type. As with the second variation, the list of properties to register can
include only names:

RegisterPropertiesInCategory("Localizable", __typeinfo(TStrings), ARRAYOFCONST("Lines",
"Commands"));

See the section Specifying property categories for a list of the available property
categories and a brief description of their uses.

Specifying property categories

When you register properties in a category, you can use any string you want as the
name of the category. If you use a string that has not been used before, the Object
Inspector generates a new property category class with that name. You can also,
however, register properties into one of the categories that are built-in. The built-in
property categories are described in Table 52.4.:

Table 52.4 Property categories

Category Purpose

Action Properties related to runtime actions; the Enabled and Hint properties of
TEdit are in this category.

Database Properties related to database operations; the DatabaseName and SQL
properties of TQuery are in this category.

Drag, Drop, and
Docking

Properties related to drag-and-drop and docking operations; the
DragCursor and DragKind properties of TImage are in this category.

Help and Hints Properties related to using online help or hints; the HelpContext and Hint
properties of TMemo are in this category.

Layout Properties related to the visual display of a control at design-time; the
Top and Left properties of TDBEdit are in this category.

Legacy Properties related to obsolete operations; the Ctl3D and ParentCtl3D
properties of TComboBox are in this category.

Linkage Properties related to associating or linking one component to another;
the DataSet property of TDataSource is in this category.

Locale Properties related to international locales; the BiDiMode and
ParentBiDiMode properties of TMainMenu are in this category.

Localizable Properties that may require modification in localized versions of an
application. Many string properties (such as Caption) are in this
category, as are properties that determine the size and position of
controls.

Visual Properties related to the visual display of a control at runtime; the Align
and Visible properties of TScrollBox are in this category.

Input Properties related to the input of data (need not be related to database
operations); the Enabled and ReadOnly properties of TEdit are in this
category.

Miscellaneous Properties that do not fit a category or do not need to be categorized
(and properties not explicitly registered to a specific category); the
AllowAllUp and Name properties of TSpeedButton are in this category.

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-15

A d d i n g c o m p o n e n t e d i t o r s

Using the IsPropertyInCategory function

An application can query the existing registered properties to determine whether a
given property is already registered in a specified category. This can be especially
useful in situations like a localization utility that checks the categorization of
properties preparatory to performing its localization operations. Two overloaded
variations of the IsPropertyInCategory function are available, allowing for different
criteria in determining whether a property is in a category.

The first variation lets you base the comparison criteria on a combination of the class
type of the owning component and the property’s name. In the command line below,
for IsPropertyInCategory to return true, the property must belong to a TCustomEdit
descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere = IsPropertyInCategory(“Localizable”, __classid(TCustomEdit), “Text”);

The second variation lets you base the comparison criteria on a combination of the
class name of the owning component and the property’s name. In the command line
below, for IsPropertyInCategory to return true, the property must be a TCustomEdit
descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere = IsPropertyInCategory(“Localizable”, “TCustomEdit”, “Text”);

Adding component editors
Component editors determine what happens when the component is double-clicked
in the designer and add commands to the context menu that appears when the
component is right-clicked. They can also copy your component to the Windows
clipboard in custom formats.

If you do not give your components a component editor, C++Builder uses the default
component editor. The default component editor is implemented by the class
TDefaultEditor. TDefaultEditor does not add any new items to a component’s context
menu. When the component is double-clicked, TDefaultEditor searches the properties
of the component and generates (or navigates to) the first event handler it finds.

To add items to the context menu, change the behavior when the component is
double-clicked, or add new clipboard formats, derive a new class from
TComponentEditor and register its use with your component. In your overridden
methods, you can use the Component property of TComponentEditor to access the
component that is being edited.

Adding a custom component editor consists of the steps:

• Adding items to the context menu
• Changing the double-click behavior
• Adding clipboard formats
• Registering the component editor

52-16 D e v e l o p e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s

Adding items to the context menu

When the user right-clicks the component, the GetVerbCount and GetVerb methods of
the component editor are called to build context menu. You can override these
methods to add commands (verbs) to the context menu.

Adding items to the context menu requires the steps:

• Specifying menu items
• Implementing commands

Specifying menu items
Override the GetVerbCount method to return the number of commands you are
adding to the context menu. Override the GetVerb method to return the strings that
should be added for each of these commands. When overriding GetVerb, add an
ampersand (&) to a string to cause the following character to appear underlined in
the context menu and act as a shortcut key for selecting the menu item. Be sure to add
an ellipsis (...) to the end of a command if it brings up a dialog. GetVerb has a single
parameter that indicates the index of the command.

The following code overrides the GetVerbCount and GetVerb methods to add two
commands to the context menu.

int __fastcall TMyEditor::GetVerbCount(void)
{
 return 2;
}

System::AnsiString __fastcall TMyEditor::GetVerb(int Index)
{
 switch (Index)
 {
 case 0: return “&DoThis ...”; break;
 case 1: return “Do&That”; break;
 }
}

Note Be sure that your GetVerb method returns a value for every possible index indicated
by GetVerbCount.

Implementing commands
When the command provided by GetVerb is selected in the designer, the ExecuteVerb
method is called. For every command you provide in the GetVerb method, implement
an action in the ExecuteVerb method. You can access the component that is being
edited using the Component property of the editor.

For example, the following ExecuteVerb method implements the commands for the
GetVerb method in the previous example.

void __fastcall TMyEditor::ExecuteVerb(int Index)
{
 switch (Index)
 {

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-17

A d d i n g c o m p o n e n t e d i t o r s

 case 0:
 TMyDialog *MySpecialDialog = new TMyDialog();
 MySpecialDialog->Execute();
 ((TMyComponent *)Component)->ThisProperty = MySpecialDialog->ReturnValue;
 delete MySpecialDialog;
 break;
 case 1:
 That(); // call the “That” method
 break;
 }
}

Changing the double-click behavior

When the component is double-clicked, the Edit method of the component editor is
called. By default, the Edit method executes the first command added to the context
menu. Thus, in the previous example, double-clicking the component executes the
DoThis command.

While executing the first command is usually a good idea, you may want to change
this default behavior. For example, you can provide an alternate behavior if

• you are not adding any commands to the context menu.

• you want to display a dialog that combines several commands when the
component is double-clicked.

Override the Edit method to specify a new behavior when the component is double-
clicked. For example, the following Edit method brings up a font dialog when the
user double-clicks the component:

void __fastcall TMyEditor::Edit(void)
{
 TFontDialog *pFontDlg = new TFontDialog(NULL);
 pFontDlg->Execute();
 ((TMyComponent *)Component)->Font = pFontDlg->Font;
 delete pFontDlg;
}

Note If you want a double-click on the component to display the Code editor for an event
handler, use TDefaultEditor as a base class for your component editor instead of
TComponentEditor. Then, instead of overriding the Edit method, override the
protected TDefaultEditor::EditProperty method instead. EditProperty scans through the
event handlers of the component, and brings up the first one it finds. You can change
this to look a particular event instead. For example:

void __fastcall TMyEditor::EditProperty(TPropertyEditor* PropertyEditor,
 bool &Continue, bool &FreeEditor)
{
 if (PropertyEditor->ClassNameIs(“TMethodProperty”) &&
 CompareText(PropertyEditor->GetName, “OnSpecialEvent”) == 0)
 {
 TDefaultEditor::EditProperty(PropertyEditor, Continue, FreeEditor);
 }
}

52-18 D e v e l o p e r ’ s G u i d e

A d d i n g c o m p o n e n t e d i t o r s

Adding clipboard formats

By default, when a user chooses Copy while a component is selected in the IDE, the
component is copied in C++Builder’s internal format. It can then be pasted into
another form or data module. Your component can copy additional formats to the
Clipboard by overriding the Copy method.

For example, the following Copy method allows a TImage component to copy its
picture to the Clipboard. This picture is ignored by the C++Builder IDE, but can be
pasted into other applications.

void __fastcall TMyComponentEditor::Copy(void)
{
 WORD AFormat;
 int AData;
 HPALETTE APalette;
 ((TImage *)Component)->Picture->SaveToClipboardFormat(AFormat, AData, APalette);
 TClipboard *pClip = Clipboard(); // don’t clear the clipboard!
 pClip->SetAsHandle(AFormat, AData);
}

Registering the component editor

Once the component editor is defined, it can be registered to work with a particular
component class. A registered component editor is created for each component of
that class when it is selected in the form designer.

To create the association between a component editor and a component class, call
RegisterComponentEditor. RegisterComponentEditor takes the name of the component
class that uses the editor, and the name of the component editor class that you have
defined. For example, the following statement registers a component editor class
named TMyEditor to work with all components of type TMyComponent:

RegisterComponentEditor(__classid(TMyComponent), __classid(TMyEditor));

Place the call to RegisterComponentEditor in the namespace where you register your
component. For example, if a new component named TMyComponent and its
component editor TMyEditor are both implemented in NewComp.cpp, the following
code (in NewComp.cpp) registers the component and its association with the
component editor.

namespace Newcomp
{

void __fastcall PACKAGE Register()
{

TMetaClass classes[1] = {__classid(TMyComponent)};
RegisterComponents("Miscellaneous", classes, 0);
RegisterComponentEditor(classes[0], __classid(TMyEditor));

}
}

M a k i n g c o m p o n e n t s a v a i l a b l e a t d e s i g n t i m e 52-19

C o m p i l i n g c o m p o n e n t s i n t o p a c k a g e s

Compiling components into packages
Once your components are registered, you must compile them as packages before
they can be installed in the IDE. A package can contain one or several components as
well as custom property editors. For more information about packages, see
Chapter 15, “Working with packages and components.”

To create and compile a package, see “Creating and editing packages” on page 15-6.
Put the source-code units for your custom components in the package’s Contains list.
If your components depend on other packages, include those packages in the
Requires list.

To install your components in the IDE, see “Installing component packages” on
page 15-5.

Troubleshooting custom components
A common problem when registering and installing custom components is that the
component does not show up in the list of components after the package is
successfully installed.

The most common causes for component not showing up in the list or on the palette:

• Missing PACKAGE modifier on the Register function

• Missing PACKAGE modifier on the class

• Missing #pragma package(smart_init) in the C++ source file

• Register function is not found in a namespace with the same name as the source
code module name.

• Register is not being successfully exported. Use tdump on the .BPL to look for the
exported function:

tdump -ebpl mypack.bpl mypack.dmp

In the exports section of the dump, you should see the Register function (within
the namespace) being exported.

52-20 D e v e l o p e r ’ s G u i d e

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 53-1

C h a p t e r

53
Chapter53Modifying an existing component

The easiest way to create a component is to derive it from a component that does
nearly everything you want, then make whatever changes you need. The example in
this chapter modifies the standard memo component to create a memo that has a
yellow background. The other chapters in this part describe creating more complex
components. The basic process is always the same, but more complex components
require more steps in customizing the new class.

Modifying an existing component takes only two steps:

• Creating and registering the component

• Modifying the component class

Creating and registering the component
Creation of every component begins the same way: you create a unit, derive a
component class, register it, and install it on the Component palette. This process is
outlined in “Creating a new component” on page 45-8.

For this example, follow the general procedure for creating a component, with these
specifics:

1 Name the component’s unit YelMemo and save it, so that the header file is
YELMEMO.H and the .CPP file is YELMEMO.CPP.

2 Derive a new component class called TYellowMemo, descended from TMemo.

3 Register TYellowMemo on the Samples page (or other page in CLX) of the
Component palette.

53-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t

The resulting header file should look like this:

#ifndef YelMemoH
#define YelmemoH
//---
#include <sysutils.hpp>
#include <controls.hpp>
#include <classes.hpp>
#include <forms.hpp>
#include <StdCtrls.hpp>
//---
class PACKAGE TYellowMemo : public TMemo
{
private:
protected:
public:
__published:
};
//---
#endif

The accompanying .CPP file should look like this:

#include <vcl.h>
#pragma hdrstop
#include "Yelmemo.h"
//---
#pragma package(smart_init);
//---
// ValidCtrCheck is used to assure that the components created do not have
// any pure virtual functions.
//
static inline void ValidCtrCheck(TYellowMemo *)
{

new TYellowMemo(NULL);
}
//---
__fastcall TYellowMemo::TYellowMemo(TComponent* Owner)
 : TMemo(Owner)
{
}
//---
namespace Yelmemo
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TYellowMemo)};
RegisterComponents("Samples", classes, 0); //”Common Controls” in CLX applications

}
}

CLX Names and locations of some of the header files differ in CLX applications. For
example, <vcl\controls.hpp> is <clx\qcontrols.hpp> in CLX.

Note This example assumes you are not using the Component wizard to create this
component, but that you are creating it manually. If you use the Component wizard,
a constructor will automatically be added to TYellowMemo.

M o d i f y i n g a n e x i s t i n g c o m p o n e n t 53-3

M o d i f y i n g t h e c o m p o n e n t c l a s s

Modifying the component class
Once you have created a new component class, you can modify it in almost any way.
In this case, you will change only the initial value of one property in the memo
component. This involves two small changes to the component class:

• Overriding the constructor.
• Specifying the new default property value.

The constructor actually sets the value of the property. The default tells C++Builder
what values to store in the form (.dfm for VCL and .xfm for CLX) file. C++Builder
stores only values that differ from the default, so it is important to perform both
steps.

Overriding the constructor

When a component is placed on a form at design time, or when an application
constructs a component at runtime, the component’s constructor sets the property
values. When a component is loaded from a form file, the application sets any
properties changed at design time.

Note When you override a constructor, the new constructor must call the inherited
constructor before doing anything else. For more information, see “Overriding
methods” on page 46-9.

For this example, your new component needs to override the constructor inherited
from TMemo to set the Color property to clYellow. To achieve this, add the declaration
of the constructor override to the class declaration, then write the new constructor in
the .CPP part file:

class PACKAGE TYellowMemo : public TMemo
{
public:

virtual __fastcall TYellowMemo(TComponent* Owner); // the constructor declaration
__published:

__property Color;
};

__fastcall TYellowMemo::TYellowMemo(TComponent* Owner)
: TMemo(Owner) // the constructor implementation first...

// ...calls the constructor for TMemo
{

Color = clYellow; // colors the component yellow
}

Note If you used the Component wizard to create the component, all you need to do is add
Color = clYellow; to the existing constructor.

Now you can install the new component on the Component palette and add it to a
form. Note that the Color property now defaults to clYellow.

53-4 D e v e l o p e r ’ s G u i d e

M o d i f y i n g t h e c o m p o n e n t c l a s s

Specifying the new default property value

When C++Builder stores a description of a form in a form file, it stores the values
only of properties that differ from their defaults. Storing only the differing values
keeps the form files small and makes loading the form faster. If you create a property
or change the default value, it is a good idea to update the property declaration to
include the new default. Form files, loading, and default values are explained in
more detail in Chapter 52, “Making components available at design time.”

To change the default value of a property:

1 Redeclare the property name.

2 Place an equal sign (=) after the property name.

3 Type the default keyword, another equal sign, and the default value all within
braces.

Note that you do not need to redeclare the entire property, just the name and the
default value.

For the yellow memo component, you redeclare the Color property in a __published
part of the class declaration, with a default value of clYellow:

class PACKAGE TYellowMemo : public TMemo
{
public:

virtual __fastcall TYellowMemo(TComponent* Owner);
__published:

__property Color = {default=clYellow};
};

Here is TYellowMemo again, but this time it has another published property,
WordWrap, with a default value of false:

class PACKAGE TYellowMemo : public TMemo
{
public:

virtual __fastcall TYellowMemo(TComponent* Owner);
__published:

__property Color = {default=clYellow};
__property WordWrap = {default=false};

};

Specifying the default property value does not affect the workings of the component
at all. You must still explicitly set the default value in the component’s constructor.
The difference is in the inner workings of the application. For TYellowMemo,
C++Builder no longer writes WordWrap to the form file if it is false, because you have
told it that the constructor will set that value automatically. Here is the constructor:

__fastcall TYellowMemo::TYellowMemo(TComponent* AOwner) : TMemo(AOwner)
{

Color = clYellow;
WordWrap = false;

}

C r e a t i n g a g r a p h i c c o n t r o l 54-1

C h a p t e r

54
Chapter54Creating a graphic control

A graphic control is a simple kind of component. Because a purely graphic control
never receives focus, it does not have or need a window handle. Users can still
manipulate the control with the mouse, but there is no keyboard interface.

The graphic control presented in this chapter is TShape, the shape component on the
Additional page of the Component palette. Although the component created is
identical to the standard shape component, you need to call it something different to
avoid duplicate identifiers. This chapter calls its shape component TSampleShape and
shows you all the steps involved in creating the shape component:

• Creating and registering the component
• Publishing inherited properties
• Adding graphic capabilities

Creating and registering the component
Creation of every component begins the same way: derive a component class, save
the component’s .CPP and .H files, derive a component class, register it, compile it,
and install it on the Component palette. This process is outlined in “Creating a new
component” on page 45-8.

Note This example assumes you are not using the Component wizard, but are creating the
component manually.

For this example, follow the general procedure for creating a component, with these
specifics:

1 Derive a new component type called TSampleShape, descended from
TGraphicControl.

2 Call the component’s header file SHAPES.H and the .CPP file SHAPES.CPP.

3 Register TSampleShape on the Samples page (or other page in CLX) of the
Component palette.

54-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t

The resulting header file should look like this:

//---
#ifndef ShapesH
#define ShapesH
//---
#include <sysutils.hpp>
#include <controls.hpp>
#include <classes.hpp>
#include <forms.hpp>
//---
class PACKAGE TSampleShape : public TGraphicControl
{
private:
protected:
public:
__published:
};
//---
#endif

The .CPP file should look like this:

//---
#include <vcl.h>
#pragma hdrstop
#include "Shapes.h"
//---
#pragma package(smart_init);
//---
// ValidCtrCheck is used to assure that the components created do not have
// any pure virtual functions.
//

static inline void ValidCtrCheck(TSampleShape *)
{

new TSampleShape(NULL);
}
//---
__fastcall TSampleShape::TGraphicControl(TComponent* Owner)
 : TGraphicControl(Owner)
{
}
//---
namespace Shapes
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TSampleShape)};
RegisterComponents("Samples", classes, 0);

}
}

CLX Names and locations of some of the header files differ in CLX applications. For
example, <vcl\controls.hpp> is <clx\qcontrols.hpp> in CLX.

C r e a t i n g a g r a p h i c c o n t r o l 54-3

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

Publishing inherited properties
Once you derive a component type, you can decide which of the properties and
events declared in the protected parts of the ancestor class you want to surface in the
new component. TGraphicControl already publishes all the properties that enable the
component to function as a control, so all you need to publish is the ability to respond
to mouse events and handle drag-and-drop.

Publishing inherited properties and events is explained in “Publishing inherited
properties” on page 47-3 and “Making events visible” on page 48-5. Both processes
involve redeclaring just the name of the properties in the published part of the class
declaration.

For the shape control, you can publish the three mouse events, the three drag-and-
drop events, and the two drag-and-drop properties:

class PACKAGE TSampleShape : public TGraphicControl
{
private:
__published:

__property DragCursor ;
__property DragMode ;
__property OnDragDrop ;
__property OnDragOver ;
__property OnEndDrag ;
__property OnMouseDown ;
__property OnMouseMove ;
__property OnMouseUp ;

};

The sample shape control now makes mouse and drag-and-drop interactions
available to its users.

Adding graphic capabilities
Once you have declared your graphic component and published any inherited
properties you want to make available, you can add the graphic capabilities that
distinguish your component. You have two tasks to perform when creating a graphic
control:

1 Determining what to draw.
2 Drawing the component image.

In addition, for the shape control example, you will add some properties that enable
application developers to customize the appearance of the shape at design time.

Determining what to draw

A graphic control can change its appearance to reflect a dynamic condition, including
user input. A graphic control that always looks the same should probably not be a

54-4 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

component at all. If you want a static image, you can import the image instead of
using a control.

In general, the appearance of a graphic control depends on some combination of its
properties. The gauge control, for example, has properties that determine its shape
and orientation and whether it shows its progress numerically as well as graphically.
Similarly, the shape control has a property that determines what kind of shape it
should draw.

To give your control a property that determines the shape it draws, add a property
called Shape. This requires

1 Declaring the property type.
2 Declaring the property.
3 Writing the implementation method.

Creating properties is explained in more detail in Chapter 47, “Creating properties.”

Declaring the property type
When you declare a property of a user-defined type, you must declare the type first,
before the class that includes the property. The most common sort of user-defined
type for properties is enumerated.

For the shape control, you need an enumerated type with an element for each kind of
shape the control can draw.

Add the following type definition above the shape control class’s declaration.

enum TSampleShapeType { sstRectangle, sstSquare, sstRoundRect, sstRoundSquare, sstEllipse,
sstCircle };

class PACKAGE TSampleShape : public TGraphicControl // this is already there

You can now use this type to declare a new property in the class.

Declaring the property
When you declare a property, you usually need to declare a private data member to
store the data for the property, then specify methods for reading and writing the
property value. Often, you don’t need to use a method to read the value, but can just
point to the stored data instead.

For the shape control, you will declare a data member that holds the current shape,
then declare a property that reads that data member and writes to it through a
method call.

Add the following declarations to TSampleShape:

class PACKAGE TSampleShape : public TGraphicControl
{
private:

TSampleShapeType FShape;
void __fastcall SetShape(TSampleShapeType Value);

__published:
__property TSampleShapeType Shape = {read=FShape, write=SetShape, nodefault};

};

C r e a t i n g a g r a p h i c c o n t r o l 54-5

A d d i n g g r a p h i c c a p a b i l i t i e s

Now all that remains is to add the implementation of SetShape.

Writing the implementation method
When the read or write part of a property definition uses a method instead of directly
accessing the stored property data, you need to implement the method.

Add the implementation of the SetShape method to the SHAPES.CPP file:

void __fastcall TSampleShape::SetShape(TSampleShapeType Value)
{

if (FShape != Value) // ignore if this isn’t a change
{

FShape = Value; // store the new value
Invalidate(); // force a repaint with the new shape

}
}

Overriding the constructor and destructor

To change default property values and initialize owned classes for your component,
you must override the inherited constructor and destructor. In both cases, remember
always to call the inherited method in your new constructor or destructor.

Changing default property values
The default size of a graphic control is fairly small, so you can change the width and
height in the constructor. Changing default property values is explained in more
detail in Chapter 53, “Modifying an existing component.”

In this example, the shape control sets its size to a square 65 pixels on each side.

Add the overridden constructor to the declaration of the component class:

class PACKAGE TSampleShape : public TGraphicControl
{
public:

virtual __fastcall TSampleShape(TComponent *Owner);
};

If you started creating the component with the Component wizard, this step will
already be done for you.

1 Redeclare the Height and Width properties with their new default values:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
__published:

__property Height;
__property Width;

}

54-6 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

2 Write the new constructor in the .CPP file:

__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{

Width = 65;
Height = 65;

}

If you used the Component wizard, all you need to do is add the new default
values to the already existing constructor.

Publishing the pen and brush

By default, a canvas has a thin black pen and a solid white brush. To let developers
change the pen and brush, you must provide classes for them to manipulate at design
time, then copy the classes into the canvas during painting. Classes such as an
auxiliary pen or brush are called owned classes because the component owns them
and is responsible for creating and destroying them.

Managing owned classes requires:

1 Declaring the class data members.

2 Declaring the access properties.

3 Initializing owned classes.

4 Setting owned classes’ properties.

Declaring the data members
Each class a component owns must have a data member declared for it in the
component. The data member ensures that the component always has a pointer to
the owned object so that it can destroy the class before destroying itself. In general, a
component initializes owned objects in its constructor and destroys them in its
destructor.

Data members for owned objects are nearly always declared as private. If
applications (or other components) need access to the owned objects, you can declare
published or public properties for this purpose.

Add data members for a pen and brush to the shape control:

class PACKAGE TSampleShape : public TGraphicControl
{
private: // data members are always private

TPen *FPen; // a data member for the pen object
TBrush *FBrush; // a data member for the brush object
ƒ

};

Declaring the access properties
You can provide access to the owned objects of a component by declaring properties
of the type of the objects. That gives developers a way to access the objects at design

C r e a t i n g a g r a p h i c c o n t r o l 54-7

A d d i n g g r a p h i c c a p a b i l i t i e s

time or runtime. Usually, the read part of the property just references the data
member, but the write part calls a method that enables the component to react to
changes in the owned object.

To the shape control, add properties that provide access to the pen and brush data
members. You will also declare methods for reacting to changes to the pen or brush.

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
private:

TPen *FPen;
TBrush *FBrush;
void __fastcall SetBrush(TBrush *Value);
void __fastcall SetPen(TPen *Value);
ƒ

__published:
__property TBrush* Brush = {read=FBrush, write=SetBrush, nodefault};
__property TPen* Pen = {read=FPen, write=SetPen, nodefault};

};

Then, write the SetBrush and SetPen methods in the .CPP file:

void __fastcall TSampleShape::SetBrush(TBrush* Value)
{

FBrush->Assign(Value);
}

void __fastcall TSampleShape::SetPen(TPen* Value)
{

FPen->Assign(Value);
}

To directly assign the contents of Value to FBrush...

FBrush = Value;

...would overwrite the internal pointer for FBrush, lose memory, and create a number
of ownership problems.

Initializing owned classes
If you add classes to your component, the component’s constructor must initialize
them so that the user can interact with the objects at runtime. Similarly, the
component’s destructor must also destroy the owned objects before destroying the
component itself.

Because you have added a pen and a brush to the shape control, you need to initialize
them in the shape control’s constructor and destroy them in the control’s destructor:

1 Construct the pen and brush in the shape control constructor:

__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{

Width = 65;
Height = 65;
FBrush = new TBrush(); // construct the pen
FPen = new TPen(); // construct the brush

}

54-8 D e v e l o p e r ’ s G u i d e

A d d i n g g r a p h i c c a p a b i l i t i e s

2 Add the overridden destructor to the declaration of the component class:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
public: // destructors are always public

virtual __fastcall TSampleShape(TComponent* Owner);
__fastcall ~TSampleShape(); // the destructor
ƒ

};

3 Write the new destructor in the .CPP file:

__fastcall TSampleShape::~TSampleShape()
{

delete FPen; // delete the pen object
delete FBrush; // delete the brush object

}

Setting owned classes’ properties
As the final step in handling the pen and brush classes, you need to make sure that
changes in the pen and brush cause the shape control to repaint itself. Both pen and
brush classes have OnChange events, so you can create a method in the shape control
and point both OnChange events to it.

Add the following method to the shape control, and update the component’s
constructor to set the pen and brush events to the new method:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
public:

void __fastcall StyleChanged(TObject* Owner);
ƒ

};

In the SHAPES.CPP file, assign the StyleChanged method to the OnChange events for
the pen and brush classes in the TSampleShape constructor:

__fastcall TSampleShape::TSampleShape(TComponent* Owner) : TGraphicControl(Owner)
{

Width = 65;
Height = 65;
FBrush = new TBrush();
FBrush->OnChange = StyleChanged;
FPen = new TPen();
FPen->OnChange = StyleChanged;

}

Include the implementation of the StyleChanged method:

void __fastcall TSampleShape::StyleChanged(TObject* Sender)
{

Invalidate(); // repaints the component
}

With these changes, the component redraws to reflect changes to either the pen or the
brush.

C r e a t i n g a g r a p h i c c o n t r o l 54-9

A d d i n g g r a p h i c c a p a b i l i t i e s

Drawing the component image

The essential element of a graphic control is the way it paints its image on the screen.
The abstract type TGraphicControl defines a method called Paint that you override to
paint the image you want on your control.

The Paint method for the shape control needs to do several things:

• Use the pen and brush selected by the user.
• Use the selected shape.
• Adjust coordinates so that squares and circles use the same width and height.

Overriding the Paint method requires two steps:

1 Add Paint to the component’s declaration.
2 Write the Paint method in the .CPP file.

For the shape control, add the following declaration to the class declaration:

class PACKAGE TSampleShape : public TGraphicControl
{

ƒ
protected:

virtual void __fastcall Paint();
ƒ

};

Then write the method in the .CPP file:

void __fastcall TSampleShape::Paint()
{

int X,Y,W,H,S;
Canvas->Pen = FPen; // copy the component’s pen
Canvas->Brush = FBrush; // copy the component’s brush
W=Width; // use the component width
H=Height; // use the component height
X=Y=0; // save smallest for circles/squares
if(W<H)

S=W;
else

S=H;
switch(FShape)
{

case sstRectangle: // draw rectangles and squares
case sstSquare:

Canvas->Rectangle(X,Y,X+W,Y+H);
break;

case sstRoundRect: // draw rounded rectangles and squares
case sstRoundSquare:

Canvas->RoundRect(X,Y,X+W,Y+H,S/4,S/4);
break;

case sstCircle: // draw circles and ellipses
case sstEllipse:

Canvas->Ellipse(X,Y,X+W,Y+H);
break;

54-10 D e v e l o p e r ’ s G u i d e

default:
break;

}
}

Paint is called whenever the control needs to update its image. Controls are painted
when they first appear or when a window in front of them goes away. In addition,
you can force repainting by calling Invalidate, as the StyleChanged method does.

Refining the shape drawing

The standard shape control does one more thing that your sample shape control does
not yet do: it handles squares and circles as well as rectangles and ellipses. To do that,
you need to write code that finds the shortest side and centers the image.

Here is a refined Paint method that adjusts for squares and ellipses:

void __fastcall TSampleShape::Paint(void)
{

int X,Y,W,H,S;
Canvas->Pen = FPen; // copy the component’s pen
Canvas->Brush = FBrush; // copy the component’s brush
W=Width; // use the component width
H=Height; // use the component height
X=Y=0; // save smallest for circles/squares
if(W<H)

S=W;
else

S=H;
switch(FShape) // adjust height, width and position
{

case sstRectangle:
case sstRoundRect:
case sstEllipse:

Y=X=0; // origin is top-left for these shapes
break;

case sstSquare:
case sstRoundSquare:
case sstCircle:

X= (W-S)/2; // center these horizontally
Y= (H-S)/2; // and vertically
break;

default:
break;

}
switch(FShape)
{

case sstSquare: // draw rectangles and squares
W=H=S; // use shortest dimension for width and height

case sstRectangle:
Canvas->Rectangle(X,Y,X+W,Y+H);
break;

case sstRoundSquare: // draw rounded rectangles and squares
W=H=S;

C r e a t i n g a g r a p h i c c o n t r o l 54-11

A d d i n g g r a p h i c c a p a b i l i t i e s

case sstRoundRect:
Canvas->RoundRect(X,Y,X+W,Y+H,S/4,S/4);
break;

case sstCircle: // draw circles and ellipses
W=H=S;

case sstEllipse:
Canvas->Ellipse(X,Y,X+W,Y+H);
break;

default:
break;

}
}

54-12 D e v e l o p e r ’ s G u i d e

C u s t o m i z i n g a g r i d 55-1

C h a p t e r

55
Chapter55Customizing a grid

C++Builder provides abstract components you can use as the basis for customized
components. The most important of these are grids and list boxes. In this chapter,
you will see how to create a small one month calendar from the basic grid
component, TCustomGrid.

Creating the calendar involves these tasks:

• Creating and registering the component
• Publishing inherited properties
• Changing initial values
• Resizing the cells
• Filling in the cells
• Navigating months and years
• Navigating days

In VCL applications, the resulting component is similar to the TCalendar component
on the Samples page of the Component palette. In CLX applications, save the
component to a different page or create a new palette page. See “Specifying the
palette page” on page 52-3 or “Component palette, adding pages” in online Help.

Creating and registering the component
You create every component the same way: derive a component class, save the
component’s .CPP and .H files, derive a component class, register it, compile it, and
install it on the Component palette. This process is outlined in “Creating a new
component” on page 45-8.

For this example, follow the general procedure for creating a component, with these
specifics:

1 Derive a new component type called TSampleCalendar, descended from
TCustomGrid.

55-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t

2 Call the component’s header file CALSAMP.H and its .CPP file CALSAMP.CPP.

3 Register TSampleCalendar on the Samples page (or other page in CLX) of the
Component palette. For CLX applications, use another Component palette page.

The resulting header file should look like this:

#ifndef CalSampH
#define CalSampH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
#include <vcl\grids.hpp>
//---
class PACKAGE TSampleCalendar : public TCustomGrid
{
private:
protected:
public:
__published:
};
//---
#endif

The CALSAMP.CPP file should resemble this:

#include <vcl\vcl.h>
#pragma hdrstop
#include "CalSamp.h"
//---
#pragma package(smart_init);
//---
static inline TSampleCalendar *ValidCtrCheck()
{

return new TSampleCalendar(NULL);
}
//---
namespace Calsamp
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TSampleCalendar)};
RegisterComponents("Samples", classes, 0); //In CLX, use a different page than “Samples”

}
}

Note If you used the Component wizard to create the component, the header file will also
declare a new constructor, and the CALSAMP.CPP file will have the beginnings of a
constructor. If the constructor is not there, you can add it later.

CLX Names and locations of some of the header files differ in CLX applications. For
example, <vcl\controls.hpp> is <clx\qcontrols.hpp> in CLX.

C u s t o m i z i n g a g r i d 55-3

P u b l i s h i n g i n h e r i t e d p r o p e r t i e s

Publishing inherited properties
The abstract grid component, TCustomGrid, provides a large number of protected
properties. You can choose which of those properties you want to make available to
users of the calendar control.

To make inherited protected properties available to users of your components,
redeclare the properties in the _published part of your component’s declaration.

For the calendar control, publish the following properties and events, as shown here:

class PACKAGE TSampleCalendar : public TCustomGrid
{
ƒ
__published:

__property Align ; // publish properties
__property BorderStyle ;
__property Color ;
__property Font ;
__property GridLineWidth ;
__property ParentColor ;
__property ParentFont ;
__property OnClick ; // publish events
__property OnDblClick ;
__property OnDragDrop ;
__property OnDragOver ;
__property OnEndDrag ;
__property OnKeyDown ;
__property OnKeyPress ;
__property OnKeyUp ;

};

There are a number of other properties you could also publish, but which do not
apply to a calendar, such as the Options property that would enable the user to
choose which grid lines to draw.

If you install the modified calendar component to the Component palette and use it
in an application, you will find many more properties and events available in the
calendar, all fully functional. You can now start adding new capabilities of your own
design.

Changing initial values
A calendar is essentially a grid with a fixed number of rows and columns, although
not all the rows always contain dates. For this reason, you have not published the
grid properties ColCount and RowCount, because it is highly unlikely that users of the
calendar will want to display anything other than seven days per week. You still
must set the initial values of those properties so that the week always has seven days,
however.

To change the initial values of the component’s properties, override the constructor
to set the desired values.

55-4 D e v e l o p e r ’ s G u i d e

R e s i z i n g t h e c e l l s

Remember that you need to add the constructor to the public part of the
component’s class declaration, then write the new constructor in the header file:

class PACKAGE TSampleCalendar : public TCustomGrid
{
protected:

virtual void __fastcall DrawCell(int ACol, int ARow, const Windows::TRect &Rect,
TGridDrawState AState);

ƒ
public:

__fastcall TSampleCalendar(TComponent *Owner); // the added constructor
ƒ

};

In the CALSAMP.CPP file, write the constructor code:

__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner) : TCustomGrid(Owner)
{

ColCount = 7;
RowCount = 7;
FixedCols = 0;
FixedRows = 1;
ScrollBars = ssNone;
Options = (Options >> goRangeSelect) << goDrawFocusSelected;

}

void __fastcall TSampleCalendar::DrawCell(int ACol, int ARow, const Windows::TRect
&ARect, TGridDrawState AState)

{
}

Note You will notice that a DrawCell method was also added to the class declaration, and
in the .CPP file, the DrawCell method was started. This is not absolutely necessary
now, but if you should attempt to test TSampleCalendar before overriding DrawCell,
you would encounter a pure virtual function error. This is because TCustomGrid is an
abstract class. Overriding DrawCell is discussed later in the “Filling in the cells”
section.

The calendar now has seven columns and seven rows, with the top row fixed, or
nonscrolling.

Resizing the cells
VCL When a user or application changes the size of a window or control, Windows sends

a message called WM_SIZE to the affected window or control so it can adjust any
settings needed to later paint its image in the new size. Your VCL component can
respond to that message by altering the size of the cells so they all fit inside the
boundaries of the control. To respond to the WM_SIZE message, you will add a
message-handling method to the component.

Creating a message-handling method is described in detail in “Creating new
message handlers” on page 51-6.

C u s t o m i z i n g a g r i d 55-5

R e s i z i n g t h e c e l l s

In this case, the calendar control needs a response to WM_SIZE, so add a protected
method called WMSize to the control, then write the method so that it calculates the
proper cell size to allow all cells to be visible in the new size:

class PACKAGE TSampleCalendar : public TCustomGrid
{
ƒ
protected:

void __fastcall WMSize(TWMSize &Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(WM_SIZE, TWMSize, WMSize)

END_MESSAGE_MAP(TCustomGrid)
};

Here is the code for the method in the CALSAMP.CPP file:

void __fastcall TSampleCalendar::WMSize(TWMSize &Message)
{

int GridLines; // temporary local variable
GridLines = 6 * GridLineWidth; // calculated combined size of all lines
DefaultColWidth = (Message.Width - GridLines) / 7; // set new default cell width
DefaultRowHeight = (Message.Height - GridLines) / 7; // and cell height

}

Now when the calendar is resized, it displays all the cells in the largest size that will
fit in the control.

CLX In CLX, changes to the size of a window or control are automatically notified by a call
to the protected BoundsChanged method. Your CLX component can respond to this
notification by altering the size of the cells so they all fit inside the boundaries of the
control.

In this case, the calendar control needs to override BoundsChanged so that it calculates
the proper cell size to allow all cells to be visible in the new size:

class PACKAGE TSampleCalendar : public TCustomGrid
{
ƒ
protected:

void __fastcall BoundsChanged(void);
};

Here is the code for the method in the CALSAMP.CPP file:

void __fastcall TSampleCalendar::BoundsChanged(void)
{

int GridLines; // temporary local variable
GridLines = 6 * GridLineWidth; // calculated combined size of all lines
DefaultColWidth = (Width - GridLines) / 7; // set new default cell width
DefaultRowHeight = (Height - GridLines) / 7; // and cell height
TCustomGrid::BoundsChanged(); // now call the inherited method

}

55-6 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

Filling in the cells
A grid control fills in its contents cell-by-cell. In the case of the calendar, that means
calculating which date, if any, belongs in each cell. The default drawing for grid cells
takes place in a virtual method called DrawCell.

To fill in the contents of grid cells, override the DrawCell method.

The easiest part to fill in is the heading cells in the fixed row. The runtime library
contains an array with short day names, so for the calendar, use the appropriate one
for each column:

Here is the code for the DrawCell method:

void __fastcall TSampleCalendar::DrawCell(int ACol, int ARow, const Windows::TRect &ARect,
TGridDrawState AState)

{
String TheText;
int TempDay;
if (ARow == 0) TheText = ShortDayNames[ACol + 1];
else
{

TheText = "";
TempDay = DayNum(ACol, ARow); // DayNum is defined later
if (TempDay != -1) TheText = IntToStr(TempDay);

}
Canvas->TextRect(ARect, ARect.Left + (ARect.Right - ARect.Left
- Canvas->TextWidth(TheText)) / 2,

ARect.Top + (ARect.Bottom - ARect.Top - Canvas->TextHeight(TheText)) / 2, TheText);
}

Tracking the date

For the calendar control to be useful, users and applications must have a mechanism
for setting the day, month, and year. C++Builder stores dates and times in variables
of type TDateTime. TDateTime is an encoded numeric representation of the date and
time, which is useful for programmatic manipulation, but not convenient for human
use.

You can therefore store the date in encoded form, providing runtime access to that
value, but also provide Day, Month, and Year properties that users of the calendar
component can set at design time.

Tracking the date in the calendar consists of the processes:

• Storing the internal date
• Accessing the day, month, and year
• Generating the day numbers
• Selecting the current day

C u s t o m i z i n g a g r i d 55-7

F i l l i n g i n t h e c e l l s

Storing the internal date
To store the date for the calendar, you need a private data member to hold the date
and a runtime-only property that provides access to that date.

1 Declare a private data member to hold the date:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

TDateTime FDate;
ƒ

};

2 Initialize the date data member in the constructor:

__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner) : TCustomGrid(Owner)
{

ƒ
FDate = FDate.CurrentDate();

}

3 Declare a runtime property to allow access to the encoded date:

class PACKAGE TSampleCalendar : public TCustomGrid
{
public:

__property TDateTime CalendarDate = {read=FDate, write=SetCalendarDate, nodefault};
ƒ

};

You will need a method for setting the date, because setting the date requires
updating the onscreen image of the control. Declare SetCalendarDate in
TSampleCalendar:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

void __fastcall SetCalendarDate(TDateTime Value);
ƒ

};

This is the SetCalendarDate method:

void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{

FDate = Value; // Set the new date value
Refresh(); // Update the onscreen image

}

Accessing the day, month, and year
An encoded numeric date is fine for applications, but humans prefer to work with
days, months, and years. You can provide alternate access to those elements of the
stored, encoded date by creating properties.

Because each element of the date (day, month, and year) is an integer, and because
setting each requires encoding the date when set, you can avoid duplicating the code
each time by sharing the implementation methods for all three properties. That is,

55-8 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

you can write two methods, one to read an element and one to write one, and use
those methods to get and set all three properties.

To provide design-time access to the day, month, and year, you do the following:

1 Declare the three properties, assigning each a unique index number:

class PACKAGE TSampleCalendar : public TCustomGrid
{

ƒ
public:

__property int Day = {read=GetDateElement, write=SetDateElement, index=3,
nodefault};

__property int Month = {read=GetDateElement, write=SetDateElement, index=2,
nodefault};

__property int Year = {read=GetDateElement, write=SetDateElement, index=1,
nodefault};

};

2 Declare and write the implementation methods, setting different elements for each
index value:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

int __fastcall GetDateElement(int Index); // note the Index parameter
void __fastcall SetDateElement(int Index, int Value);
ƒ

};

Here are the GetDateElement and SetDateElement methods:

int __fastcall TSampleCalendar::GetDateElement(int Index)
{

unsigned short AYear, AMonth, ADay;
int result;
FDate.DecodeDate(&AYear, &AMonth, &ADay); // break encoded date into elements
switch (Index)
{

case 1: result = AYear; break;
case 2: result = AMonth; break;
case 3: result = ADay; break;
default: result = -1;

}
return result;

}

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{

unsigned short AYear, AMonth, ADay;
if (Value > 0) // all elements must be positive
{

FDate.DecodeDate(&AYear, &AMonth, &ADay); // get current date elements
switch (Index)
{

case 1: AYear = Value; break;
case 2: AMonth = Value; break;
case 3: ADay = Value; break;

C u s t o m i z i n g a g r i d 55-9

F i l l i n g i n t h e c e l l s

default: return;
}

}
FDate = TDateTime(AYear, AMonth, ADay); // encode the modified date
Refresh(); // update the visible calendar

}

Now you can set the calendar’s day, month, and year at design time using the Object
Inspector or at runtime using code. Of course, you have not yet added the code to
paint the dates into the cells, but now you have the needed data.

Generating the day numbers
Putting numbers into the calendar involves several considerations. The number of
days in the month depends on which month it is, and whether the given year is a leap
year. In addition, months start on different days of the week, dependent on the
month and year. Use the IsLeapYear function to determine whether the year is a leap
year. Use the MonthDays array in the SysUtils header file to get the number of days in
the month.

Once you have the information on leap years and days per month, you can calculate
where in the grid the individual dates go. The calculation is based on the day of the
week the month starts on.

Because you will need the month-offset number for each cell you fill in, the best
practice is to calculate it once when you change the month or year, then refer to it
each time. You can store the value in a class data member, then update that data
member each time the date changes.

To fill in the days in the proper cells, you do the following:

1 Add a month-offset data member to the class and a method that updates the data
member value:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

int FMonthOffset; // storage for the offset
ƒ

protected:
virtual void __fastcall UpdateCalendar(void);
ƒ

};

void __fastcall TSampleCalendar::UpdateCalendar(void)
{

unsigned short AYear, AMonth, ADay;
TDateTime FirstDate; // date of first day of the month
if ((int)FDate != 0) // only calculate offset if date is valid
{

FDate.DecodeDate(&AYear, &AMonth, &ADay); // get elements of date
FirstDate = TDateTime(AYear, AMonth, 1); // date of the first
FMonthOffset = 2 - FirstDate.DayOfWeek(); // generate the offset into the grid

}
Refresh(); // always repaint the control

}

55-10 D e v e l o p e r ’ s G u i d e

F i l l i n g i n t h e c e l l s

2 Add statements to the constructor and the SetCalendarDate and SetDateElement
methods that call the new update method whenever the date changes:

__fastcall TSampleCalendar::TSampleCalendar(TComponent *Owner)
: TCustomGrid(Owner)

{
ƒ
UpdateCalendar();

}

void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{

FDate = Value; // this was already here
UpdateCalendar(); // this previously called Refresh

}

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{

ƒ
FDate = TDateTime(AYear, AMonth, ADay); // this was already here
UpdateCalendar(); // this previously called Refresh

}

3 Add a method to the calendar that returns the day number when passed the row
and column coordinates of a cell:

int __fastcall TSampleCalendar::DayNum(int ACol, int ARow)
{

int result = FMonthOffset + ACol + (ARow - 1) * 7; // calculate day for this cell
if ((result < 1)||(result > MonthDays[IsLeapYear(Year)][Month]))

result = -1; // return -1 if invalid
return result;

}

Remember to add the declaration of DayNum to the component’s type declaration.

4 Now that you can calculate where the dates go, you can update DrawCell to fill in
the dates:

void __fastcall TSampleCalendar::DrawCell(int ACol, int ARow, const TRect &ARect,
TGridDrawState AState)

{
String TheText;
int TempDay;
if (ARow == 0) // this is the header row

TheText = ShortDayNames[ACol + 1]; // just use the day name
else
{

TheText = ""; // blank cell is the default
TempDay = DayNum(ACol, ARow); // get number for this cell
if (TempDay != -1) TheText = IntToStr(TempDay); // use the number if valid

}
Canvas->TextRect(ARect, ARect.Left + (ARect.Right - ARect.Left -

Canvas->TextWidth(TheText)) / 2,
ARect.Top + (ARect.Bottom - ARect.Top - Canvas->TextHeight(TheText)) / 2, TheText);

}

C u s t o m i z i n g a g r i d 55-11

N a v i g a t i n g m o n t h s a n d y e a r s

Now if you reinstall the calendar component and place one on a form, you will see
the proper information for the current month.

Selecting the current day
Now that you have numbers in the calendar cells, it makes sense to move the
selection highlighting to the cell containing the current day. By default, the selection
starts on the top left cell, so you need to set the Row and Column properties both
when constructing the calendar initially and when the date changes.

To set the selection on the current day, change the UpdateCalendar method to set Row
and Column before calling Refresh:

void __fastcall TSampleCalendar::UpdateCalendar(void)
{

unsigned short AYear, AMonth, ADay;
TDateTime FirstDate;
if ((int) FDate != 0)
{
ƒ // existing statements to set FMonthOffset

Row = (ADay - FMonthOffset) / 7 + 1;
Col = (ADay - FMonthOffset) % 7;

}
Refresh(); // this is already here

}

Note that you are now reusing the ADay variable previously set by decoding the
date.

Navigating months and years
Properties are useful for manipulating components, especially at design time. But
sometimes there are types of manipulations that are so common or natural, often
involving more than one property, that it makes sense to provide methods to handle
them. One example of such a natural manipulation is a “next month” feature for a
calendar. Handling the wrapping around of months and incrementing of years is
simple, but very convenient for the developer using the component.

The only drawback to encapsulating common manipulations into methods is that
methods are only available at runtime. However, such manipulations are generally
only cumbersome when performed repeatedly, and that is fairly rare at design time.

For the calendar, add the following four methods for next and previous month and
year. Each of these methods uses the IncMonth function in a slightly different manner
to increment or decrement CalendarDate, by increments of a month or a year.

void __fastcall TSampleCalendar::NextMonth()
{

CalendarDate = IncMonth(CalendarDate, 1);
}

void __fastcall TSampleCalendar::PrevMonth()
{

55-12 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a y s

CalendarDate = IncMonth(CalendarDate, -1);
}

void __fastcall TSampleCalendar::NextYear()
{

CalendarDate = IncMonth(CalendarDate, 12);
}

void __fastcall TSampleCalendar::PrevYear()
{

CalendarDate = IncMonth(CalendarDate, -12);
}

Be sure to add the declarations of the new methods to the class declaration.

Now when you create an application that uses the calendar component, you can
easily implement browsing through months or years.

Navigating days
Within a given month, there are two obvious ways to navigate among the days. The
first is to use the arrow keys, and the other is to respond to clicks of the mouse. The
standard grid component handles both as if they were clicks. That is, an arrow
movement is treated like a click on an adjacent cell.

The process of navigating days consists of

• Moving the selection
• Providing an OnChange event
• Excluding blank cells

Moving the selection

The inherited behavior of a grid handles moving the selection in response to either
arrow keys or clicks, but if you want to change the selected day, you need to modify
that default behavior.

To handle movements within the calendar, override the Click method of the grid.

When you override a method such as Click that is tied in with user interactions, you
will nearly always include a call to the inherited method, so as not to lose the
standard behavior.

The following is an overridden Click method for the calendar grid. Be sure to add the
declaration of Click to TSampleCalendar.

void __fastcall TSampleCalendar::Click()
{

int TempDay = DayNum(Col, Row); // get the day number for the clicked cell
if (TempDay != -1) Day = TempDay; // change day if valid

}

C u s t o m i z i n g a g r i d 55-13

N a v i g a t i n g d a y s

Providing an OnChange event

Now that users of the calendar can change the date within the calendar, it makes
sense to allow applications to respond to those changes.

Add an OnChange event to TSampleCalendar.

1 Declare the event, a data member to store the event, and a virtual method to call
the event:

class PACKAGE TSampleCalendar : public TCustomGrid
{
private:

TNotifyEvent FOnChange;
ƒ

protected:
virtual void __fastcall Change();

__published:
__property TNotifyEvent OnChange = {read=FOnChange, write=FOnChange};
ƒ

}

2 Write the Change method:

void __fastcall TSampleCalendar::Change()
{

if(FOnChange != NULL) FOnChange(this);
}

3 Add statements calling Change to the end of the SetCalendarDate and
SetDateElement methods:

void __fastcall TSampleCalendar::SetCalendarDate(TDateTime Value)
{

FDate = Value;
UpdateCalendar();
Change(); // this is the only new statement

}

void __fastcall TSampleCalendar::SetDateElement(int Index, int Value)
{

ƒ // many statements setting element values
FDate = TDateTime(AYear, AMonth, ADay);
UpdateCalendar();
Change(); // this is new

}

Applications using the calendar component can now respond to changes in the date
of the component by attaching handlers to the OnChange event.

55-14 D e v e l o p e r ’ s G u i d e

N a v i g a t i n g d a y s

Excluding blank cells

As the calendar is written, the user can select a blank cell, but the date does not
change. It makes sense, then, to disallow selection of the blank cells.

To control whether a given cell is selectable, override the SelectCell method of the
grid.

SelectCell is a function that takes a column and row as parameters, and returns a
Boolean value indicating whether the specified cell is selectable.

You can override SelectCell to return false if the cell does not contain a valid date:

bool __fastcall TSampleCalendar::SelectCell(int ACol, int ARow)
{

if (DayNum(ACol,ARow) == -1) return false; // -1 indicates invalid date
else return TCustomGrid::SelectCell(ACol, ARow); // otherwise, use inherited value

}

Now if the user clicks a blank cell or tries to move to one with an arrow key, the
calendar leaves the current cell selected.

M a k i n g a c o n t r o l d a t a a w a r e 56-1

C h a p t e r

56
Chapter56Making a control data aware

When working with database connections, it is often convenient to have controls that
are data aware. That is, the application can establish a link between the control and
some part of a database. C++Builder includes data-aware labels, edit boxes, list
boxes, combo boxes, lookup controls, and grids. You can also make your own
controls data aware. For more information about using data-aware controls, see
Chapter 19, “Using data controls.”

There are several degrees of data awareness. The simplest is read-only data
awareness, or data browsing, the ability to reflect the current state of a database. More
complicated is editable data awareness, or data editing, where the user can edit the
values in the database by manipulating the control. Note also that the degree of
involvement with the database can vary, from the simplest case, a link with a single
field, to more complex cases, such as multiple-record controls.

This chapter first illustrates the simplest case, making a read-only control that links
to a single field in a dataset. The specific control used will be the TSampleCalendar
calendar created in Chapter 55, “Customizing a grid.” You can also use the standard
calendar control on the Samples page of the Component palette, TCCalendar (VCL
only).

The chapter then continues with an explanation of how to make the new data
browsing control a data editing control.

Creating a data browsing control
Creating a data-aware calendar control, whether it is a read-only control or one in
which the user can change the underlying data in the dataset, involves the following
steps:

• Creating and registering the component

• Adding the data link

• Responding to data changes

56-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a b r o w s i n g c o n t r o l

Creating and registering the component

You create every component the same way: derive a component class, save the
component’s .CPP and .H files, derive a component class, register it, compile it, and
install it on the Component palette. This process is outlined in “Creating a new
component” on page 45-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Derive a new component class called TDBCalendar, descended from the
component TSampleCalendar. Chapter 55, “Customizing a grid,” shows you how to
create the TSampleCalendar component.

• Name the header file DBCAL.H and the .CPP file DBCAL.CPP.

• Register TDBCalendar on the Samples page (or other page in CLX applications) of
the Component palette.

CLX Names and locations of some of the header files differ in CLX applications. For
example, <vcl\controls.hpp> is <clx\qcontrols.hpp> in CLX.

The resulting header file should look like this:

#ifndef DBCalH
#define DBCalH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
#include <vcl\grids.hpp> // include the Grids header
#include “calsamp.h” // include the header that declares TSampleCalendar
//---
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:
protected:
public:
__published:
};
//---
#endif

The .CPP file should look like this:

#pragma link “Calsamp” // link in TSampleCalendar

#include <vcl\vcl.h>
#pragma hdrstop
#include "DBCal.h"
//---
#pragma package(smart_init);
//---
static inline TDBCalendar *ValidCtrCheck()
{

M a k i n g a c o n t r o l d a t a a w a r e 56-3

C r e a t i n g a d a t a b r o w s i n g c o n t r o l

return new TDBCalendar(NULL);
}
//---
namespace Dbcal
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TDBCalendar)};
RegisterComponents("Samples", classes, 0); //Use different page in CLX applications

}
}

Note If you used the Component wizard to begin the TDBCalendar component, your
header file will have the constructor already declared, and the .CPP file has the
constructor’s definition.

You can now proceed with making the new calendar a data browser.

Making the control read-only

Because this data calendar will be read-only with respect to the data, it makes sense
to make the control itself read-only, so users will not make changes within the control
and expect them to be reflected in the database.

Making the calendar read-only involves:

• Adding the ReadOnly property.
• Allowing needed updates.

VCL Note that if you started with the TCalendar component from C++Builder’s Samples
page instead of TSampleCalendar, it already has a ReadOnly property, so you can skip
these steps.

Adding the ReadOnly property
By adding a ReadOnly property, you will provide a way to make the control read-
only at design time. When that property is set to true, you can make all cells in the
control unable to be selected.

1 Add the property declaration and a private data member to hold the value in the
DBCAL.H file:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

bool FReadOnly; // field for internal storage
protected:
public:

virtual __fastcall TDBCalendar(TComponent* Owner);
__published:

__property ReadOnly = {read=FReadOnly, write=FReadOnly, default=true};
};

56-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a b r o w s i n g c o n t r o l

2 Write the constructor in DBCAL.CPP:

virtual __fastcall TDBCalendar::TDBCalendar(TComponent* Owner) :
TSampleCalendar(Owner)

{
FReadOnly = true; // sets the default value

}

3 Override the SelectCell method to disallow selection if the control is read-only. Use
of SelectCell is explained in “Excluding blank cells” on page 55-14.

bool __fastcall TDBCalendar::SelectCell(long ACol, long ARow)
{

if (FReadOnly) return false; // can’t select if read only
return TSampleCalendar::SelectCell(ACol, ARow); // otherwise, use inherited method

}

Remember to add the declaration of SelectCell to the class declaration of TDBCalendar.

If you now add the calendar to a form, you will find that the component ignores
clicks and keystrokes. It also fails to update the selection position when you change
the date.

Allowing needed updates
The read-only calendar uses the SelectCell method for all kinds of changes, including
setting the Row and Col properties. The UpdateCalendar method sets Row and Col
every time the date changes, but because SelectCell disallows changes, the selection
remains in place, even though the date changes.

To get around this absolute prohibition on changes, you can add an internal Boolean
flag to the calendar, and permit changes when that flag is set to true:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

ƒ
bool FUpdating; // private flag for internal use

protected:
virtual bool __fastcall SelectCell(long ACol, long ARow);

public:
ƒ
virtual void __fastcall UpdateCalendar();
ƒ

};

bool __fastcall TDBCalendar::SelectCell(long ACol, long ARow)
{

if (!FUpdating && FReadOnly) return false; // can’t select if read only
return TSampleCalendar::SelectCell(ACol, ARow); // otherwise, use inherited method

}

void __fastcall TDBCalendar::UpdateCalendar()
{

FUpdating=true; // set flag to allow updates
try
{

M a k i n g a c o n t r o l d a t a a w a r e 56-5

C r e a t i n g a d a t a b r o w s i n g c o n t r o l

TSampleCalendar::UpdateCalendar(); // update as usual
}
catch(...)
{

FUpdating = false;
throw;

}
FUpdating = false; // always clear the flag

}

The calendar still disallows user changes, but now correctly reflects changes made in
the date by changing the date properties. Now that you have a true read-only
calendar control, you are ready to add the data browsing ability.

Adding the data link

The connection between a control and a database is handled by a class called a data
link. The data link class that connects a control with a single data member in a
database is TFieldDataLink. There are also data links for entire tables.

A data-aware control owns its data link class. That is, the control has the
responsibility for constructing and destroying the data link. For details on
management of owned classes, see Chapter 54, “Creating a graphic control.”

Establishing a data link as an owned class requires these three steps:

1 Declaring the class data member.

2 Declaring the access properties.

3 Initializing the data link.

Declaring the data member
A component needs a data member for each of its owned classes, as explained in
“Declaring the data members” on page 54-6. In this case, the calendar needs a data
member of type TFieldDataLink for its data link.

Declare a field for the data link in the calendar:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

TFieldDataLink *FDataLink;
ƒ

};

Before you can compile the application, you need to include the DB.HPP and
DBTABLES.HPP files in the DBCAL.H file:

#include <DB.hpp>
#include <DBTables.hpp>

56-6 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a b r o w s i n g c o n t r o l

Declaring the access properties
Every data-aware control has a DataSource property that specifies which data source
class in the application provides the data to the control. In addition, a control that
accesses a single field needs a DataField property to specify that field in the data
source.

Unlike the access properties for the owned classes in the example in Chapter 54,
“Creating a graphic control”, these access properties do not provide access to the
owned classes themselves, but rather to corresponding properties in the owned class.
That is, you will create properties that enable the control and its data link to share the
same data source and field.

Declare the DataSource and DataField properties and their implementation methods,
then write the methods as “pass-through” methods to the corresponding properties
of the data link class:

An example of declaring access properties
class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

ƒ
AnsiString __fastcall GetDataField(); // methods are private
TDataSource *__fastcall GetDataSource(); // returns name of data field
void __fastcall SetDataField(AnsiString Value); // returns reference to data

// source
void __fastcall SetDataSource(TDataSource *Value); // assigns name of data field
ƒ

__published: // make properties available at design time
__property AnsiString DataField = {read=GetDataField, write=SetDataField, nodefault};
__property TDataSource * DataSource = {read=GetDataSource, write=SetDataSource,

nodefault};
ƒ

};

AnsiString __fastcall TDBCalendar::GetDataField()
{

return FDataLink->FieldName;
}

TDataSource *__fastcall TDBCalendar::GetDataSource()
{

return FDataLink->DataSource;
}

void __fastcall TDBCalendar::SetDataField(AnsiString Value)
{

FDataLink->FieldName = Value;
}

void __fastcall TDBCalendar::SetDataSource(TDataSource *Value)
{

if(Value != NULL)
Value->FreeNotification(this);

FDataLink->DataSource = Value;
}

M a k i n g a c o n t r o l d a t a a w a r e 56-7

C r e a t i n g a d a t a b r o w s i n g c o n t r o l

Now that you have established the links between the calendar and its data link, there
is one more important step. You must construct the data link class when the calendar
control is constructed, and destroy the data link before destroying the calendar.

Initializing the data link
A data-aware control needs access to its data link throughout its existence, so it must
construct the data link object as part of its own constructor, and destroy the data link
object before it is itself destroyed.

Override the constructor and destructor of the calendar:

class PACKAGE TDBCalendar : public TSampleCalendar
{
public:

virtual __fastcall TDBCalendar(TComponent *Owner);
__fastcall ~TDBCalendar();

};

__fastcall TDBCalendar::TDBCalendar(TComponent* Owner) : TSampleCalendar(Owner)
{

FReadOnly = true;
FDataLink = new TFieldDataLink();
FDataLink->Control = this;

}

__fastcall TDBCalendar::~TDBCalendar()
{

FDataLink->Control = NULL;
FDataLink->OnUpdateData = NULL;
delete FDataLink;

}

Now you have a complete data link, but you have not yet told the control what data
it should read from the linked field. The next section explains how to do that.

Responding to data changes

Once a control has a data link and properties to specify the data source and data field,
it needs to respond to changes in the data in that field, either because of a move to a
different record or because of a change made to that field.

Data link classes all have events named OnDataChange. When the data source
indicates a change in its data, the data link object calls any event handler attached to
its OnDataChange event.

To update a control in response to data changes, attach a handler to the data link’s
OnDataChange event.

In this case, you will add a method to the calendar, then designate it as the handler
for the data link’s OnDataChange.

Declare and implement the DataChange method, then assign it to the data link’s
OnDataChange event in the constructor. In the destructor, detach the OnDataChange
handler before destroying the object.

56-8 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a e d i t i n g c o n t r o l

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

void __fastcall DataChange(TObject *Sender);
ƒ

};

void __fastcall TDBCalendar::DataChange(TObject* Sender)
{

if (FDataLink->Field == NULL) // if no field is assigned ...
CalendarDate = 0; // ...set to invalid date
else CalendarDate = FDataLink->Field->AsDateTime; // otherwise, set to new data

}

__fastcall TDBCalendar::TDBCalendar(TComponent* Owner) : TSampleCalendar(AOwner)
{

FReadOnly = true;
FDataLink = new TFieldDataLink(); // construct the datalink object
FDataLink->Control = this;
FDataLink->OnDataChange = DataChange; // attach the handler

}

__fastcall TDBCalendar::~TDBCalendar()
{

FDataLink->Control = NULL;
FDataLink->OnUpdateData = NULL;
FDataLink->OnDataChange = NULL; // detach the handler before...
delete FDataLink; // ...destroying the datalink object

}

You now have a data browsing control.

Creating a data editing control
When you create a data editing control, you create and register the component and
add the data link just as you do for a data browsing control. You also respond to data
changes in the underlying field in a similar manner, but you must handle a few more
issues.

For example, you probably want your control to respond to both key and mouse
events. Your control must respond when the user changes the contents of the control.
When the user exits the control, you want the changes made in the control to be
reflected in the dataset.

The data editing control described here is the same calendar control described in the
first part of the chapter. The control is modified so that it can edit as well as view the
data in its linked field.

Modifying the existing control to make it a data editing control involves:

• Changing the default value of FReadOnly.
• Handling mouse-down and key-down messages.
• Updating the field data link class.
• Modifying the Change method.
• Updating the dataset.

M a k i n g a c o n t r o l d a t a a w a r e 56-9

C r e a t i n g a d a t a e d i t i n g c o n t r o l

Changing the default value of FReadOnly

Because this is a data editing control, the ReadOnly property should be set to false by
default. To make the ReadOnly property false, change the value of FReadOnly in the
constructor:

__fastcall TDBCalendar::TDBCalendar (TComponent* Owner) : TSampleCalendar(Owner)
{

FReadOnly = false; // set the default value
ƒ

}

Handling mouse-down and key-down messages

When the user of the control begins interacting with it, the control receives either
mouse-down messages (WM_LBUTTONDOWN, WM_MBUTTONDOWN, or
WM_RBUTTONDOWN) or a key-down message (WM_KEYDOWN) from Windows.
To enable a control to respond to these messages, you must write handlers that
respond to these messages.

• Responding to mouse-down messages
• Responding to key-down messages

CLX If using CLX, notification is from the operating system in the form of system events.
For information on writing components that respond to system and widget events,
see “Responding to system notifications using CLX” on page 51-10.

Responding to mouse-down messages
A MouseDown method is a protected method for a control’s OnMouseDown event. The
control itself calls MouseDown in response to a Windows mouse-down message.
When you override the inherited MouseDown method, you can include code that
provides other responses in addition to calling the OnMouseDown event.

To override MouseDown, add the MouseDown method to the TDBCalendar class:

class PACKAGE TDBCalendar : public TSampleCalendar
{
ƒ
protected:

virtual void __fastcall MouseDown(TMouseButton Button, TShiftState Shift, int X,
int Y);

ƒ
};

Write the MouseDown method in the .CPP file:

void __fastcall TDBCalendar::MouseDown(TMouseButton Button, TShiftState Shift, int X,
int Y)

{
TMouseEvent MyMouseDown; // declare event type
if (!FReadOnly && FDataLink->Edit()) // if the field can be edited

TSampleCalendar::MouseDown(Button, Shift, X, Y); // call the inherited MouseDown
else

56-10 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a e d i t i n g c o n t r o l

{
MyMouseDown = OnMouseDown; // assign OnMouseDown event
if (MyMouseDown != NULL) MyMouseDown(this, Button, // execute code in the...

Shift, X, Y); // ...OnMouseDown event handler
}

}

When MouseDown responds to a mouse-down message, the inherited MouseDown
method is called only if the control’s ReadOnly property is false and the data link
object is in edit mode, which means the field can be edited. If the field cannot be
edited, the code the programmer put in the OnMouseDown event handler, if one
exists, is executed.

Responding to key-down messages
A KeyDown method is a protected method for a control’s OnKeyDown event. The
control itself calls KeyDown in response to a Windows key-down message. When
overriding the inherited KeyDown method, you can include code that provides other
responses in addition to calling the OnKeyDown event.

To override KeyDown, follow these steps:

1 Add a KeyDown method to the TDBCalendar class:

class PACKAGE TDBCalendar : public TSampleCalendar
{

ƒ
protected:

virtual void __fastcall KeyDown(unsigned short &Key, TShiftState Shift);
ƒ

};

2 Write the KeyDown method in the .CPP file:

void __fastcall TDBCalendar::KeyDown(unsigned short &Key, TShiftState Shift)
{

TKeyEvent MyKeyDown; // declare event type
Set<unsigned short,0,8> keySet;
keySet = keySet << VK_UP << VK_DOWN << VK_LEFT // assign virtual keys to set

<< VK_RIGHT << VK_END << VK_HOME << VK_PRIOR << VK_NEXT;
if (!FReadOnly && // if control is not read only...

(keySet.Contains(Key)) && // ...and key is in the set...
FDataLink->Edit()) // ...and field is in edit mode

{
TCustomGrid::KeyDown(Key, Shift); // call the inherited KeyDown method

}
else
{

MyKeyDown = OnKeyDown; // assign OnKeyDown event
if (MyKeyDown != NULL) MyKeyDown(this,Key,Shift); // execute code in...

} // ...OnKeyDown event handler
}

When KeyDown responds to a mouse-down message, the inherited KeyDown method
is called only if the control’s ReadOnly property is false, the key pressed is one of the
cursor control keys, and the data link object is in edit mode, which means the field

M a k i n g a c o n t r o l d a t a a w a r e 56-11

C r e a t i n g a d a t a e d i t i n g c o n t r o l

can be edited. If the field cannot be edited or some other key is pressed, the code the
programmer put in the OnKeyDown event handler, if one exists, is executed.

Updating the field data link class

There are two types of data changes:

• A change in a field value that must be reflected in the data-aware control.

• A change in the data-aware control that must be reflected in the field value.

The TDBCalendar component already has a DataChange method that handles a change
in the field’s value in the dataset by assigning that value to the CalendarDate property.
The DataChange method is the handler for the OnDataChange event. So the calendar
component can handle the first type of data change.

Similarly, the field data link class also has an OnUpdateData event that occurs as the
user of the control modifies the contents of the data-aware control. The calendar
control has a UpdateData method that becomes the event handler for the
OnUpdateData event. UpdateData assigns the changed value in the data-aware control
to the field data link.

1 To reflect a change made to the value in the calendar in the field value, add an
UpdateData method to the private section of the calendar component:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

void __fastcall UpdateData(TObject *Sender);
};

2 Write the UpdateData method in the .CPP file:

void __fastcall TDBCalendar::UpdateData(TObject* Sender)
{

FDataLink->Field->AsDateTime = CalendarDate; // set field link to calendar date
}

3 Within the constructor for TDBCalendar, assign the UpdateData method to the
OnUpdateData event:

__fastcall TDBCalendar::TDBCalendar(TComponent* Owner)
: TSampleCalendar(Owner)

{
FDataLink = new TFieldDataLink(); // this was already here
FDataLink->OnDataChange = DataChange; // this was here too
FDataLink->OnUpdateData = UpdateData; // assign UpdateData to the OnUpdateData event

}

Modifying the Change method

The Change method of the TDBCalendar is called whenever a new date value is set.
Change calls the OnChange event handler, if one exists. The component user can write
code in the OnChange event handler to respond to changes in the date.

56-12 D e v e l o p e r ’ s G u i d e

C r e a t i n g a d a t a e d i t i n g c o n t r o l

When the calendar date changes, the underlying dataset should be notified that a
change has occurred. You can do that by overriding the Change method and adding
one more line of code. These are the steps to follow:

1 Add a new Change method to the TDBCalendar component:

class PACKAGE TDBCalendar : public TSampleCalendar
{
protected:

virtual void __fastcall Change();
ƒ

};

2 Write the Change method, calling the Modified method that informs the dataset the
data has changed, then call the inherited Change method:

void __fastcall TDBCalendar::Change()
{

if (FDataLink != NULL)
FDataLink->Modified(); // call the Modified method

TSampleCalendar::Change(); // call the inherited Change method
}

Updating the dataset

So far, a change within the data-aware control has changed values in the field data
link class. The final step in creating a data editing control is to update the dataset
with the new value. This should happen after the person changing the value in the
data-aware control exits the control by clicking outside the control or pressing the Tab
key. This process works differently in the VCL and CLX.

VCL VCL has defined message control IDs for operations on controls. For example, the
CM_EXIT message is sent to the control when the user exits the control. You can
write message handlers that respond to the message. In this case, when the user exits
the control, the CMExit method, the message handler for CM_EXIT, responds by
updating the record in the dataset with the changed values in the field data link class.
For more information about message handlers, see Chapter 51, “Handling messages
and system notifications.”

To update the dataset within a message handler, follow these steps:

1 Add the message handler to the TDBCalendar component:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

void __fastcall CMExit(TWMNoParams Message);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(CM_EXIT, TWMNoParams, CMExit)

END_MESSAGE_MAP
};

M a k i n g a c o n t r o l d a t a a w a r e 56-13

C r e a t i n g a d a t a e d i t i n g c o n t r o l

2 Write the code in the .CPP file so that it looks like this:

void __fastcall TDBCalendar::CMExit(TWMNoParams &Message)
{

try
{

FDataLink.UpdateRecord(); // tell data link to update database
}
catch(...)
{

SetFocus(); // if it failed, don’t let focus leave
throw;

}
}

CLX In CLX, TWidgetControl has a protected DoExit method that is called when input
focus shifts away from the control. This method calls the event handler for the OnExit
event. You can override this method to update the record in the dataset before
generating the OnExit event handler.

To update the dataset when the user exits the control, follow these steps:

1 Add an override for the DoExit method to the TDBCalendar component:

class PACKAGE TDBCalendar : public TSampleCalendar
{
private:

DYNAMIC void __fastcall DoExit(void);
ƒ

};

2 Write the code in the .CPP file so that it looks like this:

void __fastcall TDBCalendar::DoExit(void)
{

try
{

FDataLink.UpdateRecord(); // tell data link to update database
}
catch(...)
{

SetFocus(); // if it failed, don’t let focus leave
throw;

}
TCustomGrid::DoExit(); // let the inherited method generate an OnExit event

}

56-14 D e v e l o p e r ’ s G u i d e

M a k i n g a d i a l o g b o x a c o m p o n e n t 57-1

C h a p t e r

57
Chapter57Making a dialog box a component

You will find it convenient to make a frequently used dialog box into a component
that you add to the Component palette. Your dialog box components will work just
like the components that represent the standard common dialog boxes. The goal is to
create a simple component that a user can add to a project and set properties for at
design time.

Making a dialog box a component requires these steps:

1 Defining the component interface
2 Creating and registering the component
3 Creating the component interface
4 Testing the component

The C++Builder “wrapper” component associated with the dialog box creates and
executes the dialog box at runtime, passing along the data the user specified. The
dialog-box component is therefore both reusable and customizable.

In this chapter, you will see how to create a wrapper component around the generic
About Box form provided in the C++Builder Object Repository.

Note Copy the files ABOUT.H, ABOUT.CPP and ABOUT.DFM into your working
directory. Add ABOUT.CPP to your project so that an ABOUT.OBJ file is created
when your dialog wrapper component builds.

There are not many special considerations for designing a dialog box that will be
wrapped into a component. Nearly any form can operate as a dialog box in this
context.

Defining the component interface
Before you can create the component for your dialog box, you need to decide how
you want developers to use it. You create an interface between your dialog box and
applications that use it.

57-2 D e v e l o p e r ’ s G u i d e

C r e a t i n g a n d r e g i s t e r i n g t h e c o m p o n e n t

For example, look at the properties for the common dialog box components. They
enable the developer to set the initial state of the dialog box, such as the caption and
initial control settings, then read back any needed information after the dialog box
closes. There is no direct interaction with the individual controls in the dialog box,
just with the properties in the wrapper component.

The interface must therefore contain enough information that the dialog box form
can appear in the way the developer specifies and return any information the
application needs. You can think of the properties in the wrapper component as
being persistent data for a transient dialog box.

In the case of the About box, you do not need to return any information, so the
wrapper’s properties only have to contain the information needed to display the
About box properly. Because there are four separate fields in the About box that the
application might affect, you will provide four string-type properties to provide for
them.

Creating and registering the component
Creation of every component begins the same way: derive a component class, save
the component’s .CPP and .H files, derive a component class, register it, compile it,
and install it on the component palette. This process is outlined in “Creating a new
component” on page 45-8.

For this example, follow the general procedure for creating a component, with these
specifics:

• Derive a new component type called TAboutBoxDlg, descended from TComponent.

• Call the component’s unit files ABOUTDLG.H and ABOUTDLG.CPP.

• Register TAboutBoxDlg on the Samples page of the component palette.

The resulting .HPP file should look like this:

#ifndef AboutDlgH
#define AboutDlgH
//---
#include <vcl\sysutils.hpp>
#include <vcl\controls.hpp>
#include <vcl\classes.hpp>
#include <vcl\forms.hpp>
//---
class PACKAGE TAboutBoxDlg : public TComponent
{
private:
protected:
public:
__published:
};
//---
#endif

M a k i n g a d i a l o g b o x a c o m p o n e n t 57-3

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

The .CPP file of the unit should look like this:

#include <vcl\vcl.h>
#pragma hdrstop
#include "AboutDlg.h"
//---
#pragma package(smart_init);
//---
static inline TAboutBoxDlg *ValidCtrCheck()
{

return new TAboutBoxDlg(NULL);
}
//---
namespace AboutDlg {
{

void __fastcall PACKAGE Register()
{

TComponentClass classes[1] = {__classid(TAboutBoxDlg)};
RegisterComponents("Samples", classes, 0);

}
}

Note If you used the Component wizard to begin this component, TAboutDlg will also
have a constructor added.

CLX Names and locations of some of the header files differ in CLX applications. For
example, <vcl\controls.hpp> is <clx\qcontrols.hpp> in CLX.

The new component now has only the capabilities built into TComponent. It is the
simplest nonvisual component. In the next section, you will create the interface
between the component and the dialog box.

Creating the component interface
These are the steps to create the component interface:

1 Including the form unit files.
2 Adding interface properties.
3 Adding the Execute method.

Including the form unit files

For your wrapper component to initialize and display the wrapped dialog box, you
must add the form’s files to the project.

Include ABOUT.HPP and link in ABOUT.OBJ in the component’s header file:

#include "About.h"
#pragma link "About.obj"

57-4 D e v e l o p e r ’ s G u i d e

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

The form header file always declares an instance of the form class. In the case of the
About box, the form class is TAboutBox, and the ABOUT.H file includes the
following:

extern TAboutBox *AboutBox;

Adding interface properties

Before proceeding, decide on the properties your wrapper needs to enable
developers to use your dialog box as a component in their applications. Then, you
can add declarations for those properties to the component’s class declaration.

Properties in wrapper components are somewhat simpler than the properties you
would create if you were writing a regular component. Remember that in this case,
you are just creating some persistent data that the wrapper can pass back and forth to
the dialog box. By putting that data in the form of properties, you enable developers
to set data at design time so that the wrapper can pass it to the dialog box at runtime.

Declaring an interface property requires two additions to the component’s class
declaration:

• A private data member, which is a variable the wrapper uses to store the value of
the property

• The published property declaration itself, which specifies the name of the
property and tells it which data member to use for storage

Interface properties of this sort do not need access methods. They use direct access to
their stored data. By convention, the data member that stores the property’s value
has the same name as the property, but with the letter F in front. The data member
and the property must be of the same type.

For example, to declare an integer-type interface property called Year, you would
declare it as follows:

class PACKAGE TWrapper : public TComponent
{
private:

int FYear; // data member to hold the Year-property data
protected:
public:
__published:

__property int Year = {read=FYear, write=FYear}; // property matched with storage
};

For this About box, you need four string-type properties—one each for the product
name, the version information, the copyright information, and any comments. This is
how the ABOUTDLG.H file should look:

class PACKAGE TAboutBoxDlg : public TComponent
{
private:

int FYear;
String FProductName, FVersion, FCopyright, FComments;

protected:

M a k i n g a d i a l o g b o x a c o m p o n e n t 57-5

C r e a t i n g t h e c o m p o n e n t i n t e r f a c e

public:
__published:

__property int Year = {read=FYear, write=FYear};
__property String ProductName = {read=FProductName, write=FProductName};
__property String Version = {read=FVersion, write=FVersion};
__property String Copyright = {read=FCopyright, write=FCopyright};
__property String Comments = {read=FComments, write=FComments};

};

When you install the component onto the component palette and place the
component on a form, you will be able to set the properties, and those values will
automatically stay with the form. The wrapper can then use those values when
executing the wrapped dialog box.

Adding the Execute method

The final part of the component interface is a way to open the dialog box and return a
result when it closes. As with the common dialog box components, you use a boolean
function called Execute that returns true if the user clicks OK, or false if the user
cancels the dialog box.

The declaration for the Execute method always looks like this:

class PACKAGE TMyWrapper : public TComponent
{

ƒ
public:

bool __fastcall Execute();
ƒ

};

The minimum implementation for Execute needs to construct the dialog box form,
show it as a modal dialog box, and return either true or false, depending on the
return value from ShowModal.

Here is the minimal Execute method for a dialog-box form of type TMyDialogBox:

bool __fastcall TMyWrapper::Execute()
{

DialogBox = new TMyDialogBox(Application); // construct the form
bool Result;

try
{

Result = (DialogBox->ShowModal() IDOK); // execute; set result based on how closed
}
catch(...)
{

Result = false; // if it fails, set Result to false
}
DialogBox->Free(); // dispose of form

}

In practice, there will be more code inside the exception handler. Specifically, before
calling ShowModal, the wrapper will set some of the dialog box’s properties based on
the wrapper component’s interface properties. After ShowModal returns, the wrapper

57-6 D e v e l o p e r ’ s G u i d e

T e s t i n g t h e c o m p o n e n t

will probably set some of its interface properties based on the outcome of the dialog
box execution.

In the case of the About box, you need to use the wrapper component’s four interface
properties to set the contents of the labels in the About box form. Because the About
box does not return any information to the application, there is no need to do
anything after calling ShowModal. Write the About box wrapper’s Execute method so
that it looks like this in the ABOUTDLG.CPP file:

bool __fastcall TAboutBoxDlg::Execute()
{

AboutBox = new TAboutBox(Application); // construct the About box
bool Result;
try
{

if (ProductName == ““) // if product name’s left blank ...
ProductName = Application->Title; // ... use application title instead

AboutBox->ProductName->Caption = ProductName; // copy product name
AboutBox->Version->Caption = Version; // copy version information
AboutBox->Copyright->Caption = Copyright; // copy copyright information
AboutBox->Comments->Caption = Comments; // copy comments
AboutBox->Caption = “About “ + ProductName; // set About-box caption
Result = (AboutBox->ShowModal() == IDOK); // execute and set result

}
catch(...)
{

Result = false; // if it fails, set Result to false
ƒ

}
AboutBox->Free(); // dispose of About box
return Result == IDOK; // compare Result to IDOK and return Boolean value

}

To the ABOUTDLG.H header, add the declaration for the Execute method to the
public part of the TAboutDlg class:

class PACKAGE TAboutDlg : public TComponent
{
public:

 virtual bool __fastcall Execute();
};

Testing the component
Once you have installed the dialog box component, you can use it as you would any
of the common dialog boxes, by placing one on a form and executing it. A quick way
to test the About box is to add a command button to a form and execute the dialog
box when the user clicks the button.

M a k i n g a d i a l o g b o x a c o m p o n e n t 57-7

T e s t i n g t h e c o m p o n e n t

For example, if you created an About dialog box, made it a component, and added it
to the Component palette, you can test it with the following steps:

1 Create a new project.

2 Place an About box component on the main form.

3 Place a command button on the form.

4 Double-click the command button to create an empty click-event handler.

5 In the click-event handler, type the following line of code:

AboutBoxDlg1->Execute();

6 Run the application.

When the main form appears, click the command button. The About box appears
with the default project icon and the name Project1. Choose OK to close the dialog
box.

You can further test the component by setting the various properties of the About
box component and again running the application.

57-8 D e v e l o p e r ’ s G u i d e

E x t e n d i n g t h e I D E 58-1

C h a p t e r

58
Chapter58Extending the IDE

You can extend and customize the IDE with your own menu items, tool bar buttons,
dynamic form-creation wizards, and more, using the Open Tools API (often
shortened to just Tools API). The Tools API is a suite of over 100 interfaces (abstract
classes) that interact with and control the IDE, including the main menu, the tool
bars, the main action list and image list, the source editor’s internal buffers, keyboard
macros and bindings, forms and their components in the form editor, the debugger
and the process being debugged, code completion, the message view, and the To-Do
list.

Using the Tools API is simply a matter of writing classes that implement certain
interfaces, and calling on services provided by other interfaces. Your Tools API code
must be compiled and loaded into the IDE at design-time as a design-time package or
in a DLL. Thus, writing a Tools API extension is somewhat like writing a property or
component editor. Before tackling this chapter, make sure you are familiar with the
basics of working with packages (Chapter 15, “Working with packages and
components”) and registering components (Chapter 52, “Making components
available at design time”). It is also a good idea to read Chapter 13, “C++ language
support for the VCL and CLX,”especially the section “Inheritance and interfaces” on
page 13-2 for information about Delphi-style interfaces.

This chapter covers the following topics:

• Overview of the Tools API
• Writing a wizard class
• Obtaining Tools API services
• Working with files and editors
• Creating forms and projects
• Notifying a wizard of IDE events
• Installing a wizard DLL

58-2 D e v e l o p e r ’ s G u i d e

O v e r v i e w o f t h e T o o l s A P I

Overview of the Tools API
All of the Tools API declarations reside in a single header file, ToolsAPI.hpp; the
namespace is Toolsapi. To use the Tools API, you typically use the designide
package, which means you must build your Tools API add-in as a design-time
package or as a DLL that uses runtime packages. For information about package and
library issues, see “Installing the wizard package” on page 58-7 and “Installing a
wizard DLL” on page 58-22.

The main interface for writing a Tools API extension is IOTAWizard, so most IDE
add-ins are called wizards. C++Builder and Delphi wizards are, for the most part,
interoperable. You can write and compile a wizard in Delphi, then use it in
C++Builder, and vice versa. Interoperability works best with the same version
number, but it is also possible to write wizards so they can be used in future versions
of both products. For more information on forward compatibility, see “Using a DLL
without runtime packages” on page 58-23.

To use the Tools API, you write wizard classes that implement one or more of the
interfaces defined in the ToolsAPI unit. Recall from Chapter 13 that C++Builder
represents an Object Pascal interface as an abstract class. To implement the interface,
you must override the member functions of the abstract class and its ancestors, and
implement the QueryInterface function to recognize the interface GUID.

A wizard makes use of services that the Tools API provides. Each service is an
interface that presents a set of related functions. The implementation of the interface
is hidden within the IDE. The Tools API publishes only the interface, which you can
use to write your wizards without concerning yourself with the implementation of
the interfaces. The various services offer access to the source editor, form designer,
debugger, and so on. The section “Obtaining Tools API services” on page 58-7
examines this topic in depth.

The service and other interfaces fall into two basic categories. You can tell them apart
by the prefix used for the type name:

• The NTA (native tools API) grants direct access to actual IDE objects, such as the
IDE’s TMainMenu object. When using these interfaces, the wizard must use
Borland packages, which also means the wizard is tied to a specific version of the
IDE. The wizard can reside in a design-time package or in a DLL that uses runtime
packages.

• The OTA (open tools API) does not require packages and accesses the IDE only
through interfaces. In theory, you could write a wizard in any language that
supports COM-style interfaces, provided you can also work with Borland’s
__fastcall calling convention and Object Pascal types such as AnsiString. OTA
interfaces do not grant full access to the IDE, but almost all the functionality of the
Tools API is available through OTA interfaces. If a wizard uses only OTA
interfaces, it is possible to write a DLL that is not dependent on a specific version
of the IDE.

The Tools API has two kinds of interfaces: those that you, the programmer, must
implement and those that the IDE implements. Most of the interfaces are in the latter
category: the interfaces define the capability of the IDE but hide the actual

E x t e n d i n g t h e I D E 58-3

W r i t i n g a w i z a r d c l a s s

implementation. The kinds of interfaces that you must implement fall into three
categories: wizards, notifiers, and creators:

• As mentioned earlier in this section, a wizard class implements the IOTAWizard
interface and possibly derived interfaces.

• A notifier is another kind of interface in the Tools API. The IDE uses notifiers to
call back to your wizard when something interesting happens. You write a class
that implements the notifier interface, register the notifier with the Tools API, and
the IDE calls back to your notifier object when the user opens a file, edits source
code, modifies a form, starts a debugging session, and so on. Notifiers are covered
in “Notifying a wizard of IDE events” on page 58-18.

• A creator is another kind of interface that you must implement. The Tools API
uses creators to create new units, projects, or other files, or to open existing files.
The section “Creating forms and projects” on page 58-14 discusses this subject in
more depth.

Other important interfaces are modules and editors. A module interface represents
an open unit, which has one or more files. An editor interface represents an open file.
Different kinds of editor interfaces give you access to different aspects of the IDE: the
source editor for source files, the form designer for form files, and project resources
for a resource file. The section “Working with files and editors” on page 58-12 covers
these topics in more depth.

The following sections take you through the steps of writing a wizard. Refer to the
online help files for the complete details of each interface.

Writing a wizard class
There are four kinds of wizards, where the wizard kind depends on the interfaces
that the wizard class implements. Table 58.1 describes the four kinds of wizards.

The four kinds of wizards differ only in how the user invokes the wizard:

• A menu wizard is added to the IDE’s Help menu. When the user picks the menu
item, the IDE calls the wizard’s Execute() function. Plain wizards offer much more
flexibility, so menu wizards are typically used only for prototypes and debugging.

• Form and project wizards are called repository wizards because they reside in the
Object Repository. The user invokes these wizards from the New Items dialog box.
The user can also see the wizards in the object repository (by choosing the Tools|
Repository menu item). The user can check the New Form checkbox for a form

Table 58.1 The four kinds of wizards

Interface Description

IOTAFormWizard Typically creates a new unit, form, or other file

IOTAMenuWizard Automatically added to Help menu

IOTAProjectWizard Typically creates a new application or other project

IOTAWizard Miscellaneous wizard that doesn’t fit into other categories

58-4 D e v e l o p e r ’ s G u i d e

W r i t i n g a w i z a r d c l a s s

wizard, which tells the IDE to invoke the form wizard when the user chooses the
File|New Form menu item. The user can also check the Main Form checkbox. This
tells the IDE to use the form wizard as the default form for a new application. The
user can check the New Project checkbox for a project wizard. When the user
chooses File|New Application, the IDE invokes the selected project wizard.

• The fourth kind of wizard is for situations that don’t fit into the other categories. A
plain wizard does not do anything automatically or by itself. Instead, you must
define how the wizard is invoked.

The Tools API does not enforce any restrictions on wizards, such as requiring a
project wizard to create a project. You can just as easily write a project wizard to
create a form and a form wizard to create a project (if that’s something you really
want to do).

Implementing the wizard interfaces

Every wizard class must implement at least IOTAWizard, which requires
implementing its ancestors, too: IOTANotifier and IInterface. Form and project
wizards must implement all their ancestor interfaces, namely, IOTARepositoryWizard,
IOTAWizard, IOTANotifier, and IInterface.

Your implementation of IInterface must follow the normal rules for Object Pascal
interfaces, which are the same as the rules for COM interfaces. That is, QueryInterface
performs type casts, and AddRef and Release manage reference counting. You might
want to use a common base class to simplify writing wizard and notifier classes.

For example, Delphi has the TNotifierObject class, which implements IOTANotifier
with empty function bodies. You can write a similar class in C++, as shown below.

class PACKAGE NotifierObject : public IOTANotifier {
public:
 __fastcall NotifierObject() : ref_count(0) {}
 virtual __fastcall ~NotifierObject();
 void __fastcall AfterSave();
 void __fastcall BeforeSave();
 void __fastcall Destroyed();
 void __fastcall Modified();
protected:
 // IInterface
 virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
 virtual ULONG __stdcall AddRef();
 virtual ULONG __stdcall Release();
private:
 long ref_count;
};

The implementation of the IInterface interface is straightforward:

ULONG __stdcall NotifierObject::AddRef()
{
 return InterlockedIncrement(&ref_count);
}

E x t e n d i n g t h e I D E 58-5

W r i t i n g a w i z a r d c l a s s

ULONG __stdcall NotifierObject::Release()
{
 ULONG result = InterlockedDecrement(&ref_count);
 if (ref_count == 0)
 delete this;
 return result;
}

HRESULT __stdcall NotifierObject::QueryInterface(const GUID& iid, void** obj)
{
 if (iid == __uuidof(IInterface)) {
 obj = static_cast<IInterface>(this);
 static_cast<IInterface*>(*obj)->AddRef();
 return S_OK;
 }
 if (iid == __uuidof(IOTANotifier)) {
 obj = static_cast<IOTANotifier>(this);
 static_cast<IOTANotifier*>(*obj)->AddRef();
 return S_OK;
 }
 return E_NOINTERFACE;
}

Although wizards inherit from IOTANotifier, and must therefore implement all of its
functions, the IDE does not usually make use of those functions, so your
implementations can be empty:

void __fastcall NotifierObject::AfterSave() {}
void __fastcall NotifierObject::BeforeSave() {}
void __fastcall NotifierObject::Destroyed() {}
void __fastcall NotifierObject::Modified() {}

To use NotifierObject as a base class you must use multiple inheritance. Your wizard
class must inherit from NotifierObject and from the wizard interfaces that you need to
implement, such as IOTAWizard. Because IOTAWizard inherits from IOTANotifier
and IInterface, there is an ambiguity in the derived class: functions such as AddRef()
are declared in every branch of the ancestral inheritance graph. To resolve this
problem, pick one base class as the primary base class and delegate all ambiguous
functions to that one class. For example, the class declaration might look as follows:

class PACKAGE MyWizard : public NotifierObject, public IOTAMenuWizard {
 typedef NotifierObject inherited;
public:
 // IOTAWizard
 virtual AnsiString __fastcall GetIDString();
 virtual AnsiString __fastcall GetName();
 virtual TWizardState __fastcall GetState();
 virtual void __fastcall Execute();

// IOTAMenuWizard
 virtual AnsiString __fastcall GetMenuText();

void __fastcall AfterSave();
 void __fastcall BeforeSave();
 void __fastcall Destroyed();
 void __fastcall Modified();

58-6 D e v e l o p e r ’ s G u i d e

W r i t i n g a w i z a r d c l a s s

protected:
 // IInterface
 virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
 virtual ULONG __stdcall AddRef();
 virtual ULONG __stdcall Release();
};

The class implementation might include the following:

ULONG __stdcall MyWizard::AddRef() { return inherited::AddRef(); }
ULONG __stdcall MyWizard::Release() { return inherited::Release(); }
HRESULT __stdcall MyWizard::QueryInterface(const GUID& iid, void** obj)
{
 if (iid == __uuidof(IOTAMenuWizard)) {
 obj = static_cast<IOTAMenuWizard>(this);
 static_cast<IOTAMenuWizard*>(*obj)->AddRef();
 return S_OK;
 }
 if (iid == __uuidof(IOTAWizard)) {
 obj = static_cast<IOTAWizard>(this);
 static_cast<IOTAWizard*>(*obj)->AddRef();
 return S_OK;
 }
 return inherited::QueryInterface(iid, obj);
}

Because AfterSave, BeforeSave, and so on, have empty function bodies in the base
class, you can leave them as empty function bodies in the derived class, and avoid the
unnecessary call to inherited::AfterSave().

Simplifying implementing interfaces

Because Object Pascal interfaces are similar to COM interfaces, you can use COM
wizards to help you write the wizard class. However, COM involves much more
overhead than what simple Object Pascal interfaces require. With judicious use of
base classes and a little copy and paste, you will probably find it easier not to use the
COM wizards and stick with simple implementations. For example, you can make it
easier to implement QueryInterface by defining a simple macro:

#define QUERY_INTERFACE(T, iid, obj) \
 if ((iid) == __uuidof(T)) { \
 (obj) = static_cast<T>(this); \
 static_cast<T*>(*(obj))->AddRef(); \
 return S_OK; \
 }

Use this macro as follows:

HRESULT __stdcall MyWizard::QueryInterface(const GUID& iid, void* obj)
{
 QUERY_INTERFACE(IOTAMenuWizard, iid, obj);
 QUERY_INTERFACE(IOTAWizard, iid, obj);
 return inherited::QueryInterface(iid, obj);
}

E x t e n d i n g t h e I D E 58-7

O b t a i n i n g T o o l s A P I s e r v i c e s

You must also override all the member functions of IOTAWizard and the derived
classes you are using. Most of the functions of the various wizard interfaces are self-
explanatory. The IDE calls your wizard’s functions to decide how to present the
wizard to the end-user and how to run the wizard when the user invokes it.

Once you have finished writing the wizard class, the next step is to install the wizard.

Installing the wizard package

As with any other design-time package, a wizard package must have at least one
Register function. (See Chapter 52, “Making components available at design time” for
details about the Register function.) In the Register function, you can register any
number of wizards by calling RegisterPackageWizard, and passing a wizard object as
the sole argument, as shown below:

namespace Example {
 void __fastcall PACKAGE Register()
 {
 RegisterPackageWizard(new MyWizard());
 RegisterPackageWizard(new MyOtherWizard());
 }
}

You can also register property editors, components, and so on, as part of the same
package.

Remember that a design-time package is part of the main C++Builder application,
which means any form names must be unique throughout the entire application and
all other design-time packages. This is the main disadvantage to using packages: you
never know what someone else might name their forms.

During development, install the wizard package the way you would any other
design-time package: click the Install button in the package manager. The IDE will
compile and link the package and attempt to load it. The IDE displays a dialog box
telling you whether it successfully loaded the package.

Obtaining Tools API services
To do anything useful, a wizard needs access to the IDE: its editors, windows,
menus, and so on. This is the role of the service interfaces. The Tools API includes
many services, such as action services to perform file actions, editor services to access
the source code editor, debugger services to access the debugger, and so on. Table
58.2 summarizes all the service interfaces.

58-8 D e v e l o p e r ’ s G u i d e

O b t a i n i n g T o o l s A P I s e r v i c e s

To use a service interface, cast the BorlandIDEServices variable to the desired service
using the Supports member function. For example,

void set_keystroke_debugging(bool debugging)
{
 _di_IOTAKeyboardDiagnostics diag;
 if (BorlandIDEServices->Supports(diag))
 diag->KeyTracing = debugging;
}

If your wizard needs to use a specific service often, you can keep a pointer to the
service as a data member of your wizard class. By using the DelphiInterface template
(e.g., _di_IOTAModuleServices), the Tools API automatically manages the object’s
lifetime, and you don’t need to do anything special in your wizard’s destructor.

Using native IDE objects

Wizards have full access to the main menu, tool bars, action list, and image list of the
IDE. (Note that the IDE’s many context menus are not accessible through the Tools
API.) This section presents a simple example of how a wizard can use these native
IDE objects to interact with the IDE.

Table 58.2 Tools API service interfaces

Interface Description

INTAServices Provides access to native IDE objects: main menu, action list,
image list, and tool bars.

IOTAActionServices Performs basic file actions: open, close, save, and reload a file.

IOTACodeCompletionServices Provides access to code completion, allowing a wizard to install
a custom code completion manager.

IOTADebuggerServices Provides access to debugger.

IOTAEditorServices Provides access to source code editor and its internal buffers.

IOTAKeyBindingServices Permits a wizard to register custom keyboard bindings.

IOTAKeyboardServices Provides access to keyboard macros and bindings.

IOTAKeyboardDiagnostics Toggle debugging of keystrokes.

IOTAMessageServices Provides access to message view.

IOTAModuleServices Provides access to open files.

IOTAPackageServices Queries the names of all installed packages and their
components.

IOTAServices Miscellaneous services.

IOTAToDoServices Provides access to the To-Do list, allowing a wizard to install a
custom To-Do manager.

IOTAToolsFilter Registers tools filter notifiers.

IOTAWizardServices Registers and unregisters wizards.

E x t e n d i n g t h e I D E 58-9

O b t a i n i n g T o o l s A P I s e r v i c e s

Using the INTAServices interface
The starting point for working with native IDE objects is the INTAServices interface.
Use this interface to add an image to the image list, an action to the action list, a menu
item to the main menu, and a button to a tool bar. You can tie the action to the menu
item and tool button. When the wizard is destroyed, it must clean up the objects it
creates, but it must not delete the image it added to the image list. Deleting an image
would scramble the indices for all images added after this wizard.

The wizard uses the actual TMainMenu, TActionList, TImageList, and TToolBar objects
from the IDE, so you can write code the way you would any other application. It also
means you have a lot of scope for crashing the IDE or otherwise disabling important
features, such as deleting the File menu.

Adding an image to the image list
Suppose you want to add a menu item to invoke your wizard. You also want to
enable the user to add a toolbar button that invokes the wizard. The first step is to
add an image to the IDE’s image list. The index of your image can then be used for
the action, which in turn is used by the menu item and toolbar button. Use the Image
Editor to create a resource file that contains a 16 by 16 bitmap resource. Add the
following code to your wizard’s constructor:

_di_INTAServices services;
BorlandIDEServices->Supports(services);

// Add an image to the image list.
Graphics::TBitmap* bitmap(new Graphics::TBitmap());
bitmap->LoadFromResourceName(reinterpret_cast<unsigned>(HInstance), "Bitmap1");
int image = services->AddMasked(bitmap, bitmap->TransparentColor,

"Tempest Software.intro wizard image");
delete bitmap;

Notice that HInstance has the wrong type, so you must cast it to the type that
LoadFromResourceID requires. Also be sure to load the resource by the name or ID
you specify in the resource file. Add the resource file to the package using #pragma
resource. You must choose a color that will be interpreted as the background color
for the image. If you don’t want a background color, choose a color that does not
exist in the bitmap.

Adding an action to the action list
The image index is used to create an action, as shown below. The wizard uses the
OnExecute and OnUpdate events. A common scenario is for a wizard to use the
OnUpdate event to enable or disable the action. Be sure the OnUpdate event returns
quickly, or the user will notice that the IDE becomes sluggish after loading your
wizard. The action’s OnExecute event is similar to the wizard’s Execute method. If you
are using a menu item to invoke a form or project wizard, you might even want to
have OnExecute call Execute directly.

action = new TAction(0);
action->ActionList = services->ActionList;
action->Caption = GetMenuText();
action->Hint = "Display a silly dialog box";

58-10 D e v e l o p e r ’ s G u i d e

O b t a i n i n g T o o l s A P I s e r v i c e s

action->ImageIndex = image;
action->OnUpdate = action_update;
action->OnExecute = action_execute;

The menu item sets its Action property to the newly created action. The tricky part of
creating the menu item is knowing where to insert it. The example below looks for
the View menu, and inserts the new menu item as the first item in the View menu. (In
general, relying on absolute position is not a good idea: you never know when
another wizard might insert itself in the menu. Future versions of C++Builder are
likely to reorder the menu, too. A better approach is to search the menu for a menu
item with a specific name. The simplistic approach is shown below for the sake of
clarity.)

for (int i = 0; i < services->MainMenu->Items->Count; ++i)
{
 TMenuItem* item = services->MainMenu->Items->Items[i];
 if (CompareText(item->Name, "ViewsMenu") == 0)
 {
 menu_item = new TMenuItem(0);
 menu_item->Action = action;
 item->Insert(0, menu_item);
 }
}

By adding the action to the IDE’s action list, the user can see the action when
customizing the toolbars. The user can select the action and add it as a button to any
toolbar. This causes a problem when your wizard is unloaded: all the tool buttons
end up with dangling pointers to the non-existent action and OnClick event handler.
To prevent access violations, your wizard must find all tool buttons that refer to its
action, and remove those buttons.

Deleting toolbar buttons
There is no convenient function for removing a button from a toolbar; you must send
the CM_CONTROLCHANGE message, where the first parameter is the control to
change, and the second parameter is zero to remove it or non-zero to add it to the
toolbar. After removing the toolbar buttons, the destructor deletes the action and
menu item. Deleting these items automatically removes them from the IDE’s
ActionList and MainMenu.

void __fastcall remove_action (TAction* action, TToolBar* toolbar)
{
 for (int i = toolbar->ButtonCount; --i >= 0;)
 {
 TToolButton* button = toolbar->Buttons[i];
 if (button->Action == action)
 {
 // Remove “button” from “toolbar”.
 toolbar->Perform(CM_CONTROLCHANGE, WPARAM(button), 0);
 delete button;
 }
 }
}

E x t e n d i n g t h e I D E 58-11

O b t a i n i n g T o o l s A P I s e r v i c e s

__fastcall MyWizard::~MyWizard()
{
 _di_INTAServices services;

BorlandIDEServices->Supports(services);
// Check all the toolbars, and remove any buttons that use

 // this action.
 remove_action(action, services->ToolBar[sCustomToolBar]);
 remove_action(action, services->ToolBar[sDesktopToolBar]);
 remove_action(action, services->ToolBar[sStandardToolBar]);
 remove_action(action, services->ToolBar[sDebugToolBar]);
 remove_action(action, services->ToolBar[sViewToolBar]);
 remove_action(action, services->ToolBar[sInternetToolBar]);

delete menu_item;
 delete action;
}

As you can see from this simple example, you have a lot of flexibility in how your
wizard interacts with the IDE. With the flexibility comes responsibility, however. It is
easy to wind up with dangling pointers or other access violations. The next section
presents some tips to help you diagnose these kinds of problems.

Debugging a wizard

When writing wizards that use the native tools API, you can write code that causes
the IDE to crash. It is also possible that you write a wizard that installs but does not
act the way you want it to. One of the challenges of working with design-time code is
debugging. It’s an easy problem to solve, however. Because the wizard is installed in
C++Builder itself, you simply need to set the package’s Host Application to the
C++Builder executable (bcb.exe) from the Run|Parameters… menu item.

When you want (or need) to debug the package, don’t install it. Instead, choose Run|
Run from the menu bar. This starts up a new instance of C++Builder. In the new
instance, install the already-compiled package by choosing Components|Install
Package… from the menu bar. Back in the original instance of C++Builder, you
should now see the telltale blue dots that tell you where you can set breakpoints in
the wizard source code. (If not, double-check your compiler options to be sure you
enabled debugging; make sure you loaded the right package; and double-check the
process modules to make extra sure that you loaded the .bpl file you wanted to load.)

You cannot debug into the VCL, CLX, or RTL code this way, but you have full debug
capabilities for the wizard itself, which might be enough to tell what is going wrong.

Interface version numbers

If you look closely at the declarations of some of the interfaces, such as
IOTAMessageServices, you will see that they inherit from other interfaces with similar
names, such as IOTAMessageServices50, which inherits from IOTAMessageServices40.
This use of version numbers helps insulate your code from changes between releases
of C++Builder.

58-12 D e v e l o p e r ’ s G u i d e

W o r k i n g w i t h f i l e s a n d e d i t o r s

The Tools API follows the basic principle of COM, namely, that an interface and its
GUID never change. If a new release adds features to an interface, the Tools API
declares a new interface that inherits from the old one. The GUID remains the same,
attached to the old, unchanged interface. The new interface gets a brand new GUID.
Old wizards that use the old GUIDs continue to work.

The Tools API also changes interface names to try to preserve source-code
compatibility. To see how this works, it is important to distinguish between the two
kinds of interfaces in the Tools API: Borland-implemented and user-implemented. If
the IDE implements the interface, the name stays with the most recent version of the
interface. The new functionality does not affect existing code. The old interfaces have
the old version number appended.

For a user-implemented interface, however, new member functions in the base
interface require new functions in your code. Therefore, the name tends to stick with
the old interface, and the new interface has a version number tacked onto the end.

For example, consider the message services. C++Builder 6 introduced a new feature:
message groups. Therefore, the basic message services interface required new
member functions. These functions were declared in a new interface class, which
retained the name IOTAMessageServices. The old message services interface was
renamed to IOTAMessageServices50 (for version 5). The GUID of the old
IOTAMessageServices is the same as the GUID of the new IOTAMessageServices50
because the member functions are the same.

Consider IOTAIDENotifier as an example of a user-implemented interface.
C++Builder 5 added new overloaded functions: AfterCompile and BeforeCompile.
Existing code that used IOTAIDENotifier did not need to change, but new code that
required the new functionality had to be modified to override the new functions
inherited from IOTAIDENotifier50. Version 6 did not add any more functions, so the
current version to use is IOTAIDENotifier50.

The rule of thumb is to use the most-derived class when writing new code. Leave the
source code alone if you are merely recompiling an existing wizard under a new
release of C++Builder.

Working with files and editors
Before going any further, you need to understand how the Tools API works with
files. The main interface is IOTAModule. A module represents a set of logically related
open files. For example, a single module represents a single unit. The module, in
turn, has one or more editors, where each editor represents one file, such as the
implementation (.cpp), interface (.h), or form (.dfm or .xfm) file. The editor interfaces
reflect the internal state of the IDE’s editors, so a wizard can see the modified code
and forms that the user sees, even if the user has not saved any changes.

E x t e n d i n g t h e I D E 58-13

W o r k i n g w i t h f i l e s a n d e d i t o r s

Using module interfaces

To obtain a module interface, start with the module services (IOTAModuleServices).
You can query the module services for all open modules, look up a module from a
file name or form name, or open a file to obtain its module interface.

There are different kinds of modules for different kinds of files, such as projects,
resources, and type libraries. Cast a module interface to a specific kind of module
interface to learn whether the module is of that type. For example, one way to obtain
the current project group interface is as follows:

// Return the current project group, or 0 if there is no project group.
_di_IOTAProjectGroup __fastcall CurrentProjectGroup()
{
 _di_IOTAModuleServices svc;

BorlandIDEServices->Supports(svc);

for (int i = 0; i < svc->ModuleCount; ++i)
 {
 _di_IOTAModule module = svc->Modules[i];
 _di_IOTAProjectGroup group;
 if (module->Supports(group))
 return group;
 }
 return 0;
}

Using editor interfaces

Every module has at least one editor interface. Some modules have several editors,
such as an implementation (.cpp) file, interface (.h) file, and form description (.dfm)
file. All editors implement the IOTAEditor interface; cast the editor to a specific type
to learn what kind of editor it is. For example, to obtain the form editor interface for a
unit, you can do the following:

// Return the form editor for a module, or 0 if the unit has no form.
_di_IOTAFormEditor __fastcall GetFormEditor(_di_IOTAModule module)
{
 for (int i = 0; i < module->ModuleFileCount; ++i)
 {
 _di_IOTAEditor editor = module->ModuleFileEditors[i];
 _di_IOTAFormEditor formEditor;
 if (editor->Supports(formEditor))
 return formEditor;
 }
 return 0;
}

The editor interfaces give you access to the editor’s internal state. You can examine
the source code or components that the user is editing, make changes to the source
code, components, or properties, change the selection in the source and form editors,
and carry out almost any editor action that the end user can perform.

58-14 D e v e l o p e r ’ s G u i d e

C r e a t i n g f o r m s a n d p r o j e c t s

Using a form editor interface, a wizard can access all the components on the form.
Each component (including the root form or data module) has an associate
IOTAComponent interface. A wizard can examine or change most of the component’s
properties. If you need complete control over the component, you can cast the
IOTAComponent interface to INTAComponent. The native component interface enables
your wizard to access the TComponent pointer directly. This is important if you need
to read or modify a class-type property, such as TFont, which is possible only
through NTA-style interfaces.

Creating forms and projects
C++Builder comes with a number of form and project wizards already installed, and
you can write your own. The Object Repository lets you create static templates that
can be used in a project, but a wizard offers much more power because it is dynamic.
The wizard can prompt the user and create different kinds of files depending on the
user’s responses. This section describes how to write a form or project wizard.

Creating modules

A form or project wizard typically creates one or more new files. Instead of real files,
however, it is best to create unnamed, unsaved modules. When the user saves them,
the IDE prompts the user for a file name. A wizard uses a creator object to create such
modules.

A creator class implements a creator interface, which inherits from IOTACreator. The
wizard passes a creator object to the module service’s CreateModule method, and the
IDE calls back to the creator object for the parameters it needs to create the module.

For example, a form wizard that creates a new form typically implements
GetExisting() to return false and GetUnnamed() to return true. This creates a module
that has no name (so the user must pick a name before the file can be saved) and is
not backed by an existing file (so the user must save the file even if the user does not
make any changes). Other methods of the creator tell the IDE what kind of file is
being created (e.g., project, unit, or form), provide the contents of the file, or return
the form name, ancestor name, and other important information. Additional
callbacks let a wizard add modules to a newly created project, or add components to
a newly created form.

To create a new file, which is often required in a form or project wizard, you usually
need to provide the contents of the new file. To do so, write a new class that
implements the IOTAFile interface. If your wizard can make do with the default file
contents, you can return a 0 pointer from any function that returns IOTAFile.

For example, suppose your organization has a standard comment block that must
appear at the top of each source file. You could do this with a static template in the
Object Repository, but the comment block would need to be updated manually to
reflect the author and creation date. Instead, you can use a creator to dynamically fill
in the comment block when the file is created.

E x t e n d i n g t h e I D E 58-15

C r e a t i n g f o r m s a n d p r o j e c t s

The first step is to write a wizard that creates new units and forms. Most of the
creator’s functions return zero, empty strings, or other default values, which tells the
Tools API to use its default behavior for creating a new unit or form. Override
GetCreatorType to inform the Tools API what kind of module to create: a unit or a
form. To create a unit, return the macro sUnit. To create a form, return sForm. To
simplify the code, use a single class that takes the creator type as an argument to the
constructor. Save the creator type in a data member, so that GetCreatorType can return
its value. Override NewImplSource and NewIntfSource to return the desired file
contents.

class PACKAGE Creator : public IOTAModuleCreator {
public:
 __fastcall Creator(const AnsiString creator_type)
 : ref_count(0), creator_type(creator_type) {}
 virtual __fastcall ~Creator();

// IOTAModuleCreator
 virtual AnsiString __fastcall GetAncestorName();
 virtual AnsiString __fastcall GetImplFileName();
 virtual AnsiString __fastcall GetIntfFileName();
 virtual AnsiString __fastcall GetFormName();
 virtual bool __fastcall GetMainForm();
 virtual bool __fastcall GetShowForm();
 virtual bool __fastcall GetShowSource();
 virtual _di_IOTAFile __fastcall NewFormFile(
 const AnsiString FormIdent, const AnsiString AncestorIdent);
 virtual _di_IOTAFile __fastcall NewImplSource(
 const AnsiString ModuleIdent, const AnsiString FormIdent,
 const AnsiString AncestorIdent);
 virtual _di_IOTAFile __fastcall NewIntfSource(
 const AnsiString ModuleIdent, const AnsiString FormIdent,
 const AnsiString AncestorIdent);
 virtual void __fastcall FormCreated(
 const _di_IOTAFormEditor FormEditor);

// IOTACreator
 virtual AnsiString __fastcall GetCreatorType();
 virtual bool __fastcall GetExisting();
 virtual AnsiString __fastcall GetFileSystem();
 virtual _di_IOTAModule __fastcall GetOwner();
 virtual bool __fastcall GetUnnamed();

protected:
 // IInterface
 virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
 virtual ULONG __stdcall AddRef();
 virtual ULONG __stdcall Release();

private:
 long ref_count;
 const AnsiString creator_type;
};

Most of the members of Creator return zero or empty strings. The boolean methods
return true, except GetExisting, which returns false. The most interesting method is
GetOwner, which returns a pointer to the current project module, or 0 if there is no

58-16 D e v e l o p e r ’ s G u i d e

C r e a t i n g f o r m s a n d p r o j e c t s

project. There is no simple way to discover the current project or the current project
group. Instead, GetOwner must iterate over all open modules. If a project group is
found, it must be the only project group open, so GetOwner returns its current project.
Otherwise, the function returns the first project module it finds, or 0 if no projects are
open.

_di_IOTAModule __fastcall Creator::GetOwner()
{
 // Return the current project.
 _di_IOTAProject result = 0;

_di_IOTAModuleServices svc = interface_cast<IOTAModuleServices>(BorlandIDEServices);
for (int i = 0; i < svc->ModuleCount; ++i)
begin

_di_IOTAModule module = svc->Modules[i];
 _di_IOTAProject project;
 _di_IOTAProjectGroup group;
 if (module->Supports(project)) {
 // Remember the first project module.
 if (result == 0)
 result = project;
 } else if (module->Supports(group)) {
 // Found the project group, so return its active project.
 result = group->ActiveProject;
 break;
 }
 }
 return result;
}

The creator returns 0 from NewFormSource, to generate a default form file. The
interesting methods are NewImplSource and NewIntfSource, which create an IOTAFile
instance that returns the file contents.

The File class implements the IOTAFile interface. It returns –1 as the file age (which
means the file does not exist), and returns the file contents as a string. To keep the File
class simple, the creator generates the string, and the File class simply passes it on.

class File : public IOTAFile {
public:
 __fastcall File(const AnsiString source);
 virtual __fastcall ~File();
 AnsiString __fastcall GetSource();
 System::TDateTime __fastcall GetAge();
protected:
 // IInterface
 virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
 virtual ULONG __stdcall AddRef();
 virtual ULONG __stdcall Release();
private:
 long ref_count;
 AnsiString source;
};

__fastcall File::File(const AnsiString source)

E x t e n d i n g t h e I D E 58-17

C r e a t i n g f o r m s a n d p r o j e c t s

: ref_count(0), source(source)
{}

AnsiString __fastcall File::GetSource()
{
 return source;
}

System::TDateTime __fastcall File::GetAge()
{
 return -1;
}

You can store the text for the file contents in a resource to make it easier to modify,
but for the sake of simplicity, this example hardcodes the source code in the wizard.
The example below generates the source code, assuming there is a form. You can
easily add the simpler case of a plain unit. Test FormIdent, and if it is empty, create a
plain unit; otherwise create a form unit. The basic skeleton for the code is the same as
the IDE’s default (with the addition of the comments at the top, of course), but you
can modify it any way you desire.

_di_IOTAFile __fastcall Creator::NewImplSource(
 const AnsiString ModuleIdent,
 const AnsiString FormIdent,
 const AnsiString AncestorIdent)
{
 const AnsiString form_source =
"/*---\n"
" %m - description\n"
" Copyright © %y Your company, inc.\n"
" Created on %d\n"
" By %u\n"
" ---*/\n"
"\n"
"#include <vcl.h>\n"
"#pragma hdrstop\n"
"\n"
"#include \"%m.h\"\n"
"//---\n"
"#pragma package(smart_init)\n"
"#pragma resource \"*.dfm\"\n"
"T%f *%f;\n"
"//---\n"
"__fastcall T%m::T%m(TComponent* Owner)\n"
" : T%a(Owner)\n"
"{\n"
"}\n"
"//--\n";

return new File(expand(form_source, ModuleIdent, FormIdent,
 AncestorIdent));
}

Notice that the source code contains strings of the form %m and %y. These are
similar in spirit to printf or Format controls, but are expanded by the wizard’s
expand function. Specifically, %m expands to the module or unit identifier, %f to the

58-18 D e v e l o p e r ’ s G u i d e

N o t i f y i n g a w i z a r d o f I D E e v e n t s

form name, and %a to the ancestor name. Notice how the form name is used in the
form’s type name by inserting a capital T. Some additional format specifiers make it
easier to generate the comment block: %d for the date, %u for the user, and %y for the
year. (Writing expand is unrelated to the Tools API and is left as an exercise for the
reader.)

NewIntfSource is similar to NewImplSource, but it generates the interface (.h) file.

The final step is to create two form wizards: one uses sUnit as the creator type, and
the other uses sForm. As an added benefit for the user, you can use INTAServices to
add a menu item to the File|New menu to invoke each wizard. The menu item’s
OnClick event handler can call the wizard’s Execute function.

Some wizards need to enable or disable the menu items, depending on what else is
happening in the IDE. For example, a wizard that checks a project into a source code
control system should disable its Check In menu item if no files are open in the IDE.
You can add this capability to your wizard by using notifiers, the subject of the next
section.

Notifying a wizard of IDE events
An important aspect of writing a well-behaved wizard is to have the wizard respond
to IDE events. In particular, any wizard that keeps track of module interfaces must
know when the user closes the module, so the wizard can release the interface. To do
this, the wizard needs a notifier, which means you must write a notifier class.

All notifier classes implement one or more notifier interfaces. The notifier interfaces
define callback methods; the wizard registers a notifier object with the Tools API, and
the IDE calls back to the notifier when something important happens.

Every notifier interface inherits from IOTANotifier, although not all of its methods are
used for a particular notifier. Table 58.3 lists all the notifier interfaces, and gives a
brief description of each one.

Table 58.3 Notifier interfaces

Interface Description

IOTANotifier Abstract base class for all notifiers

IOTABreakpointNotifier Triggering or changing a breakpoint in the debugger

IOTADebuggerNotifier Running a program in the debugger, or adding or deleting
breakpoints

IOTAEditLineNotifier Tracking movements of lines in the source editor

IOTAEditorNotifier Modifying or saving a source file, or switching files in the editor

IOTAFormNotifier Saving a form, or modifying the form or any components on the form
(or data module)

IOTAIDENotifier Loading projects, installing packages, and other global IDE events

IOTAMessageNotifier Adding or removing tabs (message groups) in the message view

IOTAModuleNotifier Changing, saving, or renaming a module

IOTAProcessModNotifier Loading a process module in the debugger?

E x t e n d i n g t h e I D E 58-19

N o t i f y i n g a w i z a r d o f I D E e v e n t s

To see how to use notifiers, consider the previous example. Using module creators,
the example creates a wizard that adds a comment to each source file. The comment
includes the unit’s initial name, but the user almost always saves the file under a
different name. In that case, it would be a courtesy to the user if the wizard updated
the comment to match the file’s true name.

To do this, you need a module notifier. The wizard saves the module interface that
CreateModule returns, and uses it to register a module notifier. The module notifier
receives notification when the user modifies the file or saves the file, but these events
are not important for this wizard, so the AfterSave and related functions all have
empty bodies. The important function is ModuleRenamed, which the IDE calls when
the user saves the file under a new name. The declaration for the module notifier
class is shown below:

class ModuleNotifier : public NotifierObject, public IOTAModuleNotifier
{
 typedef NotifierObject inherited;
public:
 __fastcall ModuleNotifier(const _di_IOTAModule module);
 __fastcall ~ModuleNotifier();

// IOTAModuleNotifier
 virtual bool __fastcall CheckOverwrite();
 virtual void __fastcall ModuleRenamed(const AnsiString NewName);

// IOTANotifier
 void __fastcall AfterSave();
 void __fastcall BeforeSave();
 void __fastcall Destroyed();
 void __fastcall Modified();
protected:
 // IInterface
 virtual HRESULT __stdcall QueryInterface(const GUID&, void**);
 virtual ULONG __stdcall AddRef();
 virtual ULONG __stdcall Release();
private:
 _di_IOTAModule module;
 AnsiString name; // Remember the module’s old name.
 int index; // Notifier index.
};

One way to write a notifier is to have it register itself automatically in its constructor.
The destructor unregisters the notifier. In the case of a module notifier, the IDE calls
the Destroyed method when the user closes the file. In that case, the notifier must
unregister itself and release its reference to the module interface. The IDE releases its
reference to the notifier, which reduces its reference count to zero and frees the

IOTAProcessNotifier Creating or destroying threads and processes in the debugger

IOTAThreadNotifier Changing a thread’s state in the debugger

IOTAToolsFilterNotifier Invoking a tools filter

Table 58.3 Notifier interfaces (continued)

Interface Description

58-20 D e v e l o p e r ’ s G u i d e

N o t i f y i n g a w i z a r d o f I D E e v e n t s

object. Therefore, you need to write the destructor defensively: the notifier might
already be unregistered.

__fastcall ModuleNotifier::ModuleNotifier(const _di_IOTAModule module)
: index(-1), module(module)
{
 // Register this notifier.
 index = module->AddNotifier(this);
 // Remember the module’s old name.
 name = ChangeFileExt(ExtractFileName(module->FileName), "");
}

__fastcall ModuleNotifier::~ModuleNotifier()
{
 // Unregister the notifier if that hasn’t happened already.
 if (index >= 0)
 module->RemoveNotifier(index);
}

void __fastcall ModuleNotifier::Destroyed()
{
 // The module interface is being destroyed, so clean up the notifier.
 if (index >= 0)
 {
 // Unregister the notifier.
 module->RemoveNotifier(index);
 index = -1;
 }
 module = 0;
}

The IDE calls back to the notifier’s ModuleRenamed function when the user renames
the file. The function takes the new name as a parameter, which the wizard uses to
update the comment in the file. To edit the source buffer, the wizard uses an edit
position interface. The wizard finds the right position, double checks that it found the
right text, and replaces that text with the new name.

void __fastcall ModuleNotifier::ModuleRenamed(const AnsiString NewName)
{
 // Get the module name from the new file name.
 AnsiString ModuleName = ChangeFileExt(ExtractFileName(NewName), "");
 for (int i = 0; i < module->GetModuleFileCount(); ++i)
 {
 // Update every source editor buffer.
 _di_IOTAEditor editor = module->GetModuleFileEditor(i);
 _di_IOTAEditBuffer buffer;
 if (editor->Supports(buffer))
 {
 _di_IOTAEditPosition pos = buffer->GetEditPosition();
 // The module name is on line 2 of the comment.
 // Skip leading white space and copy the old module name,
 // to double check we have the right spot.
 pos->Move(2, 1);
 pos->MoveCursor(mmSkipWhite | mmSkipRight);
 AnsiString check = pos->RipText("", rfIncludeNumericChars | rfIncludeAlphaChars);

E x t e n d i n g t h e I D E 58-21

N o t i f y i n g a w i z a r d o f I D E e v e n t s

 if (check == name)
 {
 pos->Delete(check.Length()); // Delete the old name.
 pos->InsertText(ModuleName); // Insert the new name.
 name = ModuleName; // Remember the new name.
 }
 }
 }
}

What if the user inserts additional comments above the module name? In that case,
you need to use an edit line notifier to keep track of the line number where the
module name sits. To do this, use the IOTAEditLineNotifier and IOTAEditLineTracker
interfaces, which are described in the Online Help.

You need to be cautious when writing notifiers. You must make sure that no notifier
outlives its wizard. For example, if the user were to use the wizard to create a new
unit, then unload the wizard, there would still be a notifier attached to the unit. The
results would be unpredictable, but most likely, the IDE would crash. Thus, the
wizard needs to keep track of all of its notifiers, and must unregister every notifier
before the wizard is destroyed. On the other hand, if the user closes the file first, the
module notifier receives a Destroyed notification, which means the notifier must
unregister itself and release all references to the module. The notifier must remove
itself from the wizard’s master notifier list, too.

Below is the final version of the wizard’s Execute function. It creates the new module,
uses the module interface and creates a module notifier, then saves the module
notifier in an interface list (TInterfaceList).

void __fastcall DocWizard::Execute()
{
 _di_IOTAModuleServices svc;

BorlandIDEServices->Supports(svc);
 _di_IOTAModule module = svc->CreateModule(new Creator(creator_type));
 _di_IOTAModuleNotifier notifier = new ModuleNotifier(module);
 list->Add(notifier);
}

The wizard’s destructor iterates over the interface list and unregisters every notifier
in the list. Simply letting the interface list release the interfaces it holds is not
sufficient because the IDE also holds the same interfaces. You must tell the IDE to
release the notifier interfaces in order to free the notifier objects. In this case, the
destructor tricks the notifiers into thinking their modules have been destroyed. In a
more complicated situation, you might find it best to write a separate Unregister
function for the notifier class.

__fastcall DocWizard::~DocWizard()
{
 // Unregister all the notifiers in the list.
 for (int i = list->Count; --i >= 0;)
 {
 _di_IOTANotifier notifier;

list->Items[i]->Supports(notifier);
 // Pretend the associated object has been destroyed.

58-22 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a w i z a r d D L L

 // That convinces the notifier to clean itself up.
 notifier->Destroyed();
 list->Delete(i);
 }
 delete list;
 delete item;
}

The rest of the wizard manages the mundane details of registering the wizard,
installing menu items, and the like. The next section expands on the details of
registering a wizard by discussing how to do so in a DLL instead of a package.

Installing a wizard DLL
You can also install a wizard in a DLL. Make sure the wizard is using the dynamic
RTL and runtime packages. Add the designide package to the list of runtime
packages in the Project Options. The DLL must export an initialization function
whose name is INITWIZARD0001. When the IDE loads the DLL, it looks for the
special export name, and calls that function. You can use a module definition file to
export the function, or use a __declspec(dllexport) declaration. In the latter case, you
must also avoid name mangling, so declare the function as extern “C”.

The function must be of type TWizardInitProc. It takes a pointer to a registration
function as one of its arguments. It calls this function to register each wizard object,
the same way that a package wizard calls RegisterPackageWizard. The initialization
function should return true for success or false for failure. The following example
shows how to write the initialization function.

extern "C" bool __stdcall __declspec(dllexport) INITWIZARD0001(
 const _di_IBorlandIDEServices,
 TWizardRegisterProc RegisterProc,
 TWizardTerminateProc&)
{
 RegisterProc(new MyWizard());
 RegisterProc(new MyOtherWizard());
 return true;
}

If you use runtime packages, the first argument to the initialization function is
unimportant. (The first parameter is discussed in “Using a DLL without runtime
packages” on page 58-23) The final argument is a reference to a function pointer for a
termination procedure. You can use this function to perform global clean up.
Usually, you can ignore the last parameter because your wizard should clean up after
itself in its destructor.

To install the DLL, add an entry to the registry under the following key:

HKEY_CURRENT_USER\Software\Borland\C++Builder\6.0\Experts

The entry name should be a unique name, such as the wizard’s ID string. The value
should be the complete path to the DLL. The next time C++Builder starts, it checks
the registry and loads all the DLLs listed under the Experts key. The DLL remains
loaded while the IDE is running. When C++Builder terminates, it unloads the DLL.

E x t e n d i n g t h e I D E 58-23

I n s t a l l i n g a w i z a r d D L L

This slows down debugging, which is why design-time packages are preferable
during development. When you are ready to release the wizard, you can change
from a design-time package to a DLL.

If C++Builder complains that your wizard is the wrong version, that means it cannot
find the INITWIZARD0001 function. Double check that you spelled the name
correctly and that you exported it without name mangling.

The main advantage of using DLLs instead of packages is that you avoid the problem
of name collisions. You can include any forms you want or need in your DLL without
fear of having the same name as that used in other wizard. Another advantage of
DLLs is that you can design the DLL so it is not dependent on a specific version of
C++Builder, but to do that, you cannot use runtime packages at all, and that is the
subject of the next section.

Using a DLL without runtime packages

You don’t have to use runtime packages with a wizard DLL. The main advantage to
using runtime packages is that the DLL is smaller. Because the wizard is useful only
when loaded into the IDE, you know the C++Builder packages are available, so you
need to deploy only a small DLL. On the other hand, packages are version-specific. If
you want to deploy a wizard that works across multiple versions of C++Builder and
Delphi, you must not use runtime packages.

Because the BorlandIDEServices variable is defined only in the designide package, you
cannot use this variable. Instead, you must use the first parameter passed to the
initialization function, which happens to have the same value. Your wizard must
save it and use it to access all Tools API services, for example,

extern "C" bool __stdcall __declspec(dllexport) INITWIZARD0001(
 const _di_IBorlandIDEServices svc,
 TWizardRegisterProc reg,
 TWizardTerminateProc&)
{
 LocalIDEServices = svc;
 reg(new DocWizard(sUnit));
 reg(new DocWizard(sForm));
 return true;
}

AnsiString __fastcall DocWizard::GetDesigner()
{
 _di_IOTAServices svc;

LocalIDEServices->Supports(svc);
 return svc->GetActiveDesignerType();
}

The design of the Tools API ensures that the DLL will continue to function for newer
releases of C++Builder. All the old interfaces retain their GUIDs, and new interfaces
get new GUIDs. See “Interface version numbers” on page 58-11 for information on
how the Tools API uses version numbers and GUIDs.

58-24 D e v e l o p e r ’ s G u i d e

I n s t a l l i n g a w i z a r d D L L

To be version independent, the wizard cannot use any native (NTA) interfaces. This
limits what the wizard can do. The biggest limitation is that the wizard cannot access
the menu bar and other IDE objects. Most of the Tools API interfaces are OTA
interfaces, so you can still write useful and interesting wizards, no matter how the
wizard is installed.

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-1

A p p e n d i x

A
Appendix AANSI implementation-specific

standards
Certain aspects of the ANSI C standard are not explicitly defined. Instead, each
implementor of a C compiler is free to define these aspects individually. This chapter
describes how Borland has chosen to define these implementation-specific details.
The section numbers refer to the February 1990 C ANSI/ISO Standard.

Remember that there are differences between C and C++; this topic addresses C only.
For information on C++ compliance, refer to the Borland Community Web Site at
community.borland.com/cpp.

2.1.1.3 How to identify a diagnostic.
When the compiler runs with the correct combination of options, any messages it
issues beginning with the words Fatal, Error, or Warning are diagnostics in the sense
that ANSI specifies. The options needed to ensure this interpretation are as follows:

Table A.1 Options needed for ANSI compliance

Option Action

–A Enable only ANSI keywords.

–C– No nested comments allowed.

–i32 At most 32 significant characters in identifiers.

–p– Use C calling conventions.

–w– Turn off all warnings.

–wbei Turn on warning about inappropriate initializers.

–wbig Turn on warning about constants being too large.

–wcpt Turn on warning about nonportable pointer comparisons.

–wdcl Turn on warning about declarations without type or storage class.

–wdup Turn on warning about duplicate nonidentical macro definitions.

A-2 D e v e l o p e r ’ s G u i d e

Other options not specifically mentioned here can be set to whatever you want.

2.1.2.2.1 The semantics of the arguments to main.
When the program is run on DOS, argv[0] points to the program name.

The remaining argv strings point to each component of the DOS command-line
arguments. Whitespace separating arguments is removed, and each sequence of
contiguous non-whitespace characters is treated as a single argument. Quoted strings
are handled correctly (that is, as one string containing spaces).

2.1.2.3 What constitutes an interactive device.
An interactive device is any device that looks like the console.

2.2.1 The collation sequence of the execution character set.
The collation sequence for the execution character set uses the value of the character
in ASCII.

2.2.1 Members of the source and execution character sets.
The source and execution character sets are the extended ASCII set supported by the
IBM PC. Any character other than Ctrl+Z can appear in string literals, character
constants, or comments.

2.2.1.2 Multibyte characters.
C++Builder supports multibyte characters.

2.2.2 The direction of printing.
Printing is from left-to-right, the normal direction for the PC.

2.2.4.2 The number of bits in a character in the execution character set.
There are 8 bits per character in the execution character set.

3.1.2 The number of significant initial characters in identifiers.
The first 250 characters are significant, although you can use a command-line option
(–i) to change that number. Both internal and external identifiers use the same

–wext Turn on warning about variables declared both as external and as static.

–wfdt Turn on warning about function definitions using a typedef.

–wrpt Turn on warning about nonportable pointer conversion.

–wstu Turn on warning about undefined structures.

–wsus Turn on warning about suspicious pointer conversion.

–wucp Turn on warning about mixing pointers to signed and unsigned char.

–wvrt Turn on warning about void functions returning a value.

Table A.1 Options needed for ANSI compliance (continued)

Option Action

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-3

number of significant characters. (The number of significant characters in C++
identifiers is unlimited.)

3.1.2 Whether case distinctions are significant in external identifiers.
The compiler normally forces the linker to distinguish between uppercase and
lowercase. You can use a command-line compiler option (–lc–) to turn off case
sensitivity. In the IDE, you can also choose Project|Options|Advanced Linker and
check Case-insensitive link.

3.1.2.5 The representations and sets of values of the various types of integers.

All char types use one 8-bit byte for storage.

All short types use 2 bytes.

All int types use 4 bytes.

All long types use 4 bytes.

If alignment is requested (–a), all nonchar integer type objects will be aligned to even
byte boundaries. If the requested alignment is –a4, the result is 4-byte alignment.
Character types are never aligned.

3.1.2.5 The representations and sets of values of the various types of floating-point
numbers.
The IEEE floating-point formats as used by the Intel 8086 are used for all C++Builder
floating-point types. The float type uses 32-bit IEEE real format. The double type
uses 64-bit IEEE real format. The long double type uses 80-bit IEEE extended real
format.

3.1.3.4 The mapping between source and execution character sets.
Any characters in string literals or character constants remain unchanged in the
executing program. The source and execution character sets are the same.

Table A.2 Identifying diagnostics in C++

Type Minimum value Maximum value

signed char –128 127

unsigned char 0 255

signed short –32,768 32,767

unsigned short 0 65,535

signed int –2,147,483,648 –2,147,483,647

unsigned int 0 4,294,967,295

signed long –2,147,483,648 2,147,483,647

unsigned long 0 4,294,967,295

A-4 D e v e l o p e r ’ s G u i d e

3.1.3.4 The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or the extended character
set for a wide character constant.
Wide characters are supported.

3.1.3.4 The current locale used to convert multibyte characters into corresponding wide
characters for a wide character constant.
Wide character constants are recognized.

3.1.3.4 The value of an integer constant that contains more than one character, or a wide
character constant that contains more than one multibyte character.
Character constants can contain one or two characters. If two characters are included,
the first character occupies the low-order byte of the constant, and the second
character occupies the high-order byte.

3.2.1.2 The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot be
represented.
These conversions are performed by simply truncating the high-order bits. Signed
integers are stored as two’s complement values, so the resulting number is
interpreted as such a value. If the high-order bit of the smaller integer is nonzero, the
value is interpreted as a negative value; otherwise, it is positive.

3.2.1.3 The direction of truncation when an integral number is converted to a floating-
point number that cannot exactly represent the original value.
The integer value is rounded to the nearest representable value. Thus, for example,
the long value (231 –1) is converted to the float value 231. Ties are broken according to
the rules of IEEE standard arithmetic.

3.2.1.4 The direction of truncation or rounding when a floating-point number is converted
to a narrower floating-point number.
The value is rounded to the nearest representable value. Ties are broken according to
the rules of IEEE standard arithmetic.

3.3 The results of bitwise operations on signed integers.
The bitwise operators apply to signed integers as if they were their corresponding
unsigned types. The sign bit is treated as a normal data bit. The result is then
interpreted as a normal two’s complement signed integer.

3.3.2.3 What happens when a member of a union object is accessed using a member of a
different type.
The access is allowed and the different type member will access the bits stored there.
You’ll need a detailed understanding of the bit encodings of floating-point values to
understand how to access a floating-type member using a different member. If the

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-5

member stored is shorter than the member used to access the value, the excess bits
have the value they had before the short member was stored.

3.3.3.4 The type of integer required to hold the maximum size of an array.
For a normal array, the type is unsigned int, and for huge arrays the type is signed
long.

3.3.4 The result of casting a pointer to an integer or vice versa.
When converting between integers and pointers of the same size, no bits are
changed. When converting from a longer type to a shorter type, the high-order bits
are truncated. When converting from a shorter integer type to a longer pointer type,
the integer is first widened to an integer type the same size as the pointer type.

Thus signed integers will sign-extend to fill the new bytes. Similarly, smaller pointer
types being converted to larger integer types will first be widened to a pointer type as
wide as the integer type.

3.3.5 The sign of the remainder on integer division.
The sign of the remainder is negative when only one of the operands is negative. If
neither or both operands are negative, the remainder is positive.

3.3.6 The type of integer required to hold the difference between two pointers to elements
of the same array, ptrdiff_t.
The type is signed int.

3.3.7 The result of a right shift of a negative signed integral type.
A negative signed value is sign extended when right shifted.

3.5.1 The extent to which objects can actually be placed in registers by using the register
storage-class specifier.
Objects declared with any one, two, or four-byte integer or pointer types can be
placed in registers. At least two and as many as seven registers are available. The
number of registers actually used depends on what registers are needed for
temporary values in the function.

3.5.2.1 Whether a plain int bit-field is treated as a signed int or as an unsigned int bit field.
Plain int bit fields are treated as signed int bit fields.

3.5.2.1 The order of allocation of bit fields within an int.
Bit fields are allocated from the low-order bit position to the high-order.

3.5.2.1 The padding and alignment of members of structures.
By default, no padding is used in structures. If you use the word alignment option
(–a), structures are padded to even size, and any members that do not have character
or character array type are aligned to an even multiple offset.

A-6 D e v e l o p e r ’ s G u i d e

3.5.2.1 Whether a bit-field can straddle a storage-unit boundary.
When alignment (–a) is not requested, bit fields can straddle dword boundaries, but
are never stored in more than four adjacent bytes.

3.5.2.2 The integer type chosen to represent the values of an enumeration type.
Store all enumerators as full ints. Store the enumerations in a long or unsigned long
if the values don’t fit into an int. This is the default behavior as specified by –b
compiler option.

The –b- behavior specifies that enumerations should be stored in the smallest integer
type that can represent the values. This includes all integral types, for example,
signed char, unsigned char, signed short, unsigned short, signed int, unsigned int,
signed long, and unsigned long.

For C++ compliance, –b- must be specified because it is not correct to store all
enumerations as ints for C++.

3.5.3 What constitutes an access to an object that has volatile-qualified type.
Any reference to a volatile object will access the object. Whether accessing adjacent
memory locations will also access an object depends on how the memory is
constructed in the hardware. For special device memory, such as video display
memory, it depends on how the device is constructed. For normal PC memory,
volatile objects are used only for memory that might be accessed by asynchronous
interrupts, so accessing adjacent objects has no effect.

3.5.4 The maximum number of declarators that can modify an arithmetic, structure, or
union type.
There is no specific limit on the number of declarators. The number of declarators
allowed is fairly large, but when nested deeply within a set of blocks in a function,
the number of declarators will be reduced. The number allowed at file level is at
least 50.

3.6.4.2 The maximum number of case values in a switch statement.
There is no specific limit on the number of cases in a switch. As long as there is
enough memory to hold the case information, the compiler will accept them.

3.8.1 Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion matches the value of the same character constant in
the execution character set. Whether such a character constant can have a negative
value.
All character constants, even constants in conditional directives, use the same
character set (execution). Single-character character constants will be negative if the
character type is signed (default and –K not requested).

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-7

3.8.2 The method for locating includable source files.
For include file names in angle brackets, if include directories are given in the
command line, then the file is searched for in each of the include directories. Include
directories are searched in this order:

1 In directories specified on the command line.
2 In directories specified in BCC32.CFG.
3 If no include directories are specified, search only the current directory.

3.8.2 The support for quoted names for includable source files.
For quoted includable file names, the file is searched in the following order:

1 In the same directory of the file that contains the #include statement.
2 In the directories of files that include (#include) that file.
3 The current directory.
4 Along the path specified by the /I compiler option.
5 Along paths specified by the INCLUDE environment variable.

3.8.2 The mapping of source file name character sequences.
Backslashes in include file names are treated as distinct characters, not as escape
characters. Case differences are ignored for letters.

3.8.8 The definitions for __DATE__ and __TIME__ when they are unavailable.
The date and time are always available and will use the operating system date and
time.

4.1.1 The decimal point character.
The decimal point character is a period (.).

4.1.5 The type of the sizeof operator, size_t.
The type size_t is unsigned.

4.1.5 The null pointer constant to which the macro NULL expands.

NULL expands to an int zero or a long zero. Both are 32-bit signed numbers.

4.2 The diagnostic printed by and the termination behavior of the assert function.
The diagnostic message printed is “Assertion failed: expression, file filename, line nn”,
where expression is the asserted expression that failed, filename is the source file name,
and nn is the line number where the assertion took place.

Abort is called immediately after the assertion message is displayed.

4.3 The implementation-defined aspects of character testing and case-mapping
functions.
None, other than what is mentioned in 4.3.1.

A-8 D e v e l o p e r ’ s G u i d e

4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint and
isupper functions.
First 128 ASCII characters for the default C locale. Otherwise, all 256 characters.

4.5.1 The values returned by the mathematics functions on domain errors.
An IEEE NAN (not a number).

4.5.1 Whether the mathematics functions set the integer expression errno to the value of
the macro ERANGE on underflow range errors.
No, only for the other errors—domain, singularity, overflow, and total loss of
precision.

4.5.6.4 Whether a domain error occurs or zero is returned when the fmod function has a
second argument of zero.
No; fmod(x,0) returns 0.

4.7.1.1 The set of signals for the signal function.
SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, and SIGTERM.

4.7.1.1 The semantics for each signal recognized by the signal function.
See the description of signal.

4.7.1.1 The default handling and the handling at program startup for each signal
recognized by the signal function.
See the description of signal.

4.7.1.1 If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a
signal handler, the blocking of the signal that is performed.
The equivalent of signal(sig, SIG_DFL) is always executed.

4.7.1.1 Whether the default handling is reset if the SIGILL signal is received by a handler
specified to the signal function.
No, it is not.

4.9.2 Whether the last line of a text stream requires a terminating newline character.
No, none is required.

4.9.2 Whether space characters that are written out to a text stream immediately before a
newline character appear when read in.
Yes, they do.

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-9

4.9.2 The number of null characters that may be appended to data written to a binary
stream.
None.

4.9.3 Whether the file position indicator of an append mode stream is initially positioned
at the beginning or end of the file.
The file position indicator of an append-mode stream is initially placed at the
beginning of the file. It is reset to the end of the file before each write.

4.9.3 Whether a write on a text stream causes the associated file to be truncated beyond
that point.
A write of 0 bytes might or might not truncate the file, depending on how the file is
buffered. It is safest to classify a zero-length write as having indeterminate behavior.

4.9.3 The characteristics of file buffering.
Files can be fully buffered, line buffered, or unbuffered. If a file is buffered, a default
buffer of 512 bytes is created upon opening the file.

4.9.3 Whether a zero-length file actually exists.
Yes, it does.

4.9.3 Whether the same file can be open multiple times.
Yes, it can.

4.9.4.1 The effect of the remove function on an open file.
No special checking for an already open file is performed; the responsibility is left up
to the programmer.

4.9.4.2 The effect if a file with the new name exists prior to a call to rename.
Rename returns a –1 and errno is set to EEXIST.

4.9.6.1 The output for %p conversion in fprintf.
The output is eight hex digits (XXXXXXXX), zero padded, uppercase letters (the same
as %08lX).

4.9.6.2 The input for %p conversion in fscanf.
See 4.9.6.1.

4.9.6.2 The interpretation of a –(hyphen) character that is neither the first nor the last
character in the scanlist for a %[conversion in fscanf.
See the description of scanf.

A-10 D e v e l o p e r ’ s G u i d e

4.9.9.1 The value the macro errno is set to by the fgetpos or ftell function on failure.
EBADF Bad file number.

4.9.10.4 The messages generated by perror.

4.10.3 The behavior of calloc, malloc, or realloc if the size requested is zero.
calloc and malloc will ignore the request and return 0. Realloc will free the block.

4.10.4.1 The behavior of the abort function with regard to open and temporary files.
The file buffers are not flushed and the files are not closed.

4.10.4.3 The status returned by exit if the value of the argument is other than zero,
EXIT_SUCCESS, or EXIT_FAILURE.
Nothing special. The status is returned exactly as it is passed. The status is a
represented as a signed char.

Messages generated in Win32

Arg list too big Math argument

Attempted to remove current directory Memory arena trashed

Bad address Name too long

Bad file number No child processes

Block device required No more files

Broken pipe No space left on device

Cross-device link No such device

Error 0 No such device or address

Exec format error No such file or directory

Executable file in use No such process

File already exists Not a directory

File too large Not enough memory

Illegal seek Not same device

Inappropriate I/O control operation Operation not permitted

Input/output error Path not found

Interrupted function call Permission denied

Invalid access code Possible deadlock

Invalid argument Read-only file system

Invalid data Resource busy

Invalid environment Resource temporarily unavailable

Invalid format Result too large

Invalid function number Too many links

Invalid memory block address Too many open files

Is a directory

A N S I i m p l e m e n t a t i o n - s p e c i f i c s t a n d a r d s A-11

4.10.4.4 The set of environment names and the method for altering the environment list
used by getenv.
The environment strings are those defined in the operating system with the SET
command. putenv can be used to change the strings for the duration of the current
program, but the SET command must be used to change an environment string
permanently.

4.10.4.5 The contents and mode of execution of the string by the system function.
The string is interpreted as an operating system command. COMSPEC or CMD.EXE
is used, and the argument string is passed as a command to execute. Any operating
system built-in command, as well as batch files and executable programs, can be
executed.

4.11.6.2 The contents of the error message strings returned by strerror.
See 4.9.10.4.

4.12.1 The local time zone and Daylight Saving Time.
Defined as local PC time and date.

4.12.2.1 The era for clock.
Represented as clock ticks, with the origin being the beginning of the program
execution.

4.12.3.5 The formats for date and time.
C++Builder implements ANSI formats.

A-12 D e v e l o p e r ’ s G u i d e

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-1

A p p e n d i x

B
Appendix BWebSnap server-side scripting

reference
This appendix explains the mechanics of how script is used by WebSnap adapters to
generate dynamic HTML pages in WebSnap Web server applications. It is intended
for developers who use page producers instead of adapter page producers in their
Web page modules. Adapter page producers handle script generation automatically;
regular page producers must have script in their page templates added manually.
The information contained here will help you write your own script in your page
templates.

This appendix should also be of interest to adapter page producer users who want to
better understand the output of the adapter page producer. Script manipulation is an
advanced topic, however. You don’t need to understand how to generate script to
write basic WebSnap applications.

There are three sections to this appendix. The first section explains the different
object types which can be accessed in script. The second section discusses global
objects defined in WebSnap applications. The third section contains JScript examples
which show how script can be used in HTML page templates to extract information
from your Web server application.

This appendix is meant to be an API reference for objects’ script interfaces. Object
property descriptions include the property name, the type of property (such as text
or Boolean), and whether the property can be read or written. Method descriptions
start with the method name and calling syntax.

Object types
Table B.1 lists general scriptable object types. These types are commonly found as
properties of objects like the global objects. Not all scriptable object types are
tabulated here, just the object types whose instances can have different names. For

B-2 D e v e l o p e r ’ s G u i d e

O b j e c t t y p e s

example, there is an application object type. Since there is only one application object
type instantiated in any application, the application type is described as the
Application object in the global objects section.

Adapter type

Defines the properties and methods of an adapter. You can access adapters by name
as a property of a module (e.g. ModuleName.Adapter).

Adapters contain field components and action components that represent data items
and commands, respectively. Server-side script statements access the value of
adapter fields and the parameters of adapter actions in order to build HTML forms
and tables.

Properties
Actions: Enumerator

See also: Fields property of Adapter type (below), Example 8 (page B-23)

Enumerates the action objects. Use the Actions property to loop through the
actions of an adapter.

Table B.1 WebSnap object types

Object type Description

Adapter type (page B-2) Defines the properties and methods of an adapter. Adapters can
be accessed by name as a property of a Module.

AdapterAction type
(page B-4)

Defines the properties and methods of an adapter action. Actions
are referenced by name as a property of an adapter.

AdapterErrors type
(page B-6)

Defines the Errors property of an adapter. The Errors property is
used to list errors that occurred when executing an action or
generating a page.

AdapterField type (page B-6) Defines the properties and methods of an adapter field. Fields are
referenced by name as a property of an Adapter.

AdapterFieldValues type
(page B-10)

Defines the properties and methods of an adapter field's Values
property.

AdapterFieldValuesList type
(page B-10)

Defines the property and methods of an adapter field's
ValuesList property.

AdapterHiddenFields type
(page B-11)

Defines the HiddenFields and HiddenRecordFields property of
an adapter.

AdapterImage type
(page B-12)

Defines the Image property of adapter fields and adapter actions.

Module type (page B-12) Defines the properties of a Module. A Module can be accessed by
name as a property of the Modules variable.

Page type (page B-12) Defines the properties of a page. A page can be accessed by name
as a property of the Pages object. The page being generated can
be accessed using the Page object.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-3

O b j e c t t y p e s

CanModify: Boolean, read

See also: CanView property of Adapter type (below) and AdapterField type
(page B-6)

Indicates whether the end user has permission to modify fields of this adapter.
Use the CanModify property to dynamically generate HTML that is sensitive to
the end user's rights. For example, a page can include an <input> element if
CanModify is True or a <p> if CanModify is False.

CanView: Boolean, read

See also: CanModify of Adapter type (above) and AdapterField type (page B-6)

Indicates whether the end user has permission to view fields of this adapter. Use
the CanModify property to dynamically generate HTML that is sensitive to the end
user's rights.

ClassName_: text, read

See also: Name_ (below)

Identifies the class name of the adapter component.

Errors: AdapterErrors, read

See also: AdapterErrors type (page B-6), Example 7 (page B-22)

Enumerates errors detected while processing an HTTP request. Adapters capture
errors that occur while generating an HTML page or executing an adapter action.
Use the Errors property to enumerate the errors and display error messages on an
HTML page.

Fields: Enumerator

See also: Actions

Enumerates the field objects. Use the Fields property to loop through the fields of
an adapter.

HiddenFields: AdapterHiddenFields

See also: HiddenRecordFields, AdapterHiddenFields type (page B-11), Example 10
(page B-24), Example 22 (page B-37)

Defines the hidden input fields that pass adapter state information. One example
of state information is a TDataSetAdapter’s mode. Edit and Insert are two possible
mode values. When TDataSetAdapter is used to generate an HTML form, the
HiddenFields property defines a hidden field for the mode. When the HTML form
is submitted, the HTTP request contains this hidden field value. When executing
an action, the mode value is extracted from the HTTP request. If the mode is
Insert, a new row is inserted into the dataset. If the mode is Edit, a dataset row is
updated.

HiddenRecordFields: AdapterHiddenFields

See also: HiddenFields, AdapterHiddenFields type (page B-11), Example 10
(page B-24), Example 22 (page B-37)

B-4 D e v e l o p e r ’ s G u i d e

O b j e c t t y p e s

Defines the hidden input fields that pass state information needed by each row or
record in the HTML form. For example, when TDataSetAdapter is used to generate
an HTML form, the HiddenRecordFields property will define a hidden field that
identifies a key value for each row in an HTML table. When the HTML form is
submitted, the HTTP request will contain these hidden field values. When
executing an action that updates multiple rows in a dataset, TDataSetAdapter uses
these key values to locate the rows to update.

Mode: text, read/write

See also: Example 10 (page B-24)

Sets or gets the adapter’s mode.

Some adapters support a mode. For example, the TDataSetAdapter supports Edit,
Insert, Browse, and Query modes. The mode affects the behavior of the adapter.
When the TDataSetAdapter is in Edit mode, a submitted form updates a row in a
table. When the TDataSetAdapter is in Insert mode, a submitted form inserts a row
in a table.

Name_: text, read

Identifies the variable name of the adapter.

Records: Enumerator, read

See also: Example 9 (page B-23)

Enumerates the records of the adapter. Use the Records property to loop through
the adapter records to generate an HTML table.

AdapterAction type

See also: Adapter type (page B-2), AdapterField type (page B-6)

The AdapterAction type defines the properties and methods of an adapter action.

Properties
Array: Enumerator

See also: Example 11 (page B-26)

Enumerates the commands of an adapter action. Use the Array property to loop
through the commands. Array will be Null if the action does not support multiple
commands.

TAdapterGotoPageAction is an example of an action that has multiple commands.
This action has a command for each page defined by the parent adapter. The Array
property is used to generate a series of hyperlinks so that the end user can click a
hyperlink to jump to a page.

AsFieldValue: text, read

See also: AsHREF, Example 10 (page B-24), Example 21 (page B-36)

Provides a text value that can be submitted in a hidden field.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-5

O b j e c t t y p e s

AsFieldValue identifies the name of the action and the action's parameters. Put this
value in a hidden field called __act. When the HTML form is submitted, the
adapter dispatcher extracts the value from the HTTP request and uses the value to
locate and call the adapter action.

AsHREF: text, read

See also: AsFieldValue, Example 11 (page B-26)

Provides a text value that can be used as the href attribute value in an <a> tag.

AsHREF identifies the name of the action and the action's parameters. Put this
value in an anchor tag to submit a request to execute this action. Note that an
anchor tag on an HTML form will not submit the form. If the action makes use of
submitted form values then use a hidden form field and AsFieldValue to identify
the action.

CanExecute: Boolean, read

Indicates whether the end user has rights to execute this action.

DisplayLabel: text, read

See also: Example 21 (page B-36)

Suggests an HTML display label for this adapter action.

DisplayStyle: string, read

See also: Example 21 (page B-36)

Suggests an HTML display style for this action.

Server-side script may use DisplayStyle to determine how to generate HTML. The
built in adapters may return one of the following display styles:

Enabled: Boolean, read

See also: Example 21 (page B-36)

Indicates whether this action should be enabled on the HTML page.

Name: string, read

Provides the variable name of this adapter action

Visible: Boolean, read

Indicates whether this adapter field should be visible on the HTML page.

Value Meaning

'' Undefined display style

'Button' Display as <input type=”submit”>

 'Anchor' Use <a>

B-6 D e v e l o p e r ’ s G u i d e

O b j e c t t y p e s

Methods
LinkToPage(PageSuccess, PageFail): AdapterAction, read

See also: Example 10 (page B-24), Example 11 (page B-26), Example 21 (page B-36),
Page object, AdapterAction type (page B-4)

Use LinkToPage to specify pages to display after the action executes. The first
parameter is the name of the page to display if the action executes successfully.
The second parameter is the name of the page to display if errors occur during
execution.

AdapterErrors type

See also: Adapter type’s Errors property (page B-2)

The AdapterErrors type defines the properties of an adapter's Errors property.

Properties
Field: AdapterField, read

See also: AdapterField type (page B-6)

Identifies the adapter field that caused an error.

This property is Null if the error is not associated with a particular adapter field.

ID: integer, read

Provides the numeric identifier for an error.

This property is zero if an ID is not defined.

Message: text, read

See also: Example 7 (page B-22)

Provides a text description of the error.

AdapterField type

See also: Adapter type (page B-2), AdapterAction type (page B-4)

The AdapterField type defines the properties and methods of an adapter field.

Properties
CanModify: Boolean, read

See also: CanView property of AdapterField type (below) and Adapter type
(page B-2)

Indicates whether the end user has rights to modify this field's value.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-7

O b j e c t t y p e s

CanView: Boolean, read

See also: CanModify property of AdapterField type (above) and Adapter type
(page B-2)

Indicates whether the end user has rights to view this field's value.

DisplayLabel: text, read

Suggests an HTML display label for this adapter field.

DisplayStyle: text, read

See also: InputStyle (below), ViewMode (below), Example 17 (page B-33)

DisplayStyle suggests how to display a read-only representation of a field's value.

Server-side script may use DisplayStyle to determine how to generate HTML. An
adapter field may return one of the following display styles:

The ViewMode property indicates whether to use InputStyle or DisplayStyle to
generate HTML.

DisplayText: text, read

See also: EditText (below), Example 9 (page B-23)

Provides text to use when displaying the adapter field's value for reading only.
The value of DisplayText may include numeric formatting.

DisplayWidth: integer, read

See also: MaxLength (below)

Suggests a display width, in characters, for an adapter field's value.

-1 is returned if the display width is undefined.

EditText: text, read

See also: DisplayText (above), Example 10 (page B-24)

Provides text to use when defining an HTML input for this adapter field. The
value of EditText is typically unformatted.

Image: AdapterImage type, read

See also: AdapterImage type (page B-12), Example 12 (page B-27)

Provides an object that defines an image for this adapter field.

Null is returned If the adapter field does not provide an image.

Value HTML display style

'' Undefined.

'Text' Use <p>.

'Image' Use . The Image property of the field defines the src property.

'List' Use . Enumerate the Values property to generate each item.

B-8 D e v e l o p e r ’ s G u i d e

O b j e c t t y p e s

InputStyle: text, read

See also: DisplayStyle (above), ViewMode (below), Example 17 (page B-33)

Suggests an HTML input style for this field.

Server-side script may use the InputStyle to determine how to generate an HTML
element. An adapter field may return one of the following input styles:

The ViewMode property indicates whether to use the InputStyle or DisplayStyle to
generate HTML.

InputName: text, read

See also: Example 10 (page B-24)

Provides a name for an HTML input element to edit this adapter field.

Use InputName when generating an HTML <input>, <select>, or <textarea>
element so that the adapter component will be able to associate the name/value
pairs in the HTTP request with adapter fields.

MaxLength: integer, read

See also: DisplayWidth (above)

Indicates the maximum length in characters that can be entered into this field.

MaxLength is -1 if the maximum length is not defined.

Name: text, read

Returns the variable name of the adapter field.

Required: Boolean, read

Indicates whether a value for this adapter field is required when submitting a
form.

Value Meaning

'' Undefined input style.

'TextInput' Use <input type=”text”>.

'PasswordInput' Use <input type=”password”>.

'Select' Use <select>. Enumerate the ValuesList property to generate each
<option> element.

'SelectMultiple' Use <select multiple>. Enumerate the ValuesList property to
generate each <option> element.

'Radio' Enumerate the ValuesList property to generate one or more <input
type=”radio”>.

'CheckBox' Enumerate the ValuesList property to generate one or more <input
type=”checkbox”>.

'TextArea' Use <textarea>.

'File' Use <input type=”file”>.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-9

O b j e c t t y p e s

Value: variant, read

See also: Values (below), DisplayText (above), EditText (above)

Returns a value that can be used in calculations. For example, use Value when
adding two adapter field values together.

Values: AdapterFieldValues, read

See also: ValuesList (below), AdapterFieldValues type (page B-10), Value (above),
Example 13 (page B-28)

Returns a list of the field’s values. The Values property is Null unless this adapter
field supports multiple values. A multiple value field would be used, for example,
to allow the end user to select multiple values in a select list.

ValuesList: AdapterFieldValuesList, read

See also: Values (above), AdapterFieldValuesList type (page B-10), Example 13
(page B-28)

Provides a list of choices for this adapter field. Use ValuesList when generating an
HTML select list, check box group, or radio button group. Each item in ValuesList
has a value and may have a name.

Visible: Boolean, read

Indicates whether this adapter field should be visible on the HTML page.

ViewMode: text, read

See also: DisplayStyle (above), InputStyle (above), Example 17 (page B-33)

Suggests how to display this adapter field value on an HTML page.

An adapter field may return one of the following view modes:

The ViewMode property indicates whether to use the InputStyle or DisplayStyle to
generate HTML.

Methods
IsEqual(Value): Boolean

See also: Example 16 (page B-32)

Call this function to compare a variable with an adapter field's value.

Value View mode

'' Undefined.

'Input' Generate editable HTML form elements using <input>, <textarea>,
or <select>.

'Display' Generate read-only HTML using <p>, , or .

B-10 D e v e l o p e r ’ s G u i d e

O b j e c t t y p e s

AdapterFieldValues type

See also: AdapterField type’s Values property (page B-6)

Provides a list of the field’s values. Multiple value adapter fields support this
property. A multiple value field would be used, for example, to allow the end user to
select multiple values in a select list.

Properties
Records: Enumerator, read

See also: Example 15 (page B-30)

Enumerates the records in the list of values.

Value: variant, read

See also: ValueField (below)

Returns the value of the current enumeration item.

ValueField: AdapterField, read

See also: AdapterField type (page B-6), Example 15 (page B-30)

Returns an adapter field for the current enumeration item. Use ValueField, for
example, to get the DisplayText for the current enumeration item.

Methods
HasValue(Value): Boolean

See also: Example 14 (page B-29)

Indicates whether a given value is in the list of field values. This method is to
determine whether to select an item in an HTML select list or check an item in a
group of check boxes.

AdapterFieldValuesList type

See also: Adapter type (page B-2)

Provides a list of possible values for this adapter field.

Use ValuesList when generating an HTML select list, check box group, or radio
button group. Each item in ValuesList contains a value and may contain a name.

Properties
Image: AdapterImage, read

Returns the image of the current enumeration item, or Null if the item doesn’t
have an image.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-11

O b j e c t t y p e s

Records: Enumerator, read

Enumerates the records in the list of values.

Value: variant, read

Returns the value of the current enumeration item.

ValueField: AdapterField, read

See also: AdapterField type (page B-6), Example 15 (page B-30)

Returns an adapter field for the current enumeration item. Use ValueField, for
example, to get the DisplayText for the current enumeration item.

ValueName: text, read

Returns the text name of the current item. ValueName is blank if the value does not
have a name.

Methods
ImageOfValue(Value): AdapterImage

Looks up the image associated with this value. Returns Null if there is no image.

NameOfValue(Value): text

Looks up the name associated with this value. Returns a blank string if the value is
not found or if the value does not have a name.

AdapterHiddenFields type

See also: Adapter type’s HiddenFields andHiddenRecordFields properties (page B-2)

Provides access to the hidden field names and values that an adapter requires on
HTML forms used to submit changes.

Properties
Name: text, read

Returns the name of the hidden field being enumerated.

Value: text, read

Returns the string value of the hidden field being enumerated.

Methods
WriteFields(Response)

See also: Example 10 (page B-24), Example 22 (page B-37)

Writes hidden field names and values using <input type=”hidden”>.

Call this method to write all of the HTML hidden fields to an HTML form.

B-12 D e v e l o p e r ’ s G u i d e

O b j e c t t y p e s

AdapterImage type

See also: AdapterField type (page B-12), AdapterAction type (page B-4)

Represents an image that is associated with an action or a field.

Properties
AsHREF: text, read

See also: Example 11 (page B-26), Example 12 (page B-27)

Provides a URL that can be used to define an HTML element.

Module type

See also: Modules object (page B-16)

Adapter components can be referenced by name as properties of a module. Also use
a module to enumerate the scriptable objects (usually adapters) of a module.

Properties
Name_: text, read

See also: Example 20 (page B-35)

Identifies the variable name of the module. This is the name used to access the
module as a property of the Modules variable.

ClassName_: text, read

See also: Example 20 (page B-35)

Identifies the class name of the module.

Objects: Enumerator

See also: Example 20 (page B-35)

Use Objects to enumerate the scriptable objects (typically adapters) within a
module.

Page type

See also: Page object (page B-16), Example 20 (page B-35)

Defines properties and methods of pages.

Properties
CanView: Boolean, read

Indicates whether the end user has rights to view this page.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-13

O b j e c t t y p e s

A page registers access rights. CanView compares the rights registered by the page
with the rights granted to the end user.

DefaultAction: AdapterAction type, read

See also: Example 6 (page B-22)

Identifies the default adapter action associated with this page.

A default action is typically used when parameters must be passed to a page.
DefaultAction may be Null.

HREF: text, read

See also: Example 5 (page B-21)

Provides a URL that can be used to generate a hyperlink to this page using the <a>
tag.

LoginRequired: Boolean, read

Indicates whether the end user must login before accessing this page.

A page registers a LoginRequired flag. If True then the end user will not be
permitted to access this page unless logged in.

Name: text, read

See also: Example 5 (page B-21)

Provides the name of the registered page.

If the page is published, the PageDispatcher will generate the page when the page’s
name is a suffix of the HTTP request’s path info.

Published: Boolean, read

See also: Example 5 (page B-21)

Indicates whether the end user can access this page by specifying the page name
as a suffix to the URL.

A page registers a published flag. The page dispatcher will automatically dispatch
a published page. Typically the Published property is used while generating a
menu with hyperlinks to pages. Pages that have the Published set to False are not
listed in the menu.

Title: text, read

See also: Example 5 (page B-21), Example 18 (page B-34)

Provides the title of the page.

The title is typically displayed to the user.

B-14 D e v e l o p e r ’ s G u i d e

G l o b a l o b j e c t s

Global objects
Global objects can be referenced with server-side script; you can make global object
references in script which resemble the object references in your source code. For
example,

<%= Application.Title %>

displays the application’s title in a Web page.

The global script objects are tabulated below:

Application object

See also: Adapter type (page B-2)

The Application object provides access to information about the application.

Use the Application object to access fields and actions of the application adapter,
such as the Title field. The Application object is an Adapter, so it can be customized
with additional fields and actions. Fields and actions that have been added to the
application adapter can be accessed by name as properties of the Application object.

Properties
Designing: Boolean, read

See also: Example 1 (page B-20)

Indicates whether the Web application is being designed in the IDE.

Table B.2 WebSnap global objects

Object Description

Application object (page B-14) Accesses fields and actions of the application adapter, such as
the Title field.

EndUser object (page B-15) Accesses fields and actions of the end user adapter, such as the
DisplayName for the end user, the Login action, and Logout
action.

Modules object (page B-16) References a data module or page module by name. The
Modules variables can also be used to enumerate the modules
of the application.

Page object (page B-16) Accesses the properties of the page being generated such as the
page Title.

Pages object (page B-16) References a registered page by name. The Pages variables can
also be used to enumerate the registered pages of the
application.

Producer object (page B-17) Writes HTML content that may include transparent tags.

Request object (page B-17) Accesses the properties and methods of the HTTP request.

Response object (page B-18) Writes HTML content to the HTTP response.

Session object (page B-18) Accesses the properties of the end user's session.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-15

G l o b a l o b j e c t s

Use the Designing property to conditionally generate HTML that must be different
in design mode than when the Web application is running.

ModulePath: text, read

See also: QualifyFileName method

Identifies the location of the web application executable.

Use the ModulePath to construct file names that are in the same directory as the
executable.

ModuleFileName: text, read

See also: QualifyFileName method

Identifies the fully qualified file name of the executable.

Title: text, read

See also: Example 18 (page B-34)

Provides the title of the application.

The Title property has the value of the TApplicationAdapter’s Title property.
Typically this value is displayed at the top of HTML pages.

Methods
QualifyFileName(FileName): text

See also: Example 1 (page B-20)

Converts a relative file name or a directory reference to an absolute reference.

QualifyFileName uses the directory location of the Web application executable to
qualify a file name that is not fully qualified. The method returns a fully qualified
file name. If the FileName parameter is fully qualified, the file name is returned
unchanged. In design mode, the FileName parameter is qualified with the
directory location of the project file.

EndUser object

See also: Adapter type (page B-2)

Provides access to information about the current end user.

Use EndUser to access fields and actions of the end user adapter, such as the
DisplayName for the end user. You can access fields and actions that have been added
to the end user adapter by name as properties of the EndUser object.

Properties
DisplayName: text, read

See also: Example 19 (page B-35)

Provides the name of the end user.

B-16 D e v e l o p e r ’ s G u i d e

G l o b a l o b j e c t s

LoggedIn: Boolean, read

See also: Example 19 (page B-35)

Indicates whether the end user is logged in.

LoginFormAction: AdapterAction type, read

See also: Example 19 (page B-35), AdapterAction type (page B-4)

Provides the adapter action used to log in a user.

LogoutAction: AdapterAction type, read

See also: Example 19 (page B-35), AdapterAction type (page B-4)

Provides the adapter action used to log out a user.

Modules object

See also: Example 2 (page B-20), Example 20 (page B-35)

The Modules object provides access to all modules that have been instantiated or
activated to service the current HTTP request.

To references a particular module use the module's name as a property of the
Modules variable. To enumerate all modules within the application, create an
enumerator using the Modules object.

Page object

See also: Example 5 (page B-21), Page type (page B-12)

The Page object provides access to the properties of the page being generated.

See Page type for a description of the properties and methods of the Page object.

Pages object

See also: Example 5 (page B-21)

The Pages object provides access to all pages registered by the application.

To reference a particular page use the page's name as a property of the Pages
variable. To enumerate all pages within the application, create an enumerator using
the Pages object.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-17

G l o b a l o b j e c t s

Producer object

See also: Response object (page B-18)

Use the Producer object to write text containing transparent tags. The tags will be
translated by the page producer and then written to the HTTP response. If the text
does not contain transparent tags, use the Response object for better performance.

Properties
Content: text, read/write

Provides access to the content portion of the HTTP response.

Use Content to read or write the entire content portion of the HTTP response.
Setting Content translates transparent tags. If you are not using transparent tags,
set Response.Content instead for better performance.

Methods
Write(Value)

Appends to the content portion of the HTTP request with support for transparent
tags.

Use the Write method to append to the content portion of the HTTP request’s
content. Write translates transparent tags such as

Write('Translate this: <#MyTag>')

If you are not using transparent tags, use Response.Write for better performance.

Request object

Provides access to the HTTP request.

Use properties of the Response object to access information about the HTTP request.

Properties
Host: text, read

Reports the value of the Host header of the HTTP request.

Host is the same as TWebRequest’s Host property.

PathInfo: text, read

Contains the PathInfo portion of the URL.

PathInfo is the same as TWebRequest’s InternalPathInfo property.

ScriptName: text, read

Contains the script name portion of the URL, which specifies the name of a Web
server application.

ScriptName is the same as TWebRequest’s InternalScriptName property.

B-18 D e v e l o p e r ’ s G u i d e

G l o b a l o b j e c t s

Response object

See also: Producer object (page B-17)

Provides access to the HTTP response. Use the Response object to write to the content
portion of the HTTP response. If you are using transparent tags, use the Producer
object instead of the Response object.

Properties
Content: text, read/write

Provides access to the content portion of the HTTP response.

Use Content to read or write the entire content portion of the HTTP response.

Methods
Write(Value)

See also: Example 5 (page B-21)

Appends Value to the content portion of the HTTP request.

Use the Write method to append Value to the HTTP request’s content. Write does
not translate transparent tags.

Use the Producer object’s Write method to write a string containing one or more
transparent tags.

Session object

The Session object provides access to the session ID and values.

A session is used to keep track of information about the end user for a short period of
time.

Properties
SessionID.Value: text, read/write

Provides access to the ID of the current end user’s session.

Values(Name): variant, read

Provides access to values stored in current end user’s session.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-19

J S c r i p t E x a m p l e s

JScript Examples
The following JScript examples demonstrate how many of the server-side scripting
properties and methods are used.

Table B.3 JScript examples of server-side scripting

Example Description

Example 1 (page B-20) Uses the Application object’s QualifyFilename method to generate a
relative path reference to an image.

Example 2 (page B-20) Declares a variable that references a module.

Example 3 (page B-20) Enumerates the modules in the web application and displays their
names in an HTML table.

Example 4 (page B-21) Declares a variable that references a registered page.

Example 5 (page B-21) Enumerates registered pages to generate a menu of hyperlinks to
published pages.

Example 6 (page B-22) Enumerates registered pages to generate a menu of hyperlinks to the
published pages' default actions.

Example 7 (page B-22) Writes a list of errors detected by an adapter.

Example 8 (page B-23) Enumerates all of the action objects of an adapter to display action
object property values in an HTML table.

Example 9 (page B-23) Enumerates the records of an adapter to display adapter field values
in an HTML table.

Example 10 (page B-24) Generates an HTML form to edit adapter fields and submit adapter
actions.

Example 11 (page B-26) Displays adapter actions to support paging.

Example 12 (page B-27) Displays an adapter field's image using the tag

Example 13 (page B-28) Displays an adapter field using the <select> and <option> tags.

Example 14 (page B-29) Displays an adapter field as a group of check boxes.

Example 15 (page B-30) Displays an adapter field's values using and tags.

Example 16 (page B-32) Displays an adapter field as a group of radio buttons.

Example 17 (page B-33) Uses the adapter field's DisplayStyle, InputStyle andViewMode
properties to generate HTML.

Example 18 (page B-34) Uses properties of the Application object and the Page object to
generate a page heading.

Example 19 (page B-35) Uses properties of the EndUser object to display the end user's name,
the login command, and the logout command.

Example 20 (page B-35) Lists the scriptable objects in a module.

Example 21 (page B-36) Uses the adapter actions's DisplayStyle property to generate HTML.

Example 22 (page B-37) Generate an HTML table to update multiple detail records.

B-20 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

Example 1

See also: Application object’s Designing and QualifyFileName properties (page B-14),
Request object’s PathInfo property (page B-17)

This example generates a relative path reference to an image. If the script is in design
mode then it references an actual directory; otherwise it references a virtual
directory.

<%
 function PathInfoToRelativePath(S)
 {
 var R = '';
 var L = S.length
 I = 0
 while (I < L)
 {
 if (S.charAt(I) == '/')
 R = R + '../'
 I++
 }
 return R
 }

 function QualifyImage(S)
 {
 if (Application.Designing)
 return Application.QualifyFileName("..\\images\\" + S); // relative directory
 else
 return PathInfoToRelativePath(Request.PathInfo) + '../images/' + S; // virtual
directory
 }
 %>

Example 2

See also: Modules object (page B-16)

This example declares a variable that references WebModule1:

<% var M = Modules.WebModule1 %>

Example 3

See also: Modules object (page B-16)

Example 3 enumerates the instantiated module and displays its variable name and
class name in a table:

<table border=1>
<tr><th>Name</th><th>ClassName</th></tr>
<%
 var e = new Enumerator(Modules)

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-21

J S c r i p t E x a m p l e s

 for (; !e.atEnd(); e.moveNext())
 {
%>
 <tr><td><%=e.item().Name_%></td><td><%=e.item()ClassName._%></td></tr>
<%
 }
%>
</table>

Example 4

See also: Pages object (page B-16), Page object’s Title property (page B-16)

This example declares a variable that references a page named Home. It also displays
Home's title.

<% var P = Pages.Home %>
<p><%= P.Title %></p>

Example 5

See also: Pages object (page B-16), Page object’s Published and HREF properties
(page B-16), Response object’s Write method (page B-18)

This example enumerates the registered pages and creates a menu displaying
hyperlinks to all published pages.

<table>
<td>
<% e = new Enumerator(Pages)
 s = ''
 c = 0
 for (; !e.atEnd(); e.moveNext())
 {
 if (e.item().Published)
 {
 if (c>0) s += ' | '
 if (Page.Name != e.item().Name)
 s += '' + e.item().Title + ''
 else
 s += e.item().Title
 c++
 }
 }
 if (c>1) Response.Write(s)
%>
</td>
</table>

B-22 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

Example 6

See also: Page type’s DefaultAction property (page B-12)

This example enumerates the registered pages and creates a menu displaying
hyperlinks to default actions.

<table>
<td>
<% e = new Enumerator(Pages)
 s = ''
 c = 0
 for (; !e.atEnd(); e.moveNext())
 {
 if (e.item().Published)
 {
 if (c>0) s += ' | '
 if (Page.Name != e.item().Name)
 if (e.item().DefaultAction != null)
 s += ' +e.item().Title+''
 else
 s += '' + e.item().Title + ''
 else
 s += e.item().Title
 c++
 }
 }
 if (c>1) Response.Write(s)
%>
</td>
</table>

Example 7

See also: Adapter type’s Errors property (page B-2), AdapterErrors type (page B-6),
Modules object (page B-16), Response object’s Write method (page B-18)

This example writes a list of errors detected by an adapter.

<% {
 var e = new Enumerator(Modules.CountryTable.Adapter.Errors)
 for (; !e.atEnd(); e.moveNext())
 {
 Response.Write("" + e.item().Message)
 }
 e.moveFirst()
 } %>

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-23

J S c r i p t E x a m p l e s

Example 8

See also: Adapter type’s Actions property (page B-2), AdapterAction type (page B-4)

This example enumerates all of the actions of an adapter and display action property
values in a table.

<% // Display some properties of an action in a table.
 function DumpAction(A)
 {
%>
 <table border="1">
 <tr><th COLSPAN=2><%=A.Name%></th>
 <tr><th>AsFieldValue:</th><td><%= A.AsFieldValue %></td>
 <tr><th>AsHREF:</th><td><%= A.AsHREF %>
 <tr><th>DisplayLabel:</th><td><%= A.DisplayLabel %></td>
 <tr><th>Enabled:</th><td><%= A.Enabled %></td>
 <tr><th>CanExecute:</th><td><%= A.CanExecute %></td>
 </table>
<%
 }
%>

<% // Call the DumpAction function for every action in an adapter.
 function DumpActions(A)
 {
 var e = new Enumerator(A)
 for (; !e.atEnd(); e.moveNext())
 {
 DumpAction(e.item())
 }
 }
%>

<%
// Display properties of actions in the adapter named Adapter1.
DumpActions(Adapter1.Actions) %>

Example 9

See also: Adapter type’s Records property (page B-2), AdapterField type’s DisplayText
property (page B-6)

This example generates an HTML table by enumerating the records of an adapter.

<%
// Define variables for the adapter and fields.

vAdapter=Modules.CountryTable.Adapter
vAdapter_Name=vAdapter.Name
vAdapter_Capital=vAdapter.Capital
vAdapter_Continent=vAdapter.Continent
%>

B-24 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

<%
// Function to write column text so that all cells have borders.
function WriteColText(t)
{
 Response.Write((t!="")?t:" ")
}
%>

<table border="1">
 <tr>
 <th>Name</th>
 <th>Capital</th>
 <th>Continent</th>
<%
 // Enumerate all the records in the adapter and write the field values.

 var e = new Enumerator(vAdapter.Records)
 for (; !e.atEnd(); e.moveNext())
 { %>
 <tr>
 <td><div><% WriteColText(vAdapter_Name.DisplayText) %></div></td>
 <td><div><% WriteColText(vAdapter_Capital.DisplayText) %></div></td>
 <td><div><% WriteColText(vAdapter_Continent.DisplayText) %></div></td>
 </tr>
<%
 }
%>
</table>

Example 10

See also: AdapterAction type’s LinkToPage and AsFieldValue properties (page B-4),
AdapterField type’s InputName and DisplayText properties (page B-6), Adapter type’s
HiddenFields and HiddenRecordFields properties (page B-2)

This example generates an HTML form to edit adapter fields and submits adapter
actions.

<%
// Define some variables for the adapter, fields, and actions.

vAdapter=Modules.CountryTable.Adapter
vAdapter_Name=vAdapter.Name
vAdapter_Capital=vAdapter.Capital
vAdapter_Continent=vAdapter.Continent
vAdapter_Apply=vAdapter.Apply
vAdapter_RefreshRow=vAdapter.RefreshRow

// Put the adapter in Edit mode unless the mode is already set. If the mode is already
// set this is probably because an adapter action set the mode. For example, an insert
// row action would put the adapter in Insert mode.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-25

J S c r i p t E x a m p l e s

if (vAdapter.Mode=="")
 vAdapter.Mode="Edit"
%>
<form name="AdapterForm1" method="post">

 <!-- This hidden field defines the action that is executed when the form is submitted. -->

 <input type="hidden" name="__act">

<%
 // Write hidden fields defined by the adapter.

 if (vAdapter.HiddenFields != null)
 {
 vAdapter.HiddenFields.WriteFields(Response)
 } %>
<% if (vAdapter.HiddenRecordFields != null)
 {
 vAdapter.HiddenRecordFields.WriteFields(Response)
 } %>
 <table>
 <tr>
 <td>
 <table>
 <tr>
 <!-- Write input fields to edit the fields of the adapter -->

 <td>Name</td>
 <td ><input type="text" size="24" name="<%=vAdapter_Name.InputName%>" value="
 <%= vAdapter_Name.EditText %>" ></td>
 </tr>
 <tr>
 <td>Capital</td>
 <td ><input type="text" size="24" name="<%=vAdapter_Capital.InputName%>"
 value="<%= vAdapter_Capital.EditText %>" ></td>
 </tr>
 <tr>
 <td>Continent</td>
 <td ><input type="text" size="24" name="<%=vAdapter_Continent.InputName%>"
 value="<%= vAdapter_Continent.EditText %>" ></td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table>
 <!-- Write submit buttons to execute actions. Use LinkToPage so this
 page is regenerated after executing an action. -->

 <tr>
 <td><input type="submit" value="Apply"
 onclick = "AdapterForm1.__act.value='

B-26 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

 <%=vAdapter_Apply.LinkToPage(Page.Name).AsFieldValue%>'"></td>
 <td><input type="submit" value="Refresh"
 onclick = "AdapterForm1.__act.value='
 <%=vAdapter_RefreshRow.LinkToPage(Page.Name).AsFieldValue%>'"> </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</form>

Example 11

See also: AdapterAction type’s Array and AsHREF properties (page B-4)

This example displays adapter actions to support paging. The PrevPage, GotoPage,
and NextPage actions are displayed as hyperlinks. The GotoPage action has an array
of commands. The commands are enumerated to generate a hyperlink to jump to
each page.

<%
 // Define variables for the adapter and actions.

 vAdapter = Modules.WebDataModule1.QueryAdapter
 vPrevPage = vAdapter.PrevPage
 vGotoPage = vAdapter.GotoPage
 vNextPage = vAdapter.NextPage
%>

<!-- Generate a table that displays hyperlinks between pages. -->

<table cellpadding="5">
<tr>
<td>
<%
 // Prevpage displays "<<". Use an anchor tag only if the command is enabled.

 if (vPrevPage.Enabled)
 { %>
 <a href="<%=vPrevPage.LinkToPage(Page.Name).AsHREF%>"><<
<%
 }
 else
 {%>
 <a><<
 <%} %>
<%
 // GotoPage has a list of commands. Loop through the list.
 // Use an anchor tag only if the command is enabled.

 if (vGotoPage.Array != null)
 {
 var e = new Enumerator(vGotoPage.Array)

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-27

J S c r i p t E x a m p l e s

 for (; !e.atEnd(); e.moveNext())
 {
%>
 <td>
<% if (vGotoPage.Enabled)
 { %>
 <a href="<%=vGotoPage.LinkToPage(Page.Name).AsHREF%>">
 <%=vGotoPage.DisplayLabel%>
<% }
 else
 { %>
 <a><%=vGotoPage.DisplayLabel%>
<% }
%>
 </td>
<%
 }
 }
%>
<td>
<%
 // NextPage displays ">>". Use an anchor tag only if the command is enabled.

 if (vNextPage.Enabled)
 { %>
 <a href="<%=vNextPage.LinkToPage(Page.Name).AsHREF%>">>>
<%
 }
 else
 {%>
 <a>>>
 <%} %>
</td>
</table>

Example 12

See also: AdapterField type’s Image property (page B-6)

Example 12 displays an adapter field's image.

<%
// Declare variables for the adapter and field.

vAdapter=Modules.WebDataModule3.DataSetAdapter1
vGraphic=vAdapter.Graphic
%>

<!-- Display the adapter field as an image. -->
<img src="<%=(vGraphic.Image!=null) ? vGraphic.Image.AsHREF : ''%>"
alt="<%=vGraphic.DisplayText%>">

B-28 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

Example 13

See also: AdapterField type’s Values and ValuesList properties (page B-6)

This example writes an adapter field with HTML <select> and <option> elements.

<%
// Return an object that defines HTML select options for an adapter field.
// The returned object has the following elements:
//
// text - string containing the <option> elements.
// count - the number of <option> elements.
// multiple - string containing the either 'multiple' or ''.
// Use this value as an attribute of the <select> element.
//
// Use as follows:
// obj=SelOptions(f)
// Response.Write('<select size="' + obj.count + '" name="' + f.InputName + '" ' +
// obj.multiple + '>' + obj.text + '</select>')

function SelOptions(f)
{
 var s=''
 var v=''
 var n=''
 var c=0
 if (f.ValuesList != null)
 {
 var e = new Enumerator(f.ValuesList.Records)
 for (; !e.atEnd(); e.moveNext())
 {
 s+= '<option'
 v = f.ValuesList.Value;
 var selected
 if (f.Values == null)
 selected = f.IsEqual(v)
 else
 selected = f.Values.HasValue(v)
 if (selected)
 s += ' selected'
 n = f.ValuesList.ValueName;
 if (n=='')
 {
 n = v
 v = ''
 }
 if (v!='') s += ' value="' + v + '"'
 s += '>' + n + '</option>\r\n'
 c++
 }
 e.moveFirst()
 }
 r = new Object;
 r.text = s

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-29

J S c r i p t E x a m p l e s

 r.count = c
 r.multiple = (f.Values == null) ? '' : 'multiple'
 return r;
 }
%>

<%
 // Generate HTML select options for an adapter field
 function WriteSelectOptions(f)
 {
 obj=SelOptions(f)
%>
 <select size="<%=obj.count%>" name="<%=f.InputName%>" <%=obj.multiple%> >
 <%=obj.text%>
 </select>
<%
 }
%>

Example 14

See also: AdapterField type’s Values and ValuesList properties (page B-6)

This example writes an adapter field as a group of <input type="checkbox">
elements.

<%
// Return an object that defines HTML check boxes for an adapter field.
// The returned object has the following elements:
//
// text - string containing the <input type=checkbox> elements.
// count - the number of <option> elements.
//
// Use as follows to define a check box group with three columns and no additional
// attributes:
// obj=CheckBoxGroup(f, 3, '')
// Response.Write(obj.text)
//
function CheckBoxGroup(f,cols,attr)
{
 var s=''
 var v=''
 var n=''
 var c=0;
 var nm=f.InputName
 if (f.ValuesList == null)
 {
 s+= '<input type="checkbox"'
 if (f.IsEqual(true)) s+= ' checked'
 s += ' value="true"' + ' name="' + nm + '"'
 if (attr!='') s+= ' ' + attr
 s += '></input>\r\n'
 c = 1
 }

B-30 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

 else
 {
 s += '<table><tr>'
 var e = new Enumerator(f.ValuesList.Records)
 for (; !e.atEnd(); e.moveNext())
 {
 if (c % cols == 0 && c != 0) s += '</tr><tr>'
 s+= '<td><input type="checkbox"'
 v = f.ValuesList.Value;
 var checked
 if (f.Values == null)
 checked = (f.IsEqual(v))
 else
 checked = f.Values.HasValue(v)
 if (checked)
 s+= ' checked'
 n = f.ValuesList.ValueName;
 if (n=='')
 n = v
 s += ' value="' + v + '"' + ' name="' + nm + '"'
 if (attr!='') s+= ' ' + attr
 s += '>' + n + '</input></td>\r\n'
 c++
 }
 e.moveFirst()
 s += '</tr></table>'
 }
 r = new Object;
 r.text = s
 r.count = c
 return r;
 }
%>

<%
 // Write an adapter field as a check box group
 function WriteCheckBoxGroup(f, cols, attr)
 {
 obj=CheckBoxGroup(f, cols, attr)
 Response.Write(obj.text);
 }
%>

Example 15

See also: AdapterField type’s Values and ValuesList properties (page B-6),
AdapterFieldValues type (page B-10)

This example writes an adapter field as a list of read-only values using and
elements.

<%
// Return an object that defines HTML list values for an adapter field.

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-31

J S c r i p t E x a m p l e s

// The returned object has the following elements:
//
// text - string containing the elements.
// count - the number of elements.
//
// text will be blank and count will be zero if the adapter field does not
// support multiple values.
//
// Use as follows to define a displays a read only list of this an adapter
// fields values.
// obj=ListValues(f)
// Response.Write('' + obj.text + '</ul'>')
//
function ListValues(f)
{
 var s=''
 var v=''
 var n=''
 var c=0;
 r = new Object;
 if (f.Values != null)
 {
 var e = new Enumerator(f.Values.Records)
 for (; !e.atEnd(); e.moveNext())
 {
 s+= ''
 s += f.Values.ValueField.DisplayText;
 s += ''
 c++
 }
 e.moveFirst()
 }
 r.text = s
 r.count = c
 return r;
}
%>

<%
// Write an adapter field as a list of read-only values.
function WriteListValues(f)
{
 obj=ListValues(f)
%>
 <%=obj.text%>
<%
}
%>

B-32 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

Example 16

See also: AdapterFieldValuesList type (page B-10), AdapterField type’s Values and
ValuesList properties (page B-6)

This example writes an adapter field as a group of <input type="radio"> elements.

<%
// Return an object that defines HTML radio buttons for an adapter field.
// The returned object has the following elements:
//
// text - string containing the <input type=radio> elements.
// count - the number of elements.
//
// Use as follows to define a radio button group with three columns and no additional
// attributes:
// obj=RadioGroup(f, 3, '')
// Response.Write(obj.text)
//

function RadioGroup(f,cols,attr)
{
 var s=''
 var v=''
 var n=''
 var c=0;
 var nm=f.InputName
 if (f.ValuesList == null)
 {
 s+= '<input type="radio"'
 if (f.IsEqual(true)) s+= ' checked'
 s += ' value="true"' + ' name="' + nm + '"'
 if (attr!='') s+= ' ' + attr
 s += '></input>\r\n'
 c = 1
 }
 else
 {
 s += '<table><tr>'
 var e = new Enumerator(f.ValuesList.Records)
 for (; !e.atEnd(); e.moveNext())
 {
 if (c % cols == 0 && c != 0) s += '</tr><tr>'
 s+= '<td><input type="radio"'
 v = f.ValuesList.Value;
 var checked
 if (f.Values == null)
 checked = (f.IsEqual(v))
 else
 checked = f.Values.HasValue(v)
 if (checked)
 s+= ' checked'
 n = f.ValuesList.ValueName;
 if (n=='')

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-33

J S c r i p t E x a m p l e s

 {
 n = v
 }
 s += ' value="' + v + '"' + ' name="' + nm + '"'
 if (attr!='') s+= ' ' + attr
 s += '>' + n + '</input></td>\r\n'
 c++
 }
 e.moveFirst()
 s += '</tr></table>'
 }
 r = new Object;
 r.text = s
 r.count = c
 return r;
 }
%>

<%
 // Write an adapter field as a radio button group
 function WriteRadioGroup(f, cols, attr)
 {
 obj=RadioGroup(f, cols, attr)
 Response.Write(obj.text);
 }
%>

Example 17

See also: AdapterField type’s DisplayStyle, ViewMode, and InputStyle properties
(page B-6)

This example generates HTML for an adapter field based on the field's InputStyle,
DisplayStyle, and ViewMode property values.

<%
 function WriteField(f)
 {
 Mode = f.ViewMode
 if (Mode == 'Input')
 {
 Style = f.InputStyle
 if (Style == 'SelectMultiple' || Style == 'Select')
 WriteSelectOptions(f)
 else if (Style == 'CheckBox')
 WriteCheckBoxGroup(f, 2, '')
 else if (Style == 'Radio')
 WriteRadioGroup(f, 2, '')
 else if (Style == 'TextArea')
 {
%>
 <textarea wrap=OFF name="<%=f.InputName%>"><%= f.EditText %></textarea>
<%

B-34 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

 }
 else if (Style == 'PasswordInput')
 {
%>
 <input type="password" name="<%=f.InputName%>"/>
<%
 }
 else if (Style == 'File')
 {
%>
 <input type="file" name="<%=f.InputName%>"/>
<%
 }
 else
 {
%>
 <input type="input" name="<%=f.InputName%>" value="<%= f.EditText %>"/>
<%
 }
 }
 else
 {
 Style = f.DisplayStyle
 if (Style == 'List')
 WriteListValues(f)
 else if (Style == 'Image')
 {
%>
 <img src="<%=(f.Image!=null) ? f.Image.AsHREF : ''%>" alt="<%=f.DisplayText%>">
<% }
 else
 Response.Write('<p>' + f.DisplayText + '</p>')
 }
 }
%>

Example 18

See also: Page object (page B-16), Application object’s Title property (page B-14)

This example uses properties of the Application object and Page object to generate a
page heading.

<html>
<head>
<title>
<%= Page.Title %>
</title>
</head>
<body>
<h1><%= Application.Title %></h1>

<h2><%= Page.Title %></h2>

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-35

J S c r i p t E x a m p l e s

Example 19

See also: EndUser object (page B-15)

This example uses properties of the EndUser object to display an end user's name,
login command, and logout command.

<% if (EndUser.Logout != null)
 {
 if (EndUser.DisplayName != '')
 {
%>
 <h1>Welcome <%=EndUser.DisplayName %></h1>
<% }
 if (EndUser.Logout.Enabled) {
%>
 <a href="<%=EndUser.Logout.AsHREF%>">Logout
<% }
 if (EndUser.LoginForm.Enabled) {
%>
 <a href="<%=EndUser.LoginForm.AsHREF%>">Login
<% }
 }
%>

Example 20

See also: Module type (page B-12)

This example lists the scriptable objects in a module.

<%
 // Write an HTML table list the name and classname of all scriptable objects in a module.
 function ListModuleObjects(m)
 {
%>
 <p></p>
 <table border="1">
 <tr>
 <th colspan="2"><%=m.Name_ + ': ' + m.ClassName_%></th>
 </tr>
<%
 var e = new Enumerator(m.Objects)
 for (; !e.atEnd(); e.moveNext())
 {
%>
 <tr>
 <td>
 <%= e.item().Name_ + ': ' + e.item().ClassName_ %>
 </td>
 </tr>
<%
 }
%>

B-36 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

 </table>
<%
 }
%>

Example 21

See also: AdapterAction type’s DisplayStyle and Enabled properties (page B-4)

This example generates HTML for an adapter action based on the action’s
DisplayStyle property.

<%
 // Write HTML for an adapter action using the DisplayStyle property.
 //
 // a - action
 // cap - caption. If blank the action's display label is used.
 // fm - name of the HTML form
 // p - page name to goto after action execution. If blank, the current page is used.
 //
 // Note that this function does not use the action's Array property. Is is assumed that
 // the action has a single command.
 //
 function WriteAction(a, cap, fm, p)
 {
 if (cap == '')
 cap = a.DisplayLabel
 if (p == '')
 p = Page.Name
 Style = a.DisplayStyle
 if (Style == 'Anchor')
 {

 if (a.Enabled)
 {
 // Do not use the href property. Instead, submit the form so that HTML form
 // fields are part of the HTTP request.
%>
 <a href=""onclick="<%=fm%>.__act.value='
 <%=a.LinkToPage(p).AsFieldValue%>';<%=fm%>.submit();return false;">
 <%=cap%>
<%
 }
 else
 {
%>
 <a><%=cap%>
<%
 }
 }
 else
 {
%>

W e b S n a p s e r v e r - s i d e s c r i p t i n g r e f e r e n c e B-37

J S c r i p t E x a m p l e s

 <input type="submit" value="<%= cap%>"
onclick="<%=fm%>.__act.value='<%=a.LinkToPage(p).AsFieldValue%>'">
<%
 }
 }
%>

Example 22

See also: Adapter type’s HiddenFields, HiddenRecordFields, and Mode properties
(page B-2)

This example generates an HTML table to update multiple detail records.

<%
vItemsAdapter=Modules.DM.ItemsAdapter
vOrdersAdapter=Modules.DM.OrdersAdapter
vOrderNo=vOrdersAdapter.OrderNo
vCustNo=vOrdersAdapter.CustNo
vPrevRow=vOrdersAdapter.PrevRow
vNextRow=vOrdersAdapter.NextRow
vRefreshRow=vOrdersAdapter.RefreshRow
vApply=vOrdersAdapter.Apply
vItemNo=vItemsAdapter.ItemNo
vPartNo=vItemsAdapter.PartNo
vDiscount=vItemsAdapter.Discount
vQty=vItemsAdapter.Qty
%>

<!-- Use two adapters to update multiple detail records.
 The orders adapter is associated with the master dataset.
 The items adapter is associated with the detail dataset.
 Each row in a grid displays values from the items adapter. One
 column display an <input> element for editing Qty. The apply button
 updates the Qty value in each detail record.-->

<!-- Display the order number and customer number values. -->
<h2>OrderNo: <%= vOrderNo.DisplayText %></h2>
<h2>CustNo: <% vCustNo.DisplayText %></h2>

<%
 // Put the items adapter in edit mode because this form updates
 // the Qty field.
 vItemsAdapter.Mode = 'Edit'
%>

<form name="AdapterForm1" method="post">

 <!-- Define a hidden field for submitted the action name and parameters -->
 <input type="hidden" name="__act">

<%
 // Write hidden fields containing state information about the
 // orders adapter and items adapter.

B-38 D e v e l o p e r ’ s G u i d e

J S c r i p t E x a m p l e s

 if (vOrdersAdapter.HiddenFields != null)
 vOrdersAdapter.HiddenFields.WriteFields(Response)
 if (vItemsAdapter.HiddenFields != null)
 vItemsAdapter.HiddenFields.WriteFields(Response)

 // Write hidden fields containing state information about the current
 // record of the orders adapter.
 if (vOrdersAdapter.HiddenRecordFields != null)
 vOrdersAdapter.HiddenRecordFields.WriteFields(Response)%>

 <table border="1">
 <tr>
 <th>ItemNo</th>
 <th>PartNo</th>
 <th>Discount</th>
 <th>Qty</th>
 </tr>
<%
 var e = new Enumerator(vItemsAdapter.Records)
 for (; !e.atEnd(); e.moveNext())
 { %>
 <tr>
 <td><%=vItemNo.DisplayText%></td>
 <td><%=vPartNo.DisplayText%></td>
 <td><%=vDiscount.DisplayText%></td>
 <td><input type="text" name="<%=vQty.InputName%>" value="<%= vQty.EditText %>" ></td>
 </tr>
<%
 // Write hidden fields containing state information about each record of the
 // items adapter. This is needed by the items adapter when updating the Qty field.

 if (vItemsAdapter.HiddenRecordFields != null)
 vItemsAdapter.HiddenRecordFields.WriteFields(Response)
 }
%>
 </table>
 <p></p>
 <table>
 <td><input type="submit" value="Prev Order"

onclick="AdapterForm1.__act.value='<%=vPrevRow.LinkToPage(Page.Name).AsFieldValue%>'"></td>
 <td><input type="submit" value="Next Order"

onclick="AdapterForm1.__act.value='<%=vNextRow.LinkToPage(Page.Name).AsFieldValue%>'"></td>
 <td><input type="submit" value="Refresh"

onclick="AdapterForm1.__act.value='<%=vRefreshRow.LinkToPage(Page.Name).AsFieldValue%>'"></
td>
 <td><input type="submit" value="Apply"
 onclick="AdapterForm1.__act.value='<%=vApply.LinkToPage(Page.Name).AsFieldValue%>'"></
td>
 </table>
</form>

I n d e x I-1

Symbols
& (ampersand) character 8-33
... (ellipsis) buttons 19-21

Numerics
80x87 coprocessors A-3

A
-a compiler option A-5, A-6
abort function A-10
Abort procedure

preventing edits 22-20
AbortOnKeyViol

property 24-51
AbortOnProblem

property 24-51
About box 57-2

adding properties 57-4
adding to ActiveX

controls 43-5
executing 57-6

abstract classes 45-3
accelerators 8-33
access

memory regions A-6
unions A-4
volatile objects A-6

access rights
WebSnap 34-28 to 34-30

Access tables
local transactions 24-31

Acquire method 11-8
action bands 8-18

defined 8-17
Action client, defined 8-17
action editor

adding actions 33-4
changing actions 33-6

action items 33-3, 33-4, 33-5 to
33-8

adding 33-4
caution for changing 33-3
chaining 33-8
default 33-5, 33-7
dispatching 34-38
enabling and disabling 33-6
event handlers 33-4
page producers and 33-15
responding to requests 33-7

selecting 33-6, 33-7
Action List editor 8-18
action lists 5-5, 8-17, 8-19, 8-23

to 8-49
Action Manager 8-18, 8-19, 8-22

defined 8-17
action requests 34-36
action responses 34-36
actions 8-23 to 8-29

action classes 8-27
clients 8-18
defined 8-17, 8-18
executing 8-24
predefined 8-28
registering 8-28
target 8-18
updating 8-26

Actions property 33-4
activation attribute

shared properties 44-6
Active Documents 38-10, 38-14

See also IOleDocumentSite
interface

Active property
client sockets 37-6
datasets 22-4
server sockets 37-7
sessions 24-17, 24-18

active scripting 34-31
Active Server Object

wizard 42-2 to 42-3
Active Server Objects 42-1 to

42-8
creating 42-2 to 42-7
debugging 42-8
in-process servers 42-7
out-of-process servers 42-7
registering 42-7 to 42-8

Active Server Pages See ASP
Active Template Library See

ATL
ActiveAggs property 27-13
ActiveFlag property 20-19,

20-20
ActiveForms 43-1, 43-6 to 43-7

as database Web
applications 29-30

creating 43-2
multi-tiered

applications 29-30
vs. InternetExpress 29-29

wizard 43-6 to 43-7
ActiveX 38-13 to 38-14, 43-1

comparison to ASP 42-7
interfaces 38-20
vs. InternetExpress 29-29
Web applications 38-13,

43-1, 43-16 to 43-18
ActiveX controls 17-5, 38-10,

38-13, 43-1 to 43-18
adding methods 43-9 to

43-10
adding properties 43-9 to

43-10
.cab files 43-17
component wrappers 40-6,

40-7, 40-8 to 40-9
_OCX unit 40-4

creating 43-2, 43-4 to 43-7
data-aware 40-8 to 40-9, 43-8,

43-11 to 43-13
debugging 43-16
designing 43-4
elements 43-2 to 43-3
embedding in HTML 33-14
event handling 43-10 to

43-11
firing events 43-11
from VCL controls 43-4 to

43-7
importing 40-4 to 40-5
interfaces 43-8 to 43-13
licensing 43-5, 43-7
persistent properties 43-13
property pages 40-7, 43-3,

43-13 to 43-15
registering 43-15 to 43-16
threading model 43-5
type libraries 38-17, 43-3
using Automation-

compatible types 43-4, 43-8
Web applications 38-13,

43-1, 43-16 to 43-18
Web deployment 43-16 to

43-18
wizard 43-4 to 43-5

ActiveX page (Component
palette) 5-8, 40-5

activities
transactional objects 44-19 to

44-20
ActnList unit 8-28

Index

I-2 D e v e l o p e r ’ s G u i d e

adapter dispatcher
requests 34-35

adapter dispatchers 34-8, 34-9,
34-34

adapter page producers B-1
AdapterPageProducer 34-10
adapters 34-2, 34-5 to 34-6
Add Fields dialog box 23-4
Add method

menus 8-40
persistent columns 19-18
strings 4-18

Add To Repository
command 7-24

AddAlias method 24-24
AddFieldDef method 22-38
AddFontResource

function 17-14
AddIndex method 27-8
AddIndexDef method 22-38
Additional page (Component

palette) 5-7
AddObject method 4-19
AddParam method 22-52
AddPassword method 24-21
AddRef method 38-4
Address property,

TSocketConnection 29-23
addresses

socket connections 37-3, 37-4
AddStandardAlias

method 24-24
AddStrings method 4-18, 4-19
ADO 18-1, 22-2, 25-1, 25-2

components 25-1 to 25-19
overview 25-1 to 25-2

data stores 25-2, 25-3
deployment 17-6
implicit transactions 25-6
providers 25-3
resource dispensers 44-6

ADO commands 25-7, 25-16 to
25-19

asynchronous 25-18
canceling 25-17 to 25-18
executing 25-17
iterating over 21-12
parameters 25-18 to 25-19
retrieving data 25-18
specifying 25-17

ADO connections 25-2 to 25-8
asynchronous 25-5
connecting to data

stores 25-2 to 25-6
events 25-7 to 25-8

executing commands 25-5
timing out 25-5

ADO datasets 25-8 to 25-16
asynchronous fetching 25-11
batch updates 25-11 to 25-14
connecting 25-9 to 25-10
data files 25-14 to 25-15
index-based searches 22-27

ADO objects 25-1
Connection object 25-4
RDS DataSpace 25-16
Recordset 25-8, 25-10

ADO page (Component
palette) 5-7, 18-1, 25-1

ADT fields 23-22, 23-23 to 23-24
displaying 19-22, 23-23
flattening 19-22
persistent fields 23-24

ADTG files 25-14
AfterApplyUpdates

event 27-31, 28-8
AfterCancel event 22-21
AfterClose event 22-4
AfterConnect event 21-3, 29-26
AfterConstruction 13-14
AfterDelete event 22-19
AfterDisconnect event 21-4,

29-26
AfterDispatch event 33-5, 33-8
AfterEdit event 22-17
AfterGetRecords event 28-7
AfterInsert event 22-18
AfterOpen event 22-4
AfterPost event 22-20
AfterScroll event 22-5
AggFields property 27-13
aggregate fields 23-6, 27-13

defining 23-10
displaying 23-10

Aggregates property 27-11,
27-13

aggregation
client datasets 27-11 to 27-13
COM 38-9

aliases
BDE 24-3, 24-14, 24-24 to

24-25
creating 24-24 to 24-25
deleting 24-25
local 24-24
specifying 24-13, 24-14 to

24-15
Type Library editor 39-10,

39-16
AliasName property 24-13

Align property 8-4
panels 8-43
status bars 9-14
text controls 6-7

alignment A-3
bit fields and A-6
structure members A-5
word A-5, A-6

Alignment property 9-6
column headers 19-20
data grids 19-20
data-aware memo

controls 19-9
decision grids 20-12
fields 23-11
memo and rich edit

controls 9-3
status bars 9-14

AllowAllUp property 9-7
speed buttons 8-45
tool buttons 8-47

AllowDelete property 19-28
AllowGrayed property 9-7
AllowInsert property 19-28
alTop constant 8-43
ampersand (&) character 8-33
analog video 10-32
ancestor classes 46-3 to 46-4

default 46-4
animation controls 9-17, 10-29

to 10-31
example 10-30

ANSI C
date and time formats A-11
diagnostics A-1, A-7
hyphens, interpreting A-9
implementation

specifics A-1
main function A-2
multibyte characters A-2
standards,

implementing A-1
ANSI character sets 16-2

extended A-2
AnsiString 52-8
Apache applications 32-7

creating 33-1, 34-8
debugging 32-10

Apache DLLs 17-10
deployment 17-10

Apache server DLLs 32-7
creating 33-1, 34-8

apartment threading 41-7 to
41-8

Append method 22-18, 22-19

I n d e x I-3

Insert vs. 22-18
AppendRecord method 22-21
application adapters 34-9
application servers 18-13, 29-1,

29-12 to 29-17
callbacks 29-17
COM-based 29-5, 29-16,

29-20
dropping connections 29-26
identifying 29-22
interface 29-16 to 29-17
interfaces 29-27
multiple data modules 29-20

to 29-21
opening connections 29-26
registering 29-11, 29-21
remote data modules 7-23
writing 29-13

Application variable 8-2
applications

Apache 32-7, 33-1, 34-8
bi-directional 16-4
CGI stand-alone 34-8
client/server 29-1

network protocols 24-15
COM 7-19
CORBA 31-1 to 31-18
creating 8-1
cross-platform 14-1 to 14-26
database 18-1

cross-platform 14-19
deploying 17-1
files 17-2
graphical 45-7, 50-1
international 16-1
ISAPI 32-6, 32-7, 33-1, 34-8
MDI 7-2
MTS 7-19
multi-threaded 11-1
multi-tiered 29-1 to 29-40

overview 29-3 to 29-4
NSAPI 32-6, 33-1, 34-8
porting to Linux 14-2 to

14-19
realizing palettes 50-5
SDI 7-2
service 7-4
status information 9-14
Web Broker 33-1 to 33-20
Web server 7-16, 7-17, 34-7
Web-based client

applications 29-28 to 29-40
Win-CGI stand-alone 34-8

Apply method 24-45
ApplyRange method 22-34

ApplyUpdates method 14-25,
24-32

BDE datasets 24-35
client datasets 25-12, 27-6,

27-19, 27-20 to 27-21, 28-3
providers 27-20, 28-3, 28-8
TDatabase 24-34
TXMLTransformClient 30-10

AppNamespacePrefix
variable 36-3

AppServer property 27-32, 28-3,
29-16, 29-27

Arc method 10-4
architecture

BDE-based applications 24-1
to 24-2

CORBA applications 31-1 to
31-4

database applications 18-5 to
18-14, 24-1 to 24-2

client 29-4
server 29-5

multi-tiered 29-4, 29-5
Web Broker server

applications 33-3
arguments

fmod function and A-8
array fields 23-22, 23-25

displaying 19-22, 23-23
flattening 19-22
persistent fields 23-25

array of const 13-18
array properties 13-23
arrays 47-2, 47-8

as function arguments 13-23
as properties 13-23
as return types 13-23
integer types A-5

pointers to A-5
open 13-17
safe 39-12

ARRAYSIZE macro 13-17
as operator 13-22
AS_ApplyUpdates method 28-3
AS_ATTRIBUTE 36-7
AS_DataRequest method 28-3
AS_Execute method 28-3
AS_GetParams method 28-3
AS_GetProviderNames

method 28-3
AS_GetRecords method 28-3
AS_RowRequest method 28-3
ASCII codes A-2
ASCII tables 24-5
ASP 38-13, 42-1 to 42-8

comparison to ActiveX 42-7
comparison to Web

broker 42-1
generating pages 42-3
HTML documents 42-1
performance limitations 42-1
scripting language 38-13,

42-3
UI design 42-1

ASP intrinsics 42-3 to 42-6
accessing 42-2 to 42-3
Application object 42-3 to

42-4
Request object 42-4
Response object 42-5
Server object 42-6
Session object 42-5 to 42-6

assembler code 14-18
assert function A-7
Assign Local Data

command 27-13
Assign method

string lists 4-19
AssignedValues property 19-21
assignment operators 13-6
assignment statements 47-2
AssignValue method 23-16
Associate property 9-5
as-soon-as-possible

deactivation 29-7
ATL 38-22 to 38-23

header files 38-22
options 41-8
tracing calls 41-8, 41-17

atomicity
transactions 18-4, 44-10

attributes
property editors 52-10

Attributes property
parameters 22-45, 22-51
TADOConnection 25-6

audio clips 10-31
auto_ptr 12-5
AutoCalcFields property 22-22
AutoComplete property 29-8
auto-dispatching

components 36-11, 36-15
AutoDisplay property 19-9,

19-10
AutoEdit property 19-5
AutoHotKeys property 8-33
Automation

Active Server Objects 42-2
early binding 38-18
IDispatch interface 41-13

I-4 D e v e l o p e r ’ s G u i d e

interfaces 41-12 to 41-14
late binding 41-13
optimizing 38-18
type compatibility 39-11,

41-14 to 41-15
type descriptions 38-12

Automation controllers 38-12,
40-1, 40-12 to 40-15, 41-13

creating objects 40-12 to
40-13

dispatch interfaces 40-13 to
40-14

dual interfaces 40-13
events 40-14 to 40-15
example 40-10 to 40-12

Automation objects 38-12
 See also COM objects
component wrappers 40-7 to

40-8
example 40-10 to 40-12

wizard 41-4 to 41-8
Automation servers 38-10,

38-12 to 38-13
 See also COM objects
accessing objects 41-13
type libraries 38-17

AutoPopup property 8-48
AutoSelect property 9-3
AutoSessionName

property 24-17, 24-29, 33-17
AutoSize property 8-4, 9-2,

17-13, 19-8
averages, decision cubes 20-5
.avi clips 9-17, 10-29, 10-32
.avi files 10-32

B
Background 8-20
backgrounds 16-9
backslash characters (\)

include files A-7
Bands property 8-48, 9-8
base classes

constructors 13-11
base clients 44-2
base unit 4-27, 4-29
BaseCLX

defined 4-1, 14-5
exception classes 12-16

Basic Object Adapter See BOA
batch files

executing A-11
Linux 14-13

batch operations 24-7 to 24-8,
24-47 to 24-51

appending data 24-48, 24-49
copying datasets 24-49
deleting records 24-49
different databases 24-49
error handling 24-51
executing 24-50
mapping data types 24-49 to

24-50
modes 24-8, 24-48
setting up 24-47 to 24-48
updating data 24-49

batch updates 25-11 to 25-14
applying 25-13 to 25-14
canceling 25-14

BatchMove method 24-7
BDE

resource dispensers 44-6
BDE Administration

utility 24-14, 24-53
BDE datasets 18-1, 22-2, 24-2 to

24-12
applying cached

updates 24-35
batch operations 24-47 to

24-51
copying 24-49
databases 24-3 to 24-4
decision support components

and 20-4
local database support 24-5

to 24-7
sessions 24-3 to 24-4
types 24-2

BDE page (Component
palette) 5-7, 18-1

BeforeApplyUpdates
event 27-30, 28-8

BeforeCancel event 22-21
BeforeClose event 22-4
BeforeConnect event 21-3, 29-26
BeforeDelete event 22-19
BeforeDestruction

method 13-14
BeforeDisconnect event 21-4,

29-26
BeforeDispatch event 33-5, 33-7
BeforeEdit event 22-17
BeforeGetRecords event 28-7
BeforeInsert event 22-18
BeforeOpen event 22-4
BeforePost event 22-20
BeforeScroll event 22-5
BeforeUpdateRecord

event 24-32, 24-39, 27-21, 28-11

BEGIN_MESSAGE_MAP
macro 51-4, 51-7

BeginAutoDrag method 51-13
BeginDrag method 6-1
BeginRead method 11-8
BeginTrans method 21-6
BeginWrite method 11-8
Beveled 9-6
beveled panels 9-17
bevels 9-17
bi-directional applications 16-4

methods 16-7
properties 16-6

bi-directional cursors 22-48
binary streams

null characters and A-9
Bind method

TAutoDriver 40-13
bit fields A-5

alignment A-6
order of allocation A-5
straddling word

boundaries A-6
bitmap buttons 9-7
bitmap objects 10-3
bitmaps 9-17, 10-18 to 10-19,

50-4
adding scrollable 10-17
adding to components 45-14,

52-4
associating with strings 4-19,

6-12
blank 10-17
brushes 10-9
brushes property 10-8, 10-9
destroying 10-21
drawing on 10-18
drawing surfaces 50-3
draw-item events 6-15
graphical controls vs. 54-4
in frames 8-15
internationalizing 16-10
loading 50-4
offscreen 50-6
replacing 10-20
scrolling 10-17
setting initial size 10-17
temporary 10-17, 10-18
toolbars 8-46
when they appear in

application 10-2
bitwise operators

signed integers and A-4
BLOB fields 19-2

displaying values 19-8, 19-9

I n d e x I-5

fetch on demand 28-5
getting values 24-4
viewing graphics 19-9

BLOBs 19-8, 19-9
caching 24-4

blocking connections 37-9,
37-10

event handling 37-9
BlockMode property 37-9, 37-10
bmBlocking 37-10
BMPDlg unit 10-21
bmThreadBlocking 37-9, 37-10
BOA 31-2, 31-4, 31-5

BOA_init 31-7
initializing 31-13
obj_is_ready method 31-8
thread conflicts 31-11

Bof property 22-6, 22-8
Bookmark property 22-9
bookmarks 22-9 to 22-10

filtering records 25-10 to
25-11

support by dataset
types 22-9

BookmarkValid method 22-9
Boolean fields 19-2, 19-13
Boolean values 47-2, 47-12, 56-4
borders

panels 9-12
BorderWidth property 9-12
Borland Database Engine 7-15,

18-1, 22-2, 24-1
aliases 24-3, 24-14, 24-16,

24-24 to 24-25
availability 24-25
creating 24-24 to 24-25
deleting 24-25
heterogeneous

queries 24-9
specifying 24-13, 24-14 to

24-15
API calls 24-1, 24-4
batch operations 24-47 to

24-51
cached updates 24-31 to

24-47
update errors 24-37

closing connections 24-19
connecting to

databases 24-12 to 24-16
datasets 24-2
default connection

properties 24-18
deploying 17-8
driver names 24-14

drivers 24-1, 24-14
heterogeneous queries 24-9

to 24-10
implicit transactions 24-29
license requirements 17-15
managing connections 24-19

to 24-21
ODBC drivers 24-16
opening database

connections 24-19
retrieving data 22-47, 24-2,

24-10
sessions 24-16
table types 24-5
utilities 24-53
Web applications 17-10

BorlandIDEServices
variable 58-8, 58-23

bounding rectangles 10-11
BoundsChanged method 51-14
.bpi files 15-2, 15-13
.bpk files 15-2, 15-6, 15-8
.bpl files 15-1, 15-13, 17-3
briefcase model 18-14
Broadcast method 51-8
brokering connections 29-25
Brush property 9-17, 10-4, 10-8,

50-3
BrushCopy method 50-3, 50-6
brushes 10-8 to 10-9, 54-6

bitmap property 10-9
changing 54-8
colors 10-8
styles 10-8

buffered files A-9
building packages 15-10 to

15-12
business rules 29-2, 29-13

ASP 42-1
transactional objects 44-2

business-to-business
communication 35-1

ButtonAutoSize property 20-10
buttons 9-6 to 9-8

adding to toolbars 8-43 to
8-45, 8-46

assigning glyphs to 8-44
disabling on toolbars 8-46
navigator 19-28
toolbars and 8-42

ButtonStyle property
data grids 19-20, 19-21

ByteType 4-21

C
C++ exception handling 12-1
C++ object models 13-1
C++ vs Object Pascal

assignment 13-6
bool types 13-19
calling virtual

methods 13-10, 13-14
constructors 13-21
copy constructors 13-7
copying objects 13-6
differences 13-15, 13-19
function arguments 13-7,

13-19, 13-23
initialization of classes 13-12
language counterparts 13-16
object construction 13-7
object destruction 13-13
pass by reference 13-16
references 13-5
RTTI 13-22
untyped parameters 13-16

CacheBlobs property 24-4
cached updates 27-15 to 27-24

ADO 25-11 to 25-14
applying 25-13 to 25-14
canceling 25-14

BDE 24-31 to 24-47
applying 24-11, 24-33 to

24-37
multiple tables 24-39,

24-43
error handling 24-37 to

24-38
updating read-only

datasets 24-11
client datasets 18-10 to 18-14,

27-16, 27-19 to 27-24
applying 24-11, 27-20 to

27-21
multiple tables 24-39,

24-43
transactions 21-6
update errors 27-22 to

27-24, 28-11
updating read-only

datasets 24-11
master/detail

relationships 27-18
overview 27-16 to 27-17
providers 28-8
update objects 27-18

CachedUpdates property 14-25,
24-32

I-6 D e v e l o p e r ’ s G u i d e

caching resources 50-2
calculated fields 22-22 to 22-23,

23-6
assigning values 23-7
client datasets 27-10 to 27-11
defining 23-7 to 23-8
lookup fields and 23-9

calendar components 9-11
calendars 55-1 to 55-14

adding dates 55-6 to 55-11
defining properties and

events 55-3, 55-7, 55-12
making read-only 56-3 to

56-5
moving through 55-11 to

55-14
resizing 55-4
selecting current day 55-11

call synchronization 44-20
callbacks

multi-tiered
applications 29-17

limits 29-11
transactional objects 44-25 to

44-26
calloc function A-10
CanBePooled method 44-9
Cancel method 22-18, 22-21,

25-18
Cancel property 9-7
CancelBatch method 14-25,

25-12, 25-14
CancelRange method 22-34
CancelUpdates method 14-25,

24-32, 25-12, 27-6
CanModify property

data grids 19-25
datasets 19-5, 22-17, 22-37
queries 24-10

Canvas property 9-17, 45-7
canvases 45-7, 50-1, 50-3

adding shapes 10-11 to
10-12, 10-14

common properties,
methods 10-4

copying images 50-6
default drawing tools 54-6
drawing lines 10-5, 10-10 to

10-11, 10-27 to 10-29
changing pen width 10-6
event handlers 10-26

drawing vs. painting 10-4,
10-22

overview 10-1 to 10-3
palettes 50-5

refreshing the screen 10-2
Caption property

column headers 19-20
decision grids 20-12
group boxes and radio

groups 9-12
invalid entries 8-31
labels 9-4
TForm 9-14

cascaded deletes 28-5
cascaded updates 28-6
case sensitivity

external identifiers and A-3
indexes 27-8
Linux 14-13
suppressing A-3

catch statement 12-1, 12-3, 12-17
C-based exception

handling 12-6
CComCoClass 38-23, 41-2, 41-4,

42-2
CComModule 38-22
CComObjectRootEx 38-23, 41-2,

41-4, 42-2
CDaudio disks 10-32
CellDrawState function 20-12
CellRect method 9-15
cells (grids) 9-15
Cells function 20-12
Cells property 9-15
CellValueArray function 20-12
CGI applications 17-11, 32-5,

32-6, 32-7
creating 33-2, 34-8

change log 27-5, 27-19, 27-33
saving changes 27-6
undoing changes 27-5

Change method 56-11
ChangeCount property 14-25,

24-32, 27-5
ChangedTableName

property 24-51
CHANGEINDEX 27-7
Char data type 16-3
character sets 4-20, 16-2, 16-2 to

16-4, A-2, A-3
ANSI 16-2
constants A-6
default 16-2
extended A-2
international sort orders 16-9
mapping A-3
multibyte 16-3
multibyte conversions 16-3
OEM 16-2

testing for A-8
character types 16-3
characters 47-2

decimal point A-7
multibyte A-2
newline A-8
null A-9
wide A-4

Chart Editing dialog 20-15 to
20-18

Chart FX 17-5
check boxes 9-7

data-aware 19-13
TDBCheckBox 19-2

CHECK constraint 28-12
Checked property 9-7
check-list boxes 9-9
CheckSynchronize routine 11-5
ChildName property 29-28
Chord method 10-4
circles, drawing 54-10
circular references 8-4
class factories 38-6

ATL support 38-23
class fields 54-4

declaring 54-6
class pointers 46-10
classes 45-2, 45-3, 46-1, 47-2

abstract 45-3
accessing 46-4 to 46-8, 54-6
ancestor 46-3 to 46-4
creating 46-1
default 46-4
defined 46-2
defining 45-12
deriving new 46-2
descendant 46-3 to 46-4
hierarchy 46-3
instantiating 46-2, 48-2
Object Pascal support 13-16
passing as parameters 46-10
private part 46-4
properties as 47-2
property editors as 52-7
protected part 46-6
public part 46-7
published part 46-7
restricting access 46-4

__classid operator 13-23
ClassInfo method 13-22
ClassName method 13-22
ClassNameIs method 13-22
ClassParent method 13-22
ClassType method 13-22

I n d e x I-7

Clear method
fields 23-16
string lists 4-19

ClearSelection method 6-9
click events 10-24, 10-25, 48-1,

48-2, 48-7
Click method 48-2, 51-13

overriding 48-6, 55-12
client applications

architecture 29-4
as Web server

applications 29-28
COM 38-3, 38-9, 40-1 to

40-16
CORBA 31-2, 31-13 to 31-16
creating 29-21 to 29-28, 40-1

to 40-16
interfaces 37-2
multi-tiered 29-2, 29-4
network protocols 24-15
sockets and 37-1
supplying queries 28-6
thin 29-2, 29-29
transactional objects 44-2
type libraries 39-13, 40-2 to

40-6
user interfaces 29-1
Web Services 36-16 to 36-17

client connections 37-2, 37-3
accepting requests 37-7
opening 37-6
port numbers 37-5

client datasets 27-1 to 27-34,
29-3

aggregating data 27-11 to
27-13

applying updates 27-20 to
27-21

calculated fields 27-10 to
27-11

connecting to other
datasets 18-10 to 18-14,
27-24 to 27-31

constraints 27-6 to 27-7,
27-29

disabling 27-29
copying data 27-13 to 27-15
creating tables 27-32
deleting indexes 27-9
deploying 17-6
editing 27-5
file-based applications 27-32

to 27-34
filtering records 27-2 to 27-5
grouping data 27-9 to 27-10

index-based searches 22-27
indexes 27-7 to 27-10

adding 27-8
limiting records 27-28
loading files 27-33
merging changes 27-33
merging data 27-14
navigation 27-2
parameters 27-26 to 27-28
providers and 27-24 to 27-31
refreshing records 27-30
resolving update

errors 27-20, 27-22 to 27-24
saving changes 27-6
saving files 27-34
sharing data 27-14
specifying providers 27-24 to

27-25
supplying queries 27-31 to

27-32
switching indexes 27-9
types 27-17 to 27-18
undoing changes 27-5
updating records 27-19 to

27-24
with internal source

dataset 27-21
with unidirectional

datasets 26-10
client requests 32-5 to 32-6, 33-8
client sockets 37-3, 37-6 to 37-7

assigning hosts 37-4
connecting to servers 37-8
error messages 37-8
event handling 37-8
identifying servers 37-6
properties 37-6
requesting services 37-6
socket objects 37-6

client/server applications 7-15
clients See client applications
Clipboard 6-8, 6-9, 19-9

clearing selection 6-9
formats

adding 52-15, 52-18
graphics and 10-21 to 10-23
graphics objects 10-3, 19-9
testing contents 6-10
testing for images 10-23

Clipbrd unit 6-8, 10-21
clock function A-11
CloneCursor method 27-14
Close method

connection components 21-4
database connections 24-19

datasets 22-4
sessions 24-18

CloseDatabase method 24-19
CloseDataSets method 21-12
__closure keyword 13-24
closures 48-2, 48-8
CLSIDs 38-5, 38-6, 38-16, 40-5

license package file 43-7
CLX

defined 3-1
object construction 14-11
signals 51-10 to 51-12
system events 51-12 to 51-15
system notifications 51-10 to

51-15
units 14-9 to 14-11
VCL vs. 14-5 to 14-7

CLX applications
creating 14-1 to 14-2
database applications 14-19

to 14-25
deploying 17-6
Internet applications 14-25

to 14-26
overview 14-1
porting to Linux 14-2 to

14-19
clx60.bpl 17-6
CM_EXIT message 56-12
CMExit method 56-12
CoClasses 38-6

ActiveX controls 43-4
CLSIDs 38-6
component wrappers 40-1,

40-3
_OCX unit 40-2
limitations 40-2

creating 38-6, 39-12, 40-5,
40-12 to 40-13

declarations 40-5
naming 41-3, 41-4
Type Library editor 39-9,

39-15 to 39-16
updating 39-14

code 49-3
porting to Linux 14-15 to

14-19
templates 7-3

Code editor 2-3
displaying 52-17
event handlers and 5-4
overview 2-3

Code Insight
templates 7-3

code pages 16-2

I-8 D e v e l o p e r ’ s G u i d e

COInit flags 41-8
ColCount property 19-28
collation sequence A-2
color depths 17-12

programming for 17-13
color grids 10-6
Color property 9-4, 9-17

brushes 10-8
column headers 19-20
data grids 19-20
decision grids 20-12
pens 10-5, 10-6

ColorChanged method 51-14
colors

internationalization and 16-9
pens 10-6

Cols property 9-15
column headers 9-13, 19-17,

19-20
columns 9-15

decision grids 20-11
default state 19-15, 19-21
deleting 19-16
including in HTML

tables 33-19
persistent 19-15, 19-17

creating 19-17 to 19-21
deleting 19-18, 19-19
inserting 19-18
reordering 19-19

properties 19-17, 19-19 to
19-20

resetting 19-21
Columns editor

creating persistent
columns 19-17

deleting columns 19-18
reordering columns 19-19

Columns property 9-9, 19-18
grids 19-15
radio groups 9-12

ColWidths property 6-14, 9-15
COM 7-19

aggregation 38-9
applications 38-2 to 38-10,

38-19
distributed 7-19

clients 38-3, 38-9, 39-13, 40-1
to 40-16

containers 38-10, 40-1
controllers 38-10, 40-1
CORBA vs. 31-1
definition 38-1 to 38-2
early binding 38-17

extensions 38-2, 38-10 to
38-12

overview 38-1 to 38-23
proxy 38-7, 38-8
specification 38-1
stubs 38-8
wizards 38-19 to 38-23, 41-1

COM interfaces 38-3 to 38-4,
41-3

adding to type
libraries 39-13

Automation 41-12 to 41-14
dispatch identifiers 41-13
dual interfaces 41-12 to 41-13
implementing 38-6, 38-23
interface pointer 38-4
IUnknown 38-4
marshaling 38-8 to 38-9
modifying 39-14 to 39-15,

41-9 to 41-11
optimizing 38-18
properties 39-8
type information 38-16

COM library 38-2
COM objects 38-3, 38-5 to 38-9,

41-1 to 41-17
aggregating 38-9
component wrappers 40-1,

40-2, 40-3, 40-4, 40-6 to
40-12

creating 41-1 to 41-16
debugging 41-8, 41-17
designing 41-2
interfaces 38-3, 41-9 to 41-14
registering 41-16
threading models 41-5 to

41-8
wizard 41-2 to 41-4, 41-5 to

41-8
COM servers 38-3, 38-5 to 38-9,

41-1 to 41-17
designing 41-2
in-process 38-6
instancing 41-8
optimizing 38-18
out-of-process 38-7
remote 38-7
threading models 41-6, 41-8

COM+ 7-19, 29-6, 38-10, 38-14,
44-1

 See also transactional objects
applications 44-6, 44-27
call synchronization 44-20
Component Manager 44-28
configuring activities 44-20

event objects 44-22 to 44-23
event subscriber

objects 44-23
events 40-15, 44-20 to 44-24
in-process servers 38-7
interface pointers 38-5
MTS vs. 44-2
object pooling 44-9
transactional objects 38-14 to

38-15
transactions 29-17

combo boxes 9-10, 14-7, 19-2,
19-11

data-aware 19-10 to 19-12
lookup 19-20
owner-draw 6-11

measure-item events 6-14
COMCTL32.DLL 8-43
command objects 25-16 to 25-19

iterating over 21-12
Command Text editor 22-43
CommandCount

property 21-12, 25-7
Commands property 21-12,

25-7
commands, action lists 8-18
CommandText property 22-43,

25-15, 25-16, 25-17, 25-18, 26-6,
26-7, 27-31

CommandTimeout
property 25-5, 25-18

CommandType property 25-15,
25-16, 25-17, 26-5, 26-6, 26-7,
27-31

comments
ANSI compliant A-2

Commit method 21-8
CommitTrans method 21-8
CommitUpdates method 14-25,

24-32, 24-35
common dialog boxes 8-15, 57-1

creating 57-2
executing 57-5

Common Object Request Broker
Architecture See CORBA

communications 37-1
protocols 24-15, 32-3, 37-2

UDP vs. TCP 31-3
standards 32-3

OMG 31-1
CompareBookmarks

method 22-9
compiler directives

libraries 7-10
Linux applications 14-16

I n d e x I-9

packages 15-11
compiler options 7-3

alignment A-6
compiling code 2-4
compliance A-1
component editors 52-15 to

52-18
default 52-15
registering 52-18

component interfaces
creating 57-3
properties, declaring 57-4

component libraries
adding components 45-19

Component palette 5-6
ActiveX page 5-8, 40-5
adding components 15-6,

52-1, 52-4
Additional page 5-7
ADO page 5-7, 18-1, 25-1
BDE page 5-7, 18-1
Data Access page 5-7, 18-2,

29-2
Data Controls page 18-15,

19-1, 19-2
DataSnap page 5-7, 29-2,

29-5, 29-6
dbExpress page 5-7, 18-2,

26-2
Decision Cube page 18-15,

20-1
Dialogs page 5-8
FastNet page 5-8
frames 8-14
Indy Clients page 5-8
Indy Misc page 5-8
Indy Servers page 5-8
installing components 45-18
InterBase page 5-7, 18-2
Internet page 5-7
InternetExpress page 5-7
moving components 45-19
pages listed 5-7
QReport page 5-8
Samples page 5-8
Servers page 5-8
specifying page 45-14
Standard page 5-7
System page 5-7
WebServices page 29-2
Win 3.1 page 5-8
Win32 page 5-7

component templates 8-12, 46-2
and frames 8-14, 8-15

Component wizard 45-9

component wrappers 45-4, 57-2
ActiveX controls 40-4, 40-7,

40-8 to 40-9
Automation objects 40-7 to

40-8
example 40-10 to 40-12

COM objects 40-1, 40-2, 40-3,
40-6 to 40-12

initializing 57-3
components 45-1, 46-1, 47-3

abstract 45-3
adding to Component

Palette 52-1
adding to existing unit 45-12
adding to units 45-12
bitmaps 45-14
changing 53-1 to 53-4
context menus 52-15, 52-16

to 52-17
creating 45-2, 45-8
custom 5-8
customizing 45-3, 47-1, 48-1
data-aware 56-1
data-browsing 56-1 to 56-7
data-editing 56-8 to 56-12
dependencies 45-5
derived classes 45-3, 45-12,

54-3
double-click 52-15, 52-17
grouping 9-11 to 9-13
initializing 47-13, 54-7, 56-7
installing 5-8, 15-5 to 15-6,

45-18, 52-19
interfaces 46-4, 46-6, 57-1

design-time 46-7
runtime 46-7

moving 45-19
nonvisual 45-5, 45-12, 57-3
online help 52-4
packages 15-8, 52-19
palette bitmaps 52-4
problems installing 52-19
registering 45-13
registration 52-2
resizing 9-6
responding to events 48-5,

48-7, 48-8, 56-7
standard 5-6 to 5-8
testing 45-16, 45-18, 57-6 to

57-7
ComputerName property 29-23
ConfigMode property 24-25
configuration files

Linux 14-13
connected line segments 10-10

Connected property 21-3
connection components 21-3

ConnectEvents method 40-14
connection components

database 18-7 to 18-9, 21-1 to
21-14, 24-3

accessing metadata 21-13
to 21-14

ADO 25-2 to 25-8
BDE 24-12 to 24-16
binding 24-13 to 24-15,

25-2 to 25-4, 26-3 to 26-5
dbExpress 26-2 to 26-5
executing SQL

commands 21-10 to
21-11, 25-5

implicit 21-2, 24-3, 24-13,
24-19, 25-3

in remote data
modules 29-6

statements per
connection 26-3

DataSnap 18-14, 29-3, 29-4 to
29-5, 29-21, 29-22 to 29-28

dropping
connections 29-26

managing
connections 29-26

opening
connections 29-26

protocols 29-9 to 29-11,
29-22

Connection Editor 26-5
connection names 26-4 to 26-5

changing 26-5
defining 26-5
deleting 26-5

connection parameters 24-14 to
24-15

ADO 25-3 to 25-4
dbExpress 26-4, 26-5
login information 21-4, 25-4

Connection Points map 41-11
Connection property 25-3, 25-9
Connection String Editor 25-4
ConnectionBroker 27-25
ConnectionName property 26-4
ConnectionObject property 25-4
connections

client 37-3
database 21-2 to 21-5

asynchronous 25-5
closing 24-19
limiting 29-8
managing 24-19 to 24-21

I-10 D e v e l o p e r ’ s G u i d e

naming 26-4 to 26-5
network protocols 24-15
opening 24-18, 24-19
persistent 24-18
pooling 29-7
temporary 24-20

database servers 21-3, 24-15
DCOM 29-9, 29-23
dropping 29-26
HTTP 29-10 to 29-11, 29-24
opening 29-26, 37-6
protocols 29-9 to 29-11, 29-22
SOAP 29-11, 29-25
TCP/IP 29-9 to 29-10, 29-23,

37-2 to 37-3
terminating 37-7

ConnectionString
property 21-2, 21-4, 25-3, 25-9

ConnectionTimeout
property 25-5

ConnectOptions property 25-5
consistency

transactions 18-4, 44-10
console applications 7-4

CGI 32-7
VCL and 7-4

Console Wizard 7-4
constants

assigning sequential
values 10-12

character A-6
values A-4
wide A-4

naming 10-12
null pointer A-7
wide character A-4

CONSTRAINT constraint 28-12
ConstraintErrorMessage

property 23-11, 23-21, 23-22
constraints

controls 8-4
data 23-21 to 23-22

client datasets 27-6 to
27-7, 27-29

creating 23-21
disabling 27-29
importing 23-21 to 23-22,

27-29, 28-12, 28-13
Constraints property 8-4, 27-7,

28-13
constructors 12-6, 12-15, 45-16,

47-12, 49-3, 55-4, 56-7
base class 13-8, 13-12
C++ vs Object Pascal 13-21
copy 13-7

cross-platform
applications 14-12

declaring 45-13
multiple 8-8
overriding 53-3
owned objects and 54-6, 54-7

contacting Borland 1-3
contained objects 38-9
Contains list (packages) 15-6,

15-7, 15-8, 15-10, 52-19
Content method

page producers 33-14
content producers 33-4, 33-13

event handling 33-15, 33-16
Content property

Web response objects 33-12
ContentFromStream method

page producers 33-14
ContentFromString method

page producers 33-14
ContentStream property

Web response objects 33-12
context IDs 7-30
context menus

adding items 52-16 to 52-17
Menu designer 8-37
toolbars 8-48

context numbers (Help) 9-15
ContextHelp 7-34
contravariance 13-24
controls

as ActiveX control
implementation 43-3

changing 45-3
custom 45-4
data-aware 19-1 to 19-31
data-browsing 56-1 to 56-7
data-editing 56-8 to 56-12
displaying data 19-4, 23-17
generating ActiveX

controls 43-2, 43-4 to 43-7
graphical 50-3, 54-1 to 54-11

creating 45-4, 54-3
drawing 54-3 to 54-5, 54-9

to 54-11
events 50-7

grouping 9-11 to 9-13
owner-draw 6-11, 6-13

declaring 6-12
palettes and 50-5
receiving focus 45-4
repainting 54-8, 54-10, 55-4,

55-5
resizing 50-6, 55-4
shape 54-8

windowed 45-3
ControlType property 20-9,

20-15
conversions

data types A-4
floating-point A-4
integers A-4, A-5
wide character

constants A-4
field values 23-16, 23-17 to

23-19
floating-point A-4
integers A-4, A-5
pointers to integers A-5
rounding rules A-4
values not represented A-4

Convert function 4-26, 4-28,
4-29, 4-32

converting measurements
classes 4-30 to 4-32
complex conversions 4-28
conversion factor 4-30
conversion families 4-26

example creating 4-27
registering 4-27

currency 4-30
utilities 4-25 to 4-32

ConvUtils unit 4-25
cool bars 8-42, 8-43, 9-8

adding 8-47 to 8-48
configuring 8-48
designing 8-42 to 8-49
hiding 8-49

coordinates
current drawing

position 10-25
Copy (Object Repository) 7-25
copy constructors 13-7
CopyFile function 4-9
CopyFrom

TStream 4-3
copying

bitmapped images 50-6
objects 13-6

CopyMode property 50-3
CopyRect method 10-4, 50-3,

50-6
CopyToClipboard method 6-9

data-aware memo
controls 19-9

graphics 19-9
CORBA 31-1 to 31-18

accepting client
requests 31-6, 31-8

I n d e x I-11

automatically generated
code 31-9

COM vs. 31-1
delegation model 31-8 to

31-9
IDL files 31-5
implementing objects 31-6,

31-9 to 31-12
instantiating objects 31-7
overview 31-1 to 31-4
standards 31-1 to 31-18
testing 31-16 to 31-18
threads 31-11 to 31-12
VCL and 31-8, 31-13

CORBA applications
clients 31-13 to 31-16
overview 31-1 to 31-4
servers 31-4 to 31-13
using the VCL 31-8, 31-13

CORBA Client wizard 31-13
CORBA Object wizard 31-6 to

31-7, 31-13
CORBA objects

binding 31-15
defining interfaces 31-5 to

31-12
generic 31-15

CORBA Server wizard 31-5
Count property

string lists 4-18
TSessionList 24-28

CP32MT.lib RTL library 12-18
cp32mti.lib import library 12-18
.cpp files 15-2, 15-13
Create Data Set command 22-38
Create Submenu command

(Menu designer) 8-34, 8-37
CREATE TABLE 21-11
Create Table command 22-38
CreateDataSet method 22-38
CreateObject method 42-3
CreateParam method 27-27
CreateSharedPropertyGroup

44-6
CreateSuspended

parameter 11-11
CreateTable method 22-38
CreateTransactionContextEx

example 44-13 to 44-14
creating a Web page

module 34-18
creator classes

CoClasses 40-5, 40-12
creators 58-3, 58-14 to 58-18
critical sections 11-8

warning about use 11-8, 11-9
cross-platform

applications 14-1 to 14-26
actions 8-19
creating 14-1
database 14-19 to 14-25
Internet 14-25 to 14-26
multi-tiered 29-11
porting to Linux 14-2 to

14-19
crosstabs 20-2 to 20-3, 20-10

defined 20-2
multidimensional 20-3
one-dimensional 20-2
summary values 20-2, 20-3

crtl.dcu 17-6
currency

conversion example 4-30
formats 16-9
internationalizing 16-9

Currency property
fields 23-11

CursorChanged method 51-14
cursors 22-5

bi-directional 22-48
cloning 27-14
linking 22-35, 26-11 to 26-12
moving 22-6, 22-7, 22-28,

22-29
to first row 22-6, 22-8
to last row 22-6, 22-7
with conditions 22-10

synchronizing 22-40
unidirectional 22-48

CursorType property 25-12
CurValue property 28-11
custom components 5-8
custom controls 45-4

libraries 45-4
Custom property 29-38
CustomConstraint

property 23-11, 23-21, 27-7
customizing components 47-1
CutToClipboard method 6-9

data-aware memo
controls 19-9

graphics 19-9
cw32mt.lib RTL library 12-18
cw32mti.lib import

library 12-18

D
-D linker option 15-12
data

accessing 56-1

analyzing 18-15, 20-2
changing 22-17 to 22-22
default values 19-10, 23-20
displaying 23-17, 23-17

current values 19-8
disabling repaints 19-6
in grids 19-15, 19-27

display-only 19-8
entering 22-18
formats,

internationalizing 16-9
graphing 18-15
printing 18-16
reporting 18-16
synchronizing forms 19-4

data access
components 7-15, 18-1

threads 11-4
cross-platform 17-7, 18-2
mechanisms 7-15 to 7-16,

18-1 to 18-2, 22-2
Data Access page (Component

palette) 5-7, 18-2, 29-2
data binding 43-11
Data Bindings editor 40-8
data brokers 27-25, 29-1
data compression

TSocketConnection 29-24
data constraints See constraints
data context

Web Service
applications 36-8

Data Controls page (Component
palette) 5-7, 18-15, 19-1, 19-2

Data Definition
Language 21-10, 22-42, 24-8,
26-10

Data Dictionary 23-12 to 23-14,
24-51 to 24-52, 29-3

constraints 28-13
data fields 23-6

defining 23-6 to 23-7
data filters 22-12 to 22-16

blank fields 22-14
client datasets 27-3 to 27-5

using parameters 27-28
defining 22-13 to 22-15
enabling/disabling 22-13
operators 22-14
queries vs. 22-13
setting at runtime 22-15
using bookmarks 25-10 to

25-11
data formats, default 23-14

I-12 D e v e l o p e r ’ s G u i d e

data grids 19-2, 19-14, 19-15 to
19-27

customizing 19-16 to 19-21
default state 19-15
displaying data 19-15, 19-16,

19-27
ADT fields 19-22
array fields 19-22

drawing 19-25 to 19-26
editing data 19-6, 19-25
events 19-26 to 19-27
getting values 19-17
inserting columns 19-18
properties 19-28
removing columns 19-16,

19-18, 19-19
reordering columns 19-19
restoring default state 19-21
runtime options 19-24 to

19-25
data integrity 18-5, 28-12
data links 56-5 to 56-7

initializing 56-7
Data Manipulation

Language 21-10, 22-42, 24-8
data members 3-2

initializing 13-12
message structures 51-5
naming 48-2

data modules 18-6
accessing from forms 7-23
creating 7-20
database components 24-16
editing 7-20
remote vs. standard 7-20
sessions 24-17
Web 34-2, 34-3, 34-4 to 34-5
Web applications and 33-2
Web Broker

applications 33-4
data packets 30-4

application-defined
information 27-15, 28-6

controlling fields 28-4
converting to XML

documents 30-1 to 30-8
copying 27-13 to 27-15
editing 28-7
ensuring unique

records 28-4
fetching 27-25 to 27-26, 28-7
including field

properties 28-5
limiting client edits 28-5

mapping to XML
documents 30-2

read-only 28-5
refreshing updated

records 28-6
XML 29-29, 29-31, 29-34

editing 29-35
fetching 29-34 to 29-35

Data property 27-5, 27-14,
27-15, 27-33

data sources 18-6, 19-3 to 19-5
disabling 19-4
enabling 19-4
events 19-4

data stores 25-2
data types

persistent fields 23-6
data-aware controls 18-15, 19-1

to 19-31, 23-17, 56-1
associating with

datasets 19-3 to 19-4
common features 19-2
creating 56-1 to 56-13
data-browsing 56-1 to 56-7
data-editing 56-8 to 56-12
destroying 56-7
disabling repaints 19-6, 22-8
displaying data 19-6 to 19-7

current values 19-8
in grids 19-15, 19-27

displaying graphics 19-9
editing 19-5 to 19-6, 22-17
entering data 23-14
grids 19-14
inserting records 22-18
list 19-2
read-only 19-8
refreshing data 19-6
representing fields 19-7
responding to changes 56-7

database applications 7-15, 18-1
architecture 18-5 to 18-14,

29-28
cross-platform 14-19
deployment 17-6
distributed 7-16
file-based 18-9 to 18-10,

25-14 to 25-15, 27-32 to
27-34

multi-tiered 29-3 to 29-4
porting 14-22
scaling 18-11
XML and 30-1 to 30-10

database components 7-15,
24-3, 24-12 to 24-16

applying cached
updates 24-34

identifying databases 24-13
to 24-15

sessions and 24-12 to 24-13,
24-20 to 24-21

shared 24-16
temporary 24-19

dropping 24-20
database connections 21-2 to

21-5
dropping 21-3, 21-3 to 21-4
limiting 29-8
maintaining 21-3
persistent 24-18
pooling 29-7, 44-6

Database Desktop 24-53
database drivers

BDE 24-1, 24-3, 24-14
dbExpress 26-3

database engines
third-party 17-7

Database Explorer 24-14, 24-53
database management

systems 29-1
database navigator 19-2, 19-28

to 19-31, 22-5, 22-6
buttons 19-28
deleting data 22-20
editing 22-17
enabling/disabling

buttons 19-29
help hints 19-30

Database parameter 26-4
Database Properties

editor 24-14
viewing connection

parameters 24-15
database servers 7-15, 21-3,

24-15
connecting 18-7 to 18-9
constraints 23-21, 23-21 to

23-22, 28-12
describing 21-2
types 18-2

DatabaseCount property 24-21
DatabaseName property 21-2,

24-3, 24-14
heterogenous queries 24-9

databases 7-15, 18-1 to 18-5,
56-1

access properties 56-6 to 56-7
accessing 22-1
adding data 22-21
aliases and 24-14

I n d e x I-13

choosing 18-3
connecting 21-1 to 21-14
file-based 18-3
generating HTML

responses 33-17 to 33-20
identifying 24-13 to 24-15
implicit connections 21-2
logging in 18-4, 21-4 to 21-5
naming 24-14
relational 18-1
security 18-3 to 18-4
transactions 18-4 to 18-5
types 18-2
unauthorized access 21-4
Web applications and 33-17

Databases property 24-21
DataChange method 56-11
DataCLX

defined 14-5
data-entry validation 23-15
DataField property 19-11, 56-6

lookup list and combo
boxes 19-12

DataRequest method 27-31,
28-3

dataset fields 23-22, 23-25 to
23-26

displaying 19-24
persistent 22-36

dataset page producers 33-18
converting field values 33-18

DataSet property
data grids 19-16
providers 28-2

dataset providers 18-11
DataSetCount property 21-12
DataSetField property 22-37
datasets 18-7, 22-1 to 22-53

adding records 22-18 to
22-19, 22-21

ADO-based 25-8 to 25-16
BDE-based 24-2 to 24-12
categories 22-23 to 22-24
changing data 22-17 to 22-22
closing 22-4 to 22-5

posting records 22-20
without

disconnecting 21-12
creating 22-37 to 22-39
current row 22-5
cursors 22-5
custom 22-2
decision components

and 20-4 to 20-6

deleting records 22-19 to
22-20

editing 22-17 to 22-18
fields 22-1
filtering records 22-12 to

22-16
HTML documents 33-19,

33-20
iterating over 21-12
marking records 22-9 to

22-10
modes 22-3 to 22-4
navigating 19-28, 22-5 to

22-8, 22-16
opening 22-4
posting records 22-20
providers and 28-2
queries 22-23, 22-41 to 22-48
read-only, updating 24-11
searching 22-10 to 22-12

extending a search 22-29
multiple columns 22-11,

22-12
partial keys 22-29
using indexes 22-11,

22-12, 22-27 to 22-30
states 22-3 to 22-4
stored procedures 22-24,

22-48 to 22-53
tables 22-23, 22-25 to 22-41
undoing changes 22-21
unidirectional 26-1 to 26-18
unindexed 22-21

DataSets property 21-12
DataSnap page (Component

palette) 5-7, 29-2, 29-5, 29-6
DataSource property

ActiveX controls 40-8
data grids 19-16
data navigators 19-30
data-aware controls 56-6
lookup list and combo

boxes 19-12
queries 22-46

DataType property
parameters 22-44, 22-45,

22-51
date fields

formatting 23-14
date formats A-11
__DATE__ macro

availability A-7
dates

calendar components 9-11
entering 9-11

internationalizing 16-9
local A-11
setting A-7

DateTimePicker
component 9-11

Day property 55-6
DB/2 driver

deploying 17-9
dBASE tables 24-5

accessing data 24-9
adding records 22-19
DatabaseName 24-3
indexes 24-6
local transactions 24-31
password protection 24-21 to

24-23
renaming 24-7

DBChart component 18-15
DBCheckBox component 19-2,

19-13
DBComboBox component 19-2,

19-10 to 19-11
DBConnection property 27-16
DBCtrlGrid component 19-2,

19-27 to 19-28
properties 19-28

DBEdit component 19-2, 19-8
dbExpress 17-7, 18-2, 26-1 to

26-2
components 26-1 to 26-18
cross-platform

applications 14-19 to 14-24
debugging 26-17 to 26-18
deploying 26-1
drivers 26-3
metadata 26-12 to 26-16

dbExpress applications 17-10
dbExpress page (Component

palette) 5-7, 18-2, 26-2
dbGo 25-1
DBGrid component 19-2, 19-15

to 19-27
events 19-26
properties 19-20

DBGridColumns
component 19-15

DBImage component 19-2, 19-9
to 19-10

DblClick method 51-13
DBListBox component 19-2,

19-10 to 19-11
DBLogDlg unit 21-4
DBLookupComboBox

component 19-2, 19-11 to
19-12

I-14 D e v e l o p e r ’ s G u i d e

DBLookupListBox
component 19-2, 19-11 to
19-12

DBMemo component 19-2, 19-8
to 19-9

DBMS 29-1
DBNavigator component 19-2,

19-28 to 19-31
DBRadioGroup

component 19-2, 19-13 to
19-14

DBRichEdit component 19-2,
19-9

DBSession property 24-3
DBText component 19-2, 19-8
dbxconnections.ini 26-4, 26-5
dbxdrivers.ini 26-3
DCOM 38-7, 38-8

connecting to application
server 27-25, 29-23

distributing
applications 7-19

InternetExpress
applications 29-33

multi-tiered
applications 29-9

DCOM connections 29-9, 29-23
DCOMCnfg.exe 29-33
.dcr files 52-4

bitmaps 45-14
DDL 21-10, 22-42, 22-47, 24-8,

26-10
debugging

Active Server Objects 42-8
ActiveX controls 43-16
code 2-4
COM objects 41-8, 41-17
CORBA 31-16 to 31-18
dbExpress

applications 26-17 to 26-18
service applications 7-9
transactional objects 44-26
Web server applications 32-9

to 32-11, 33-2, 34-8
wizards 58-11

decimal points A-7
Decision Cube Editor 20-7 to

20-8
Cube Capacity 20-19
Dimension Settings 20-8
Memory Control 20-8

Decision Cube page
(Component palette) 18-15,
20-1

decision cubes 20-7 to 20-8

design options 20-8
dimension maps 20-5, 20-7,

20-8, 20-19, 20-20
dimensions

opening/closing 20-9
paged 20-20

displaying data 20-9, 20-11
drilling down 20-5, 20-9,

20-11, 20-20
getting data 20-4
memory management 20-8
pivoting 20-5, 20-9
properties 20-7
refreshing 20-7
subtotals 20-5

decision datasets 20-4 to 20-6
decision graphs 20-13 to 20-18

customizing 20-15 to 20-18
data series 20-17 to 20-18
dimensions 20-14
display options 20-15
graph types 20-16
pivot states 20-9
runtime behaviors 20-19
templates 20-16

decision grids 20-10 to 20-13
dimensions

drilling down 20-11
opening/closing 20-11
reordering 20-11
selecting 20-12

events 20-12
pivot states 20-9, 20-11
properties 20-12
runtime behaviors 20-18

decision pivots 20-9 to 20-10
dimension buttons 20-10
orientation 20-10
properties 20-10
runtime behaviors 20-18

decision queries, defining 20-6
Decision Query editor 20-6
decision sources 20-9

events 20-9
properties 20-9

decision support
components 18-15, 20-1 to
20-20

adding 20-3 to 20-4
assigning data 20-4 to 20-6
design options 20-8
memory management 20-19
runtime 20-18 to 20-19

declarations
classes 46-10, 54-6

interfaces 13-2
private 46-4
protected 46-6
public 46-7
published 46-7

event handlers 48-5, 48-8,
55-13

message handlers 51-5, 51-6,
51-8

methods 10-15, 46-9, 49-4
public 49-3

new component types 46-3
properties 47-3, 47-3 to 47-7,

47-12, 48-8, 54-4
user-defined types 54-4

declarators
nesting A-6
number of A-6

__declspec 13-2
__declspec(delphirtti) 36-2
__declspec keyword 7-12, 13-28
DECnet protocol (Digital) 37-1
default

ancestor class 46-4
handlers

events 48-9
message 51-3
overriding 48-9

keyword 47-7
parameters 13-21
project options 7-3
property values 47-7

changing 53-3, 53-4
specifying 47-11 to 47-12

values 19-10
Default checkbox 7-3
Default property

action items 33-7
DEFAULT_ORDER index 27-7
DefaultColWidth property 9-15
DefaultDatabase property 25-4
DefaultDrawing property 6-12,

19-26
DefaultExpression

property 23-20, 27-7
DefaultHandler method 51-3
DefaultPage property 34-39
DefaultRowHeight

property 9-15
delegation 48-1
Delete command (Menu

designer) 8-37
Delete method 22-19

string lists 4-19

I n d e x I-15

DELETE statements 24-39,
24-42, 28-9

Delete Table command 22-40
Delete Templates command

(Menu designer) 8-37, 8-39
Delete Templates dialog

box 8-39
DeleteAlias method 24-25
DeleteFile function 4-7
DeleteFontResource

function 17-14
DeleteIndex method 27-9
DeleteRecords method 22-40
DeleteSQL property 24-39
DeleteTable method 22-40
delphiclass argument 13-28
DelphiInterface class 13-3,

13-20, 58-8
delphireturn argument 13-28
delta packets 28-8, 28-9

editing 28-8, 28-9
screening updates 28-11
XML 29-34, 29-35 to 29-36

Delta property 27-5, 27-19
DEPLOY document 17-8, 17-9,

17-15
deploying

ActiveX controls 17-5
applications 17-1
Borland Database

Engine 17-8
CLX applications 17-6
database applications 17-6
dbExpress 26-1
DLL files 17-5
fonts 17-14
general applications 17-1
IDE extensions 58-7, 58-22 to

58-24
MIDAS applications 17-10
package files 17-3
SQL Links 17-9
Web applications 17-10

deploying applications
packages 15-13

dereferenced pointers 13-6
descendant classes 46-3 to 46-4
design-time interfaces 46-7
design-time packages 15-1, 15-5

to 15-6
destination datasets,

defined 24-47
destructors 12-6, 49-3, 56-7

owned objects and 54-6, 54-7

VCL implications 13-13,
13-13 to 13-14

developer support 1-3
device contexts 10-1, 10-2, 45-7,

50-1
device-independent

graphics 50-1
devices, interactive A-2
DeviceType property 10-31
.dfm files 14-2, 16-10, 47-10

generating 16-12
diacritical marks 16-9
diagnostic messages

(ANSI) A-1
dialog boxes 57-1 to 57-7

common 8-15
creating 57-1
DLL example of 7-13
internationalizing 16-8,

16-10
multipage 9-13
property editors as 52-9
setting initial state 57-1
Windows common 57-1

creating 57-2
executing 57-5

Dialogs page (Component
palette) 5-8

digital audio tapes 10-32
DII 31-14, 31-15

Interface Repository 31-12
DimensionMap property 20-5,

20-7
Dimensions property 20-12
Direction property

parameters 22-45, 22-51
directives

#ifdef 14-16
#ifndef 14-17
$LIBPREFIX compiler 7-10
$LIBSUFFIX compiler 7-10
$LIBVERSION compiler 7-10
conditional

compilation 14-16
Linux 14-17
protected 48-5
published 47-3, 57-4

directories
include files and A-7
Linux and 14-15

Directory directive 17-11
directory service 31-3
DirtyRead 21-9
DisableCommit method 44-13

DisableConstraints
method 27-29

DisableControls method 19-6
DisabledImages property 8-46
disconnected model 18-14
DisconnectEvents method 40-14
dispatch actions 34-9
dispatch interfaces 41-12, 41-13

calling methods 40-13 to
40-14

identifiers 41-13
type compatibility 41-14
type libraries 39-9

Dispatch method 51-3, 51-5
dispatcher 33-2, 33-4 to 33-5,

34-34
auto-dispatching

objects 33-5
DLL-based applications

and 33-3
handling requests 33-8
selecting action items 33-6,

33-7
dispatchers 34-38
dispatching requests

WebSnap 34-33
dispIDs 38-16, 40-13, 41-13

binding to 41-14
dispinterfaces 41-12, 41-13

dynamic binding 39-9
type libraries 39-9

DisplayFormat property 19-25,
23-11, 23-15

DisplayLabel property 19-17,
23-11

DisplayWidth property 19-16,
23-11

distributed applications
CORBA 31-1 to 31-18
database 7-16
MTS and COM+ 7-19

distributed COM 38-7, 38-8
distributed data processing 29-2
distributed objects

CORBA See CORBA objects
division

sign of remainder A-5
dllexport 7-11, 7-12
DllGetClassObject 44-3
dllimport 7-11
DllRegisterServer 44-3
DLLs 7-12

Apache 17-10
COM servers 38-6

threading models 41-6

I-16 D e v e l o p e r ’ s G u i d e

creating 7-10, 7-11
deployment 17-10
embedding in HTML 33-14
HTTP servers 32-6
installing 17-5
internationalizing 16-11,

16-12
linking 7-15
Linux See .so files
MTS 44-2
packages 15-1, 15-2, 15-11

DML 21-10, 22-42, 22-47, 24-8
.dmt files 8-38, 8-39
docking 6-4
docking site 6-5
Document Literal style 36-1
DocumentElement

property 35-4
DoExit method 56-13
DOM 35-2, 35-2 to 35-3

implementations 35-2
using 35-3

domain errors A-8
DoMouseWheel method 51-13
double-clicks

components 52-15
responding to 52-17

Down property 9-7
speed buttons 8-44

.dpl files 15-2
drag cursors 6-2
drag object 6-3
drag-and-dock 6-4 to 6-6
drag-and-drop 6-1 to 6-4

customizing 6-3
DLLs 6-4
events 54-3
getting state information 6-3
mouse pointer 6-4

DragMode property 6-1
grids 19-19

DragOver method 51-14
draw grids 9-15
Draw method 10-4, 50-3, 50-6
drawing modes 10-29
drawing tools 50-1, 50-7, 54-6

assigning as default 8-45
changing 10-13, 54-8
handling multiple in an

application 10-12
testing for 10-12

DrawShape 10-15
drill-down forms 19-14
drintf unit 24-52
driver names 24-14

DriverName property 24-14,
26-3

DropConnections
method 24-13, 24-20

drop-down lists 19-20
drop-down menus 8-34
DropDownCount

property 9-10, 19-11
DropDownMenu property 8-48
DropDownRows property

data grids 19-20, 19-21
lookup combo boxes 19-12

dual interfaces 41-12 to 41-13
Active Server Objects 42-3
calling methods 40-13
parameters 41-15
transactional objects 44-3,

44-18
type compatibility 41-14

durability
resource dispensers 44-5
transactions 18-4, 44-10

dynamic argument 13-29
dynamic array types 36-4
dynamic binding 31-14

CORBA 31-4, 31-15
DII 31-4

dynamic columns 19-16
properties 19-16

dynamic fields 23-2 to 23-3
dynamic invocation interface

See DII
dynamic linking 7-11, 7-12

E
early binding

Automation 38-18, 41-12
COM 38-17

EBX register 14-8, 14-19
edit controls 6-6, 9-1 to 9-3, 19-2,

19-8
multi-line 19-8
rich edit formats 19-9
selecting text 6-8

Edit method 22-17, 52-9, 52-10
edit mode 22-17

canceling 22-17
EditFormat property 19-25,

23-11, 23-15
editing code 2-2, 2-3
editing script 34-32
EditKey method 22-27, 22-29
EditMask property 23-14

fields 23-11

editors
Tools API 58-3, 58-12 to

58-14
EditRangeEnd method 22-33
EditRangeStart method 22-33
Ellipse method 10-4, 10-11, 50-3
ellipses

drawing 10-11, 54-10
ellipsis (...)

buttons in grids 19-21
Embed HTML tag

(<EMBED>) 33-14
EmptyDataSet method 22-40,

27-26
EmptyTable method 22-40
EnableCommit method 44-13
EnableConstraints

method 27-29
EnableControls method 19-6
Enabled property

action items 33-6
data sources 19-4, 19-5
data-aware controls 19-7
menus 6-9, 8-41
speed buttons 8-44

EnabledChanged method 51-14
encryption,

TSocketConnection 29-24
end user adapters 34-9, 34-25
END_MESSAGE_MAP

macro 51-4, 51-7
endpoints

socket connections 37-5
EndRead method 11-8
EndWrite method 11-8
enumerated types 47-2, 54-4

constants vs. 10-12
declaring 10-12, 10-13
Type Library editor 39-9 to

39-10, 39-16
Web Services 36-6

enumerations A-6
environments A-11
EOF marker 4-4
Eof property 22-6, 22-7
era, clock function and A-11
EReadError 4-2
ERemotableException 36-14,

36-15
error messages A-7, A-10, A-11

internationalizing 16-10
errors

domain A-8
sockets 37-8
underflow range A-8

I n d e x I-17

escape sequences
source files A-7

Euro conversions 4-30, 4-32
event handlers 5-3 to 5-6, 45-6,

48-2, 48-8, 56-7
associating with events 5-4
declarations 48-5, 48-8, 55-13
default, overriding 48-9
defined 5-3
deleting 5-6
displaying the Code

editor 52-17
drawing lines 10-26
empty 48-8
locating 5-4
menu templates and 8-40
menus 5-5 to 5-6, 6-10
methods 48-4, 48-5

overriding 48-5
parameters 48-7, 48-9

notification events 48-7
passing parameters by

reference 48-9
responding to button

clicks 10-13
return type 48-3
Sender parameter 5-5
shared 5-4 to 5-6, 10-15
types 48-3, 48-7 to 48-8
writing 5-4

event objects 11-10
event sinks 41-11

defining 40-14
EventFilter method

system events 51-14
events 5-3 to 5-6, 45-6, 48-1 to

48-9
accessing 48-5
ActiveX controls 43-10 to

43-11
ADO connections 25-7 to

25-8
application-level 8-2
associating with

handlers 5-4
Automation

controllers 40-10, 40-14 to
40-15

Automation objects 41-5
COM 41-10, 41-11
COM objects 41-3, 41-10 to

41-11
COM+ 40-15, 44-20 to 44-24
data grids 19-26 to 19-27
data sources 19-4

data-aware controls
enabling 19-7

default 5-4
defining new 48-6 to 48-9
field objects 23-15 to 23-16
firing 43-11
graphical controls 50-7
implementing 48-2, 48-4
inherited 48-4
interfaces 41-10
login 21-5
message handling 51-4, 51-6
mouse 10-24 to 10-26

testing for 10-26
naming 48-8
providing help 52-4
responding to 48-5, 48-7,

48-8, 56-7
shared 5-5
signalling 11-10
standard 48-4
system 3-3
timeout 11-11
types 3-3
user 3-3
VCL component

wrappers 40-2
waiting for 11-10
XML brokers 29-35

EWriteError 4-2
__except keyword 12-7, 12-8
Exception

defined 3-5
Exception class 12-17
exception handling 12-1 to

12-18
C++ syntax 12-1
catch statement 12-3
compiler options 12-14
constructors and

destructors 12-6
exception specification 12-4
filters 12-8
helper functions 12-7
safe pointers 12-5
structured exceptions 12-6

example 12-11
syntax 12-7

throw statement 12-2
try block 12-2
VCL 12-15

__except keyword 12-10
exceptions 49-2, 51-3

bit format 12-12
constructors 13-13

definition 12-1
Linux 14-14
raising 4-2
reraising 4-2
threads 11-6

exclusive locks
tables 24-6

Exclusive property 24-6
ExecProc method 22-53, 26-10
ExecSQL method 22-47, 26-10

update objects 24-45
executable files

COM servers 38-7
internationalizing 16-11,

16-12
on Linux 14-14

Execute method
ADO commands 25-17,

25-19
client datasets 27-27, 28-3
connection

components 21-10 to 21-11
dialogs 8-15, 57-5
providers 28-3
TBatchMove 24-50
threads 11-4

ExecuteOptions property 25-11
ExecuteTarget method 8-28
EXISTINGARRAY macro 13-17,

13-19
exit functions A-10
Expandable property 19-23
Expanded property

columns 19-22, 19-23
data grids 19-20

exported functions 7-11, 7-12
Expression property 27-11
ExprText property 23-10
extended character sets A-2

F
factory 34-5
FastNet page (Component

palette) 5-8
features

non-portable Windows 14-7
Fetch Params command 27-27
FetchAll method 14-25, 24-32
FetchBlobs method 27-26, 28-3
FetchDetails method 27-26, 28-3
fetch-on-demand 27-26
FetchOnDemand

property 27-26
FetchParams method 27-27,

28-3

I-18 D e v e l o p e r ’ s G u i d e

fgetpos function A-10
field attributes 23-12 to 23-14

assigning 23-13
in data packets 28-5
removing 23-14

field datalink class 56-11
field definitions 22-38
Field Link designer 22-35
field objects 23-1 to 23-27

accessing values 23-19 to
23-20

defining 23-5 to 23-10
deleting 23-10
display and edit

properties 23-11
dynamic 23-2 to 23-3

vs. persistent 23-2
events 23-15 to 23-16
persistent 23-3 to 23-16

vs. dynamic 23-2
properties 23-1, 23-10 to

23-15
runtime 23-12
sharing 23-12

field types
converting 23-16, 23-17 to

23-19
FieldAddress method 13-22
FieldByName method 22-31,

23-20
FieldCount property

persistent fields 19-17
FieldDefs property 22-38
FieldKind property 23-11
FieldName property 23-5,

23-11, 29-38
data grids 19-20, 19-21
decision grids 20-12
persistent fields 19-17

fields 23-1 to 23-27
abstract data types 23-22 to

23-27
activating 23-16
adding to forms 10-26 to

10-27
assigning values 22-22
changing values 19-5
databases 56-6, 56-7
default formats 23-14
default values 23-20
displaying values 19-11,

23-17
entering data 22-18, 23-14
hidden 28-5

limiting valid data 23-21 to
23-22

listing 21-13
message records 51-7
mutually-exclusive

options 19-2
null values 22-21
persistent columns

and 19-17
properties 23-1
read-only 19-5
retrieving data 23-17
updating values 19-5

Fields editor 7-23, 23-3
applying field

attributes 23-13
creating persistent

fields 23-4 to 23-5, 23-5 to
23-10

defining attribute sets 23-13
deleting persistent

fields 23-10
list of fields 23-4
navigation buttons 23-4
removing attribute sets 23-14
reordering columns 19-19
title bar 23-4

Fields property 23-19
FieldValues property 23-19
file lists

dragging items 6-2, 6-3
dropping items 6-3

file names
changing A-9
searching for A-7

file permissions
Linux 14-14

file streams
changing the size of 4-4
creating 4-6
end of marker 4-4
exceptions 4-2
file I/O 4-5 to 4-7
getting a handle 4-9
opening 4-6
portable 4-5

FileAge function 4-9
file-based applications 18-9 to

18-10
client datasets 27-32 to 27-34

FileExists function 4-7
FileGetDate function 4-9
FileName property

client datasets 18-9, 27-33,
27-34

file-position indicator A-9
files 4-4 to 4-12

appending A-9
buffering A-9
copying 4-9
date-time routines 4-9
deleting 4-7
finding 4-7
form 14-2
graphics 10-19 to 10-21, 50-4
handles 4-5, 4-6
manipulating 4-7 to 4-9
modes 4-6
opening

abort function and A-10
multiple times A-9
remove function and A-9

position 4-4
renaming 4-9, A-9
resource 8-42
routines

date-time routines 4-9
runtime library 4-7
Windows API 4-5

seeking 4-4
sending over the Web 33-12
size 4-4
temporary A-10
truncation while writing

to A-9
working with 4-4 to 4-12
zero-length A-9

files streams 4-5 to 4-7
FileSetDate function 4-9
fill patterns 10-8
FillRect method 10-4, 50-3
Filter property 22-13, 22-14 to

22-15
Filtered property 22-13
FilterGroup property 25-12,

25-13
FilterOnBookmarks

method 25-10
FilterOptions property 22-15
filters 22-12 to 22-16

blank fields 22-14
case sensitivity 22-15
client datasets 27-3 to 27-5

using parameters 27-28
comparing strings 22-15
defining 22-13 to 22-15
enabling/disabling 22-13
exception handling 12-8
operators 22-14
options for text fields 22-15

I n d e x I-19

queries vs. 22-13
ranges vs. 22-30
setting at runtime 22-15
using bookmarks 25-10 to

25-11
__finally keyword 12-7, 12-13
FindClose procedure 4-7
FindDatabase method 24-20
FindFirst function 4-7
FindFirst method 22-16
FindKey method 22-27, 22-29

EditKey vs. 22-29
FindLast method 22-16
FindNearest method 22-27,

22-29
FindNext function 4-7
FindNext method 22-16
FindPrior method 22-16
FindResourceHInstance

function 16-11
FindSession method 24-28
Fire 43-11
FireOnChanged 43-12
FireOnRequestEdit 43-12
First Impression 17-5
First method 22-6
FixedColor property 9-15
FixedCols property 9-15
FixedOrder property 8-48, 9-8
FixedRows property 9-15
FixedSize property 9-8
flags 56-4
FlipChildren method 16-7
floating-point values A-4

decimal point character A-7
format specifiers A-3

FloodFill method 10-4, 50-3
fly-by help 9-15
fly-over help 19-30
fmod function A-8
focus 45-4

fields 23-16
moving 9-5

FocusControl method 23-16
FocusControl property 9-4
Font property 9-2, 9-4, 10-4,

50-3
column headers 19-20
data grids 19-20
data-aware memo

controls 19-9
FontChanged method 51-14
fonts 17-14

height of 10-5
Footer property 33-19

FOREIGN KEY constraint 28-13
foreign translations 16-1
form files 3-7, 14-2, 16-12
form linking 8-3
form wizards 58-3
Format property 20-12
formats A-11
formatting data

international
applications 16-9

forms 8-1
adding fields to 10-26 to

10-27
adding to projects 8-1 to 8-4
adding unit references 8-3
as components 57-1
creating at runtime 8-6
displaying 8-5
drill down 19-14
global variable for 8-5
linking 8-3
main 8-2
master/detail tables 19-14
memory management 8-5
modal 8-5
modeless 8-5, 8-6
passing arguments to 8-7 to

8-8
querying properties

example 8-8
referencing 8-3
retrieving data from 8-8 to

8-11
sharing event handlers 10-15
synchronizing data 19-4
using local variables to

create 8-7
Forms unit

Web applications and 33-3
Formula One 17-5
Found property 22-16
FoxPro tables

local transactions 24-31
fprintf function A-9
FrameRect method 10-4
frames 8-12, 8-13 to 8-15

and component
templates 8-14, 8-15

graphics 8-15
resources 8-15
sharing and

distributing 8-15
FReadOnly 56-9
free threading 41-6 to 41-7
FreeBookmark method 22-10

free-threaded marshaler 41-7
FromCommon 4-30
fscanf function A-9
ftell function A-10
functions 45-6

arguments 13-7
C++ vs Object Pascal 13-23
graphics 50-1
math A-8
naming 49-2
property settings 52-11
reading properties 47-6,

52-9, 52-10
return type 49-2
virtual 13-12
Windows API 45-3, 50-1

G
GDI applications 45-7, 50-1
Generate event support

code 41-10
geometric shapes

drawing 54-10
GetAliasDriverName

method 24-26
GetAliasNames method 24-26
GetAliasParams method 24-26
GetAttributes method 52-10
GetBookmark method 22-9
GetConfigParams

method 24-26
GetData method

fields 23-16
GetDatabaseNames

method 24-26
GetDriverNames method 24-26
GetDriverParams method 24-26
getenv function A-11
GetExceptionCode

function 12-7
GetExceptionInformation

function 12-7, 12-8
GetFieldByName method 33-9
GetFieldNames method 21-13,

24-26
GetFloatValue method 52-9
GetGroupState method 27-10
GetHandle 7-29
GetHelpFile 7-29
GetHelpStrings 7-29
GetIDsOfNames method 40-13,

41-13
GetIndexNames method 21-14,

22-26
GetInterface method 13-4

I-20 D e v e l o p e r ’ s G u i d e

GetMethodValue method 52-9
GetNextPacket method 14-25,

24-32, 27-25, 27-26, 28-3
GetOptionalParam

method 27-15, 28-6
GetOrdValue method 52-9
GetPalette method 50-5
GetParams method 28-3
GetPassword method 24-22
GetProcAddress 7-11
GetProcedureNames

method 21-14
GetProcedureParams

method 21-14
GetProperties method 52-10
GetRecords method 28-3, 28-7
GetSessionNames

method 24-29
GetStoredProcNames

method 24-26
GetStrValue method 52-9
GetTableNames method 21-13,

24-26
GetValue method 52-9
GetVersionEx function 17-14
GetViewerName 7-28
GetXML method 30-10
-Gi linker option 15-12
-Gl linker option 15-12
Global Offset Table

(GOT) 14-18
global routines 4-1
Glyph property 8-44, 9-7
GNU assembler

Linux 14-16
GNU make utility

Linux 14-14
GotoBookmark method 22-9
GotoCurrent method 22-40
GotoKey method 22-28
GotoNearest method 22-28
-Gpd linker option 15-12
-Gpr linker option 15-12
Graph Custom Control 17-5
Graphic property 10-18, 10-21,

50-4
graphical controls 45-4, 50-3,

54-1 to 54-11
bitmaps vs. 54-4
creating 45-4, 54-3
drawing 54-3 to 54-5, 54-9 to

54-11
events 50-7
saving system resources 45-4

graphics 45-7, 50-1 to 50-7

adding controls 10-17
adding to HTML 33-14
associating with strings 4-19
changing images 10-20
complex 50-6
containers 50-4
copying 10-22
deleting 10-22
displaying 9-16
drawing lines 10-5, 10-10 to

10-11, 10-27 to 10-29
changing pen width 10-6
event handlers 10-26

drawing tools 50-1, 50-7,
54-6

changing 54-8
drawing vs. painting 10-4,

10-22
file formats 10-3
files 10-19 to 10-21
functions, calling 50-1
in frames 8-15
internationalizing 16-9
loading 10-19, 50-4
methods 50-3, 50-4

copying images 50-6
palettes 50-5

owner-draw controls 6-11
pasting 10-22
programming overview 10-1

to 10-3
redrawing images 50-7
replacing 10-20
resizing 10-20, 19-10, 50-6
rubber banding

example 10-23 to 10-29
saving 10-20, 50-4
standalone 50-3
storing 50-4
types of objects 10-3

graphics boxes 19-2
graphics methods 50-6

palettes 50-5
graphics objects

threads 11-5
GridLineWidth property 9-15
grids 9-15, 19-2, 55-1, 55-3, 55-6,

55-12
adding rows 22-18
color 10-6
customizing 19-16 to 19-21
data-aware 19-14, 19-27
default state 19-15
displaying data 19-15, 19-16,

19-27

drawing 19-25 to 19-26
editing data 19-6, 19-25
getting values 19-17
inserting columns 19-18
removing columns 19-16,

19-18, 19-19
reordering columns 19-19
restoring default state 19-21
runtime options 19-24 to

19-25
group boxes 9-12
Grouped property

tool buttons 8-47
GroupIndex property 9-7

menus 8-41
speed buttons 8-44, 8-45

grouping components 9-11 to
9-13

grouping levels 27-9
maintained aggregates 27-12

GroupLayout property 20-10
Groups property 20-10
GUI applications 8-1
GUIDs 38-3, 39-8, 40-5

H
.h files 15-2, 15-13
Handle property 4-7, 37-7, 45-3,

45-4, 45-5, 50-3
device context 10-1, 10-2

HANDLE_MSG macro 51-2
HandleException method 51-3
handles

resource modules 16-11
socket connections 37-7

HandleShared property 24-16
HandlesTarget method 8-28
HasConstraints property 23-11
HasFormat method 6-10, 10-23
header controls 9-13
Header property 33-19
headers

HTTP requests 32-4
owner-draw 6-11

Height property 8-4
list boxes 19-11

Help 52-4
context sensitive 9-15
hints 9-15
tool-tip 9-15
type information 39-8

Help hints 19-30
Help Manager 7-26, 7-27 to 7-36
Help selectors 7-32, 7-35
Help systems 7-26, 52-4

I n d e x I-21

files 52-4
interfaces 7-27
keywords 52-5
registering objects 7-32
tool buttons 8-48

Help viewers 7-26
HelpContext 7-34
HelpContext property 7-33,

9-15
helper objects 4-1
HelpFile property 7-34, 9-15
HelpIntfs unit 7-27
HelpKeyword 7-34
HelpKeyword property 7-33
HelpSystem 7-34
HelpType 7-33, 7-34
heterogeneous queries 24-9 to

24-10
Local SQL 24-9

hidden fields 28-5
hidesbase argument 13-29
Hiding unused items and

categories in action bands 8-22
hierarchy (classes) 46-3
Hint property 9-15
hints 9-15
Hints property 19-30
holder classes 36-6
HookEvents method 51-11
horizontal track bars 9-5
HorzScrollBar 9-4
host names 37-4

IP addresses vs. 37-4
Host property

TSocketConnection 29-23
hosts 29-23, 37-4

addresses 37-4
URLs 32-3

hot keys 9-5
HotImages property 8-46
HotKey property 9-5
HTML commands 33-13

database information 33-18
generating 33-14

HTML documents 32-5
ASP and 42-1
databases and 33-17
dataset page

producers 33-18
datasets 33-19, 33-20
embedded ActiveX

controls 43-1
embedding tables 33-19
generated for

ActiveForms 43-6

HTTP response
messages 32-6

InternetExpress
applications 29-31

page producers 33-13 to
33-17

style sheets 29-38
table producers 33-18 to

33-20
templates 29-36, 29-38 to

29-40, 33-13 to 33-15
HTML forms 29-37
HTML Result tab 34-2
HTML Script tab 34-2
HTML tables 33-14, 33-19

captions 33-19
creating 33-18 to 33-20
setting properties 33-19

HTML templates 29-38 to 29-40,
33-13 to 33-17, 34-4

default 29-36, 29-38
HTMLDoc property 29-36,

33-14
HTMLFile property 33-14
HTML-transparent tags

converting 33-13, 33-15
parameters 33-13
predefined 29-39, 33-14
syntax 33-13

HTTP 32-3
connecting to application

server 29-24
message headers 32-3
multi-tiered

applications 29-10 to 29-11
overview 32-5 to 32-6
request headers 32-4, 33-9,

42-4
request messages See request

messages
response headers 33-12, 42-5
response messages See

response messages
SOAP 36-1
status codes 33-11

HTTP requests
images 34-37

HTTP responses
actions 34-36
images 34-37

httpd.conf 17-11
httpsrvr.dll 29-10, 29-13, 29-24
HyperHelp viewer 7-26
hypertext links

adding to HTML 33-14

I
IApplicationObject

interface 42-3
IAppServer interface 27-30,

27-32, 28-3 to 28-4, 29-4, 29-5
calling 29-27
extending 29-16
local providers 28-3
remote providers 28-3
state information 29-19
transactions 29-18
XML brokers 29-32

IAppServerSOAP
interface 29-5, 29-25

IConnectionPoint
interface 40-14, 41-11

IConnectionPointContainer
interface 40-14, 41-11

IConnectionPointContainerImpl
implementation 41-11

icons 9-17, 50-4
adding to components 45-14
adding to menus 8-21
graphics object 10-3
toolbars 8-46
tree views 9-10

ICustomHelpViewer 7-26, 7-27,
7-28, 7-29

implementing 7-28
IDataIntercept interface 29-24
IDE

adding actions 58-9 to 58-10
adding images 58-9
customizing 58-1
deleting buttons 58-10 to

58-11
identifiers

 See also GUIDs
case sensitivity A-3
constants 10-12
data members 48-2
events 48-8
external A-3
invalid 8-31
length A-2
message-record types 51-7
methods 49-2
property settings 47-6
resources 52-4
significant characters in A-2
types 10-12

ideographic characters 16-3
abbreviations and 16-8

I-22 D e v e l o p e r ’ s G u i d e

IDispatch interface 38-8, 38-19,
41-12, 41-13

Automation 38-12, 40-13
identifiers 41-13, 41-14

IDL (Interface Definition
Language) 31-5, 38-17, 38-19

Type Library editor 39-7
IDL compiler 38-19
IDL files 31-5

compiling 31-6
CORBA clients 31-13
CORBA Server Wizard 31-5
exporting from type

library 39-19
IDOMImplementation 35-3
IEEE

floating-point formats A-3
rounding A-4

IETF protocols and
standards 32-3

IExtendedHelpViewer 7-27,
7-31

#ifdef directive 14-16
#ifndef directive 14-17
IHelpManager 7-27, 7-35
IHelpSelector 7-27, 7-31
IHelpSystem 7-27, 7-35
IIDs 38-3, 40-5
IInterface

implementing 13-3, 13-4
lifetime management 13-5

IInvokable 36-2
IIS 42-1

version 42-2
Image Editor

using 45-14
Image HTML tag

() 33-14
image requests 34-37
ImageIndex property 8-46, 8-48
ImageList 8-19
ImageMap HTML tag

(<MAP>) 33-14
images 9-17, 19-2, 50-3

adding 10-17
adding control for 6-12
adding to menus 8-35
brushes 10-9
changing 10-20
controls for 10-2, 10-16
copying 50-6
displaying 9-16
drawing 54-9
erasing 10-22
in frames 8-15

internationalizing 16-9
redrawing 50-7
reducing flicker 50-6
regenerating 10-2
saving 10-20
scrolling 10-17
tool buttons 8-46

Images property
tool buttons 8-46

IMarshal interface 41-14, 41-16
IME 16-8
ImeMode property 16-8
ImeName property 16-8
Implementation

Repository 31-3
Import ActiveX Control

command 40-2, 40-4
import libraries 7-11, 7-15
import library 7-11
Import Type Library

command 40-2, 40-3
imported functions 7-11
ImportedConstraint

property 23-11, 23-21
include files

searching for A-7
Include Unit Hdr command 8-3
Increment property 9-5
incremental fetching 27-25,

29-19
incremental search 19-10
Indent property 8-44, 8-46, 8-48,

9-10
index definitions 22-38

copying 22-39
index files 24-6
Index Files editor 24-6
Index property

fields 23-11
index reserved word 55-8
index-based searches 22-11,

22-12, 22-27 to 22-30
IndexDefs property 22-38
indexes 22-26 to 22-37, 47-8

batch moves and 24-49
client datasets 27-7 to 27-10
dBASE tables 24-6 to 24-7
deleting 27-9
grouping data 27-9 to 27-10
listing 21-14, 22-26
master/detail

relationships 22-35
ranges 22-30
searching on partial

keys 22-29

sorting records 22-26 to
22-27, 27-7

specifying 22-26 to 22-27
IndexFieldCount

property 22-26
IndexFieldNames

property 22-27, 26-7, 27-8
IndexName vs. 22-27

IndexFields property 22-26
IndexFiles property 24-6
IndexName property 24-6, 26-7,

27-9
IndexFieldNames vs. 22-27

IndexOf method 4-18, 4-19
Indy Clients page (Component

palette) 5-8
Indy Misc page (Component

palette) 5-8
Indy Servers page (Component

palette) 5-8
INFINITE constant 11-11
Informix drivers

deploying 17-9
Inherit (Object Repository) 7-25
inheritance

multiple 13-2
restrictions 13-2

inherited
events 48-4
methods 48-6
properties 54-3, 55-3

publishing 47-3
inherited keyword 13-8, 13-10,

13-12, 13-14
inheriting from classes 3-4 to

3-5
InheritsFrom method 13-22
.ini files 14-6

Win-CGI applications 32-7
InitializeControl method 43-11
InitWidget property 14-12
INITWIZARD0001 58-22
inner objects 38-9
in-process servers 38-6

ActiveX 38-13
ASP 42-7
MTS 44-2

input controls 9-4
input focus 45-4

fields 23-16
Input Mask editor 23-14
input method editor 16-8
input parameters 22-50
input/output parameters 22-50

I n d e x I-23

Insert command (Menu
designer) 8-37

Insert From Resource command
(Menu designer) 8-37, 8-42

Insert from Resource dialog
box 8-42

Insert From Template command
(Menu designer) 8-37, 8-38

Insert method 22-18, 22-19
Append vs. 22-18
menus 8-40
strings 4-18

INSERT statement 21-11
INSERT statements 24-39,

24-42, 28-9
Insert Template dialog box 8-39
InsertObject method 4-19
InsertRecord method 22-21
InsertSQL property 24-39
Install COM+ objects

command 44-27
Install command

(Component) 45-19
Install Components dialog

box 45-19
Install MTS objects

command 44-27
installation

programs 17-2
support 1-3

installation support 1-3
Installing transactional

objects 44-27
InstallShield Express 2-5, 17-1

deploying
applications 17-2
BDE 17-8
packages 17-3
SQL Links 17-9

instances 48-2
instancing

COM servers 41-8
instantiation 13-5
int types A-3
INTAComponent 58-14
INTAServices 58-8, 58-9, 58-18
integer types A-3
integers A-6

arrays and A-5
casting to pointer A-5
dividing A-5
enumerations and A-6
pointers and A-5
right shifted A-5
signed A-4

IntegralHeight property 9-9,
19-11

integrated debugger 2-4
integrity violations 24-51
InterBase driver

deploying 17-9
InterBase page (Component

palette) 5-7, 18-2
InterBase tables 24-9
InterBaseExpress 14-21
interceptors 38-5
__interface 13-2, 36-2
Interface Definition Language

See IDL
interface maps 38-23
interface pointers 38-5
Interface Repository 31-4

registering CORBA
interfaces 31-12

INTERFACE_UUID
macro 13-2, 36-2

interfaces 7-12, 46-4, 46-6, 57-1,
57-3

ActiveX 38-20
customizing 43-8 to 43-13

adding methods 41-10
adding properties 41-9
application servers 29-16 to

29-17, 29-27
Automation 41-12 to 41-14
COM 7-19, 38-1, 38-3 to 38-4,

39-8 to 39-9, 40-1, 41-3, 41-9
to 41-14

declarations 40-5
events 41-10
wrappers 40-5

COM+ event objects 44-23
CORBA 31-2, 31-5 to 31-12
custom 41-14
declaring 13-2
design-time 46-7
dispatch 41-13
distributed applications 3-4
DOM 35-2
dynamic binding 31-4, 39-9,

41-12
extending single

inheritance 3-4
Help system 7-27
implementing 38-6, 41-3
internationalizing 16-8,

16-10, 16-12
invokable 36-2 to 36-9
multiple inheritance 13-2

nonvisual program
elements 45-5

outgoing 41-10, 41-11
properties, declaring 57-4
registering 31-12 to 31-13
runtime 46-7
skeletons and 31-2
stubs and 31-2
Tools API 58-1, 58-4 to 58-7

version numbers 58-11 to
58-12

type libraries 38-12, 38-18,
40-5, 41-9

Type Library editor 39-8 to
39-9, 39-13, 41-9

Web Services 36-1
XML nodes 35-4

InternalCalc fields 23-6, 27-10 to
27-11

indexes and 27-9
internationalizing

applications 16-1
abbreviations and 16-8
converting keyboard

input 16-8
localizing 16-11

Internet Engineering Task
Force 32-3

Internet Information Server
(IIS) 42-1

version 42-2
Internet page (Component

palette) 5-7
Internet servers 32-1 to 32-11
Internet standards and

protocols 32-3
InternetExpress 7-18, 29-31 to

29-40
vs. ActiveForms 29-29

InternetExpress page
(Component palette) 5-7

intranets
 See local networks
host names 37-4

InTransaction property 21-7
Invalidate method 54-10
invocation registry 36-3, 36-12

creating invokable
classes 36-13

invokable classes
creating 36-13

invokable interfaces 36-2 to 36-9
calling 36-16 to 36-17
implementing 36-12 to 36-13
namespaces 36-3

I-24 D e v e l o p e r ’ s G u i d e

registering 36-3
Invoke method 41-13
InvokeRegistry.hpp 36-4
invokers 36-11
IObjectContext interface 38-15,

42-3, 44-4, 44-5
methods to end

transactions 44-12
IObjectControl interface 38-15,

44-2
IOleClientSite interface 40-15
IOleDocumentSite

interface 40-15
iostreams A-9
IOTAActionServices 58-8
IOTABreakpointNotifier 58-18
IOTACodeCompletionServices

58-8
IOTAComponent 58-14
IOTACreator 58-14
IOTADebuggerNotifier 58-18
IOTADebuggerServices 58-8
IOTAEditLineNotifier 58-18
IOTAEditor 58-13
IOTAEditorNotifier 58-18
IOTAEditorServices 58-8
IOTAFile 58-14, 58-16
IOTAFormNotifier 58-18
IOTAFormWizard 58-3
IOTAIDENotifier 58-18
IOTAKeyBindingServices 58-8
IOTAKeyboardDiagnostics 58-8
IOTAKeyboardServices 58-8
IOTAMenuWizard 58-3
IOTAMessageNotifier 58-18
IOTAMessageServices 58-8
IOTAModule 58-12
IOTAModuleNotifier 58-18
IOTAModuleServices 58-8,

58-13
IOTANotifier 58-18
IOTAPackageServices 58-8
IOTAProcessModNotifier 58-18
IOTAProcessNotifier 58-19
IOTAProjectWizard 58-3
IOTAServices 58-8
IOTAThreadNotifier 58-19
IOTAToDoServices 58-8
IOTAToolsFilter 58-8
IOTAToolsFilterNotifier 58-19
IOTAWizard 58-2, 58-3
IOTAWizardServices 58-8
IP addresses 37-4, 37-6

host names vs. 37-4
hosts 37-4

IProvideClassInfo
interface 38-17

IProviderSupport interface 28-2
IPX/SPX protocols 37-1
IRequest interface 42-4
IResponse interface 42-5
is operator 13-22
isalnum function A-8
isalpha function A-8
ISAPI applications 32-6, 32-7

creating 33-1, 34-8
debugging 32-10
request messages 33-2

ISAPI DLLs 17-10
IsCallerInRole method 44-16
iscntrl function A-8
IScriptingContext interface 42-2
ISecurityProperty

interface 44-16
IServer interface 42-6
ISessionObject interface 42-5
islower function A-8
isolation

transactions 18-4, 44-10
ISpecialWinHelpViewer 7-27
isprint function A-8
IsSecurityEnabled 44-16
isupper function A-8
IsValidChar method 23-16
ItemHeight property 9-9

combo boxes 19-11
list boxes 19-11

ItemIndex property 9-9
radio groups 9-12

Items property
list boxes 9-9
radio controls 19-13
radio groups 9-12

ITypeComp interface 38-18
ITypeInfo interface 38-18
ITypeInfo2 interface 38-18
ITypeLib interface 38-18
ITypeLib2 interface 38-18
IUnknown

implementing 13-4
IUnknown interface 38-3, 38-4,

38-19
ATL support 38-23
Automation

controllers 41-13
implementing 13-3
lifetime management 13-5
tracing calls 41-8

IXMLNode 35-4 to 35-5, 35-7

J
javascript libraries 29-31, 29-33

locating 29-32, 29-33
just-in-time activation 29-7, 44-4

to 44-5
enabling 44-5

K
K footnotes (Help systems) 52-5
KeepConnection property 21-3,

21-12, 24-18
KeepConnections

property 24-13, 24-18
key fields 22-32

multiple 22-31, 22-32
key violations 24-51
keyboard events

internationalization 16-8
keyboard mappings 16-8, 16-9
keyboard shortcuts 9-5

adding to menus 8-33 to 8-34
key-down messages 48-5, 56-9
KeyDown method 51-14, 56-10
KeyExclusive property 22-29,

22-33
KeyField property 19-12
KeyFieldCount property 22-29
key-press events 48-3, 48-9
KeyPress method 51-14
KeyString method 51-14
KeyUp method 51-14
KeyViolTableName

property 24-51
keyword extensions 13-23
keyword-based help 7-30
KeywordHelp 7-34
keywords 52-5

protected 48-5
Kind property

bitmap buttons 9-7

L
labels 9-3, 16-9, 19-2, 45-4

columns 19-17
language extensions 13-28
Last method 22-6
late binding 31-14

Automation 41-12, 41-13
Layout property 9-7
leap years 55-9
Left property 8-4
LeftCol property 9-15
.lib files 15-2, 15-13

I n d e x I-25

packages 15-13
$LIBPREFIX directive 7-10
libraries

custom controls 45-4
exceptions 12-18

LibraryName property 26-3
$LIBSUFFIX directive 7-10
$LIBVERSION directive 7-10
.lic file 43-7
license agreement 17-15
license keys 43-7
license package file 43-7
licensing

ActiveX controls 43-5, 43-7
Internet Explorer 43-7

lines
drawing 10-5, 10-10, 10-10 to

10-11, 10-27 to 10-29
changing pen width 10-6
event handlers 10-26

erasing 10-28
Lines property 9-3, 47-8
LineSize property 9-5
LineTo method 10-4, 10-8,

10-10, 50-3
Link HTML tag (<A>) 33-14
linker switches

packages 15-12
linking 7-11
Linux

batch files 14-13
cross-platform

applications 14-1 to 14-26
directories 14-15
Registry 14-13
system notifications 51-10 to

51-15
Windows vs. 14-13 to 14-14

list boxes 9-9, 19-2, 19-11, 55-1
data-aware 19-10 to 19-12
dragging items 6-2, 6-3
dropping items 6-3
owner-draw 6-11

draw-item events 6-15
measure-item events 6-14

populating 19-10
storing properties

example 8-8
list controls 9-9 to 9-11
List property 24-29
list views

owner draw 6-11
listening connections 37-2, 37-3,

37-7, 37-9
closing 37-7

port numbers 37-5
ListField property 19-12
lists

accessing 4-14
adding 4-13
collections 4-15
deleting 4-14
persistent 4-14
rearranging 4-14
string 4-14, 4-15 to 4-19
using in threads 11-5

ListSource property 19-12
load balancing 31-3
Loaded method 47-13
LoadFromFile method

ADO datasets 25-14
client datasets 18-9, 27-33
graphics 10-19, 50-4
strings 4-15

LoadFromStream method
client datasets 27-33

LoadLibrary 7-11
LoadPackage function 15-4
LoadParamListItems

procedure 21-14
LoadParamsFromIniFile

method 26-5
LoadParamsOnConnect

property 26-4
local databases 18-3

accessing 24-5
aliases 24-24
BDE support 24-5 to 24-7
renaming tables 24-7

local dates A-11
local networks 31-3
Local SQL 24-9, 24-10

heterogeneous queries 24-9
local time A-11
local transactions 24-31
locale settings 4-21
locales 16-1

data formats and 16-9
resource modules 16-10

LocalHost property
client sockets 37-6

localization 16-12
localizing applications 16-1
resources 16-10, 16-11, 16-12

localizing applications 16-12
LocalPort property

client sockets 37-6
Locate method 22-10
Lock method 11-7

locking objects
nesting calls 11-7
threads 11-7

LockList method 11-7
LockType property 25-12
LogChanges property 27-5,

27-34
logging in

SOAP connections 29-25
Web connections 29-25

logical values 19-2, 19-13
Login dialog box 21-4
login events 21-5
login information

specifying 21-4
login pages

WebSnap 34-26 to 34-28
login scripts 21-4 to 21-5
login support

WebSnap 34-24 to 34-30
LoginPrompt property 21-4
logins, requiring 34-28
lookup combo boxes 19-2, 19-11

to 19-12
in data grids 19-20
lookup fields 19-12
populating 19-21
secondary data

sources 19-12
lookup fields 19-12, 23-6

caching values 23-9
defining 23-8 to 23-9
in data grids 19-20
performance 23-9
providing values

programmatically 23-9
specifying 19-21

lookup list boxes 19-2, 19-11 to
19-12

lookup fields 19-12
secondary data

sources 19-12
Lookup method 22-11
lookup values 19-17
LookupCache property 23-9
LookupDataSet property 23-9,

23-11
LookupKeyFields

property 23-9, 23-11
LookupResultField

property 23-11
LParam parameter 51-9
.lpk file 43-7
LPK_TOOL.EXE 43-7

I-26 D e v e l o p e r ’ s G u i d e

M
m_spObjectContext 44-4
m_VclCtl 43-10
macros 13-17, 13-21, 13-28, 51-4

expansion A-7
HANDLE_MSG 51-2

main form 8-2
main function A-2
main VCL thread 11-4

OnTerminate event 11-7
MainMenu component 8-30
maintained aggregates 18-15,

27-11 to 27-13
aggregate fields 23-10
specifying 27-11 to 27-12
subtotals 27-12
summary operators 27-12
values 27-13

MainWndProc method 51-3
make utility

Linux 14-14
malloc function A-10
Man pages 7-26
mappings

XML 30-2 to 30-3
defining 30-4

Mappings property 24-49
Margin property 9-7
marshaling 38-7

COM interfaces 38-8 to 38-9,
41-3, 41-14 to 41-16

CORBA interfaces 31-2
custom 41-15
IDispatch interface 38-13,

41-14
transactional objects 44-3
Web Services 36-3

masks 23-14
master/detail forms 19-14

example 22-35 to 22-36
master/detail

relationships 19-14, 22-34 to
22-37, 22-46 to 22-47

cascaded deletes 28-5
cascaded updates 28-6
client datasets 27-18
indexes 22-35
multi-tiered

applications 29-18
nested tables 22-36 to 22-37,

29-18
referential integrity 18-5
unidirectional datasets 26-11

to 26-12

MasterFields property 22-34,
26-11

MasterSource property 22-34,
26-11

math functions
domain errors and A-8
underflow range errors

and A-8
Max property

progress bars 9-14
track bars 9-5

MaxDimensions property 20-19
MaxLength property 9-2

data-aware memo
controls 19-8

data-aware rich edit
controls 19-9

MaxRecords property 29-34
MaxRows property 33-19
MaxStmtsPerConn

property 26-3
MaxSummaries property 20-19
MaxTitleRows property 19-23
MaxValue property 23-11
MBCS 4-20
MDAC 17-6
MDI applications 7-1 to 7-3

active menu 8-41
creating 7-2
merging menus 8-41 to 8-42

measurements
converting 4-25 to 4-32
units 4-28

media devices 10-31
media players 5-6, 10-31 to

10-33
example 10-33

member functions 3-3
property settings 47-6

memo controls 6-6, 9-2, 47-8
modifying 53-1

memo fields 19-2, 19-8 to 19-9
rich edit 19-9

memory management
decision components 20-8,

20-19
forms 8-5

menu components 8-30
Menu designer 5-5, 8-30 to 8-34

context menu 8-37
menu items 8-31 to 8-34

adding 8-32, 8-40
defined 8-29
deleting 8-32, 8-37
editing 8-36

grouping 8-33
moving 8-35
naming 8-31, 8-40
nesting 8-34
placeholders 8-37
separator bars 8-33
setting properties 8-36
underlining letters 8-33

Menu property 8-41
menu wizards 58-3
menus 8-29 to 8-40

accessing commands 8-33
action lists 8-18
adding 8-30, 8-34
adding images 8-35
defined 8-17
disabling items 6-9
displaying 8-36, 8-37
handling events 5-5 to 5-6,

8-40
importing 8-42
internationalizing 16-8,

16-10
moving among 8-37
moving items 8-35
naming 8-31
owner-draw 6-11
pop-up 6-10
reusing 8-37
saving as templates 8-38,

8-39 to 8-40
shortcuts 8-33 to 8-34
templates 8-30, 8-37, 8-38,

8-39
merge modules 17-3
MergeChangeLog method 27-6,

27-33
message handlers 51-1, 51-3,

55-5
creating 51-6 to 51-8
declarations 51-5, 51-6, 51-8
default 51-3
methods, redefining 51-7
overriding 51-4

message handling 51-4 to 51-6
message headers (HTTP) 32-3,

32-4
message loop

threads 11-4
MESSAGE_HANDLER

macro 51-4
MESSAGE_MAP macro 51-7
message-based servers

See Web server applications

I n d e x I-27

messages 51-1 to 51-8, 55-4,
A-10

defined 51-1
identifiers 51-6
key 56-9
Linux See system

notifications
mouse 56-9
mouse- and key-down 56-9
multithreaded

applications 51-9
record

types, declaring 51-7
sending 51-8 to 51-10
structures 51-5
trapping 51-5
user-defined 51-6, 51-8
Windows 51-1 to 51-10

messages.hpp file 51-2
metadata 21-13 to 21-14

dbExpress 26-12 to 26-16
modifying 26-10 to 26-11
obtaining from

providers 27-26
metafiles 9-17, 10-1, 10-19, 50-4

when to use 10-3
Method property 33-9
MethodAddress method 13-22
methods 3-3, 10-15, 45-6, 49-1,

55-11
adding to ActiveX

controls 43-9 to 43-10
adding to interfaces 41-10
calling 48-5, 49-3, 54-5
declaring 10-15, 46-9, 49-4

public 49-3
deleting 5-6
drawing 54-9, 54-10
event handlers 48-4, 48-5

overriding 48-5
graphics 50-3, 50-4, 50-6

palettes 50-5
inherited 48-6
initialization 47-13
message-handling 51-1, 51-3,

51-5
naming 49-2
overriding 51-4, 51-5, 55-12
properties and 47-5 to 47-7,

49-1, 49-2, 54-4
protected 49-3
public 49-3
redefining 51-7
virtual 46-9, 49-3

inheritance 13-2

MethodType property 33-6,
33-10

Microsoft Server DLLs 32-6,
32-7

creating 33-1, 34-8
request messages 33-2

Microsoft SQL Server
deploying driver 17-9

Microsoft Transaction
Server 7-19

Microsoft Transaction Server See
MTS

midas.dll 27-1, 29-3
midaslib.dcu 17-6, 29-3
MIDI files 10-32
MIDL 38-19

See also IDL
MIME messages 32-6
MIME types and

constants 10-22
Min property

progress bars 9-14
track bars 9-5

MinSize property 9-6
MinValue property 23-11
MM film 10-32
mobile computing 18-14
modal forms 8-5
Mode property 24-48

pens 10-5
modeless forms 8-5, 8-6
Modified method 56-12
Modified property 9-3
Modifiers property 9-5
ModifyAlias method 24-25
ModifySQL property 24-39
modules

Tools API 58-3, 58-12 to
58-14

Type Library editor 39-10,
39-17

types 7-20
Web types 34-2

Month property 55-6
MonthCalendar

component 9-11
months, returning current 55-9
mouse buttons 10-24

clicking 10-24, 10-25
mouse-move events

and 10-26
mouse events 10-24 to 10-26,

54-3
defined 10-24

dragging and dropping 6-1
to 6-4

parameters 10-24
state information 10-24
testing for 10-26

mouse messages 56-9
mouse pointer

drag-and-drop 6-4
mouse-down messages 56-9
MouseDown method 51-14,

56-9
MouseMove method 51-14
MouseToCell method 9-15
MouseUp method 51-14
.mov files 10-32
Move method

string lists 4-18, 4-19
MoveBy method 22-7
MoveCount property 24-50
MoveFile function 4-9
MovePt 10-28
MoveTo method 10-4, 10-7, 50-3
.mpg files 10-32
Msg parameter 51-3
MSI technology 17-3
MTS 7-19, 29-6, 38-10, 38-14,

44-1
 See also transactional objects
COM+ vs. 44-2
in-process servers 44-2
object references 44-24 to

44-26
requirements 44-3
runtime environment 44-2
transactional objects 38-14 to

38-15
transactions 29-17

MTS executive 44-2
MTS Explorer 44-28
MTS packages 44-6, 44-27
multibyte character codes 16-3
multibyte character set 16-3
multibyte characters

(MBCS) 14-19, A-2, A-4
cross-platform

applications 14-16
multidimensional

crosstabs 20-3
multi-line text controls 19-8,

19-9
multimedia applications 10-29

to 10-33
multipage dialog boxes 9-13
multiple document interface 7-1

to 7-3

I-28 D e v e l o p e r ’ s G u i d e

multiprocessing
threads 11-1

multi-read exclusive-write
synchronizer 11-8

warning about use 11-9
MultiSelect property 9-9
multi-threaded

applications 11-1
sending messages 51-9
sessions 24-13, 24-28 to 24-29

Multitier page (New Items
dialog) 29-2

multi-tiered applications 18-3,
18-12, 29-1 to 29-40

advantages 29-2
architecture 29-4, 29-5
building 29-11 to 29-28
callbacks 29-17
components 29-2 to 29-3
cross-platform 29-11
deploying 17-10
master/detail

relationships 29-18
overview 29-3 to 29-4
parameters 27-27
server licenses 29-3
Web applications 29-28 to

29-40
building 29-30 to 29-31,

29-31 to 29-40
mutexes

CORBA 31-11
MyBase 27-32
MyEvent_ID type 51-15

N
Name property

fields 23-11
menu items 5-5, 5-6
parameters 22-51

named connections 26-4 to 26-5
adding 26-5
deleting 26-5
loading at runtime 26-4
renaming 26-5

namespaces 45-13
invokable interfaces 36-3

naming a thread 11-12 to 11-13
naming conventions

data members 48-2
events 48-8
message-record types 51-7
methods 49-2
properties 47-6
resources 52-4

native tools API 58-2, 58-8 to
58-11

navigator 19-2, 19-28 to 19-31,
22-5, 22-6

buttons 19-28
deleting data 22-20
editing 22-17
enabling/disabling

buttons 19-29
help hints 19-30
sharing among

datasets 19-30
NDX indexes 24-6
nested declarators A-6
nested details 22-36 to 22-37,

23-25 to 23-26, 29-18
fetch on demand 28-5

nested tables 22-36 to 22-37,
23-25 to 23-26, 29-18

.Net
Web Services 36-1

NetCLX 7-17
defined 14-5

NetFileDir property 24-23
Netscape Server DLLs

creating 33-1
network control files 24-23
networks

communication layer 31-2
connecting to

databases 24-15
neutral threading 41-8
New command 45-12
New Field dialog box 23-5

defining fields 23-6, 23-7,
23-8, 23-10

Field properties 23-5
Field type 23-6
Lookup definition 23-6

Dataset 23-9
Key Fields 23-9
Lookup Keys 23-9
Result Field 23-9

Type 23-6
New Items dialog 7-24, 7-25
New Thread Object dialog 11-2
New Unit command 45-12
newline characters A-8
NewValue property 24-37,

28-11
Next method 22-6
NextRecordSet method 22-53,

26-9
nodefault keyword 47-7
non-blocking connections 37-10

no-nonsense license
agreement 17-15

non-production index files 24-6
nonvisual components 45-5,

45-12, 57-3
NOT NULL constraint 28-12
NOT NULL UNIQUE

constraint 28-12
notebook dividers 9-13
notification events 48-7
notifiers 58-3

Tools API
notifiers 58-18 to 58-22

writing 58-21
NotifyID 7-28
NSAPI applications 32-6

creating 33-1, 34-8
debugging 32-10
request messages 33-2

null characters A-9
NULL macro A-7
NULL pointers A-7
null values

ranges 22-31
null-terminated routines 4-23 to

4-24
numbers 47-2

internationalizing 16-9
property values 47-12

numeric coprocessors
floating-point format A-3

numeric fields
formatting 23-14

NumericScale property 22-45,
22-51

NumGlyphs property 9-7

O
OAD 31-3 to 31-4, 31-13
.obj files 15-2, 15-13

packages 15-13
Object Activation Daemon See

OAD
Object Broker 29-25
object contexts 44-4, 44-5

ASP 42-3
transactions 44-10

object fields 23-22 to 23-27
types 23-22

Object HTML tag
(<OBJECT>) 33-14

Object Inspector 5-2, 47-2, 52-7
editing array properties 47-2
help with 52-4
selecting menus 8-38

I n d e x I-29

Object Management Group See
OMG

object maps 38-22
object models 13-1
Object Pascal

object models 13-1
object pooling 44-9

disabling 44-9
remote data modules 29-8 to

29-9
object reference 13-6
Object Repository 7-24 to 7-26

adding items 7-24
database components 24-16
sessions 24-17
specifying shared

directory 7-24
using items from 7-25
wizards 58-3

Object Repository dialog 7-24
Object Repository wizards 58-3
ObjectBroker property 29-23,

29-24, 29-25, 29-26
ObjectContext property

Active Server Objects 42-3
example 44-14 to 44-15

object-oriented
programming 46-1 to 46-10

declarations 46-3, 46-10
classes 46-4, 46-6, 46-7
methods 46-9

objects
 See also COM objects
construction 13-7 to 13-13,

14-11
copying 13-6
distributed 31-1
dragging and dropping 6-1
function arguments 13-7
inheritance 3-4 to 3-5
initializing 10-13
owned 54-6 to 54-8

initializing 54-7
scripting 34-32
temporary 50-6
TObject 3-5
volatile, accessing A-6

Objects property 9-15
string lists 4-19, 6-14

ObjectView property 19-22,
22-36, 23-23

.ocx files 17-5
ODBC drivers

using with ADO 25-1, 25-2

using with the BDE 24-1,
24-15, 24-16

ODL (Object Description
Language) 38-17

OEM character sets 16-2
OEMConvert property 9-3
offscreen bitmaps 50-6
OldValue property 24-37, 28-11
OLE

containers 5-6
merging menus 8-41

OLE DB 25-1, 25-2
OleFunction method 40-13
OleObject property 43-14, 43-15
OleProcedure method 40-13
OlePropertyGet method 40-13
OlePropertyPut method 40-13
OLEView 38-19
OMG 31-1, 31-5
OnAccept event 37-7, 37-9

server sockets 37-9
OnAction event 33-7
OnAfterPivot event 20-9
OnBeforePivot event 20-9
OnBeginTransComplete

event 21-7, 25-8
OnCalcFields event 22-22, 23-7,

27-10, 27-11
OnCellClick event 19-26
OnChange event 23-15, 50-7,

54-8, 55-13, 56-11
OnClick event 9-7, 48-1, 48-2,

48-4
menus 5-5

OnColEnter event 19-26
OnColExit event 19-26
OnColumnMoved event 19-19,

19-26
OnCommitTransComplete

event 21-8, 25-8
OnConnect event 37-9
OnConnectComplete event 25-7
OnConstrainedResize event 8-4
OnDataChange event 19-4,

56-7, 56-11
OnDataRequest event 27-31,

28-3, 28-12
OnDblClick event 19-26, 48-4
OnDecisionDrawCell

event 20-12
OnDecisionExamineCell

event 20-13
OnDeleteError event 22-20
OnDisconnect event 25-7, 37-7,

37-8

OnDragDrop event 6-2, 19-26,
48-4

OnDragOver event 6-2, 19-26,
48-4

OnDrawCell event 9-15
OnDrawColumnCell

event 19-26
OnDrawDataCell event 19-26
OnDrawItem event 6-15
OnEditButtonClick event 19-21,

19-26
OnEditError event 22-17
OnEndDrag event 6-3, 19-26,

48-4
OnEndPage method 42-2
OnEnter event 19-26, 48-5
OnError event 37-8
one-to-many

relationships 22-34, 26-11
OnExecuteComplete event 25-8
OnExit event 19-26, 56-13
OnFilterRecord event 22-13,

22-15
OnGetData event 28-7
OnGetDataSetProperties

event 28-6
OnGetTableName event 24-11,

27-21, 28-12
OnGetText event 23-15
OnGetThread event 37-9
OnHandleActive event 37-8
OnHTMLTag event 29-39,

33-15, 33-16
OnIdle event handler 11-5
OnInfoMessage event 25-8
OnKeyDown event 19-26, 48-5,

51-13, 56-10
OnKeyPress event 19-26, 48-5,

51-13
OnKeyString event 51-13
OnKeyUp event 19-26, 48-5,

51-13
OnLayoutChange event 20-9
online help 52-4
OnListening event 37-9
OnLogin event 21-5
OnMeasureItem event 6-14
OnMouseDown event 10-24,

10-25, 48-4, 51-13, 56-9
parameters passed to 10-24,

10-25
OnMouseMove event 10-24,

10-26, 48-4, 51-13
parameters passed to 10-24,

10-25

I-30 D e v e l o p e r ’ s G u i d e

OnMouseUp event 10-14, 10-24,
10-25, 48-4, 51-13

parameters passed to 10-24,
10-25

OnNewDimensions event 20-9
OnNewRecord event 22-18
OnPaint event 9-17, 10-2
OnPassword event 24-13, 24-22
OnPopup event 6-10
OnPostError event 22-20
OnReceive event 37-8, 37-10
OnReconcileError event 14-25,

24-32, 27-20, 27-23
OnRefresh event 20-7
OnRequestRecords event 29-35
OnResize event 10-2
OnRollbackTransComplete

event 21-9, 25-8
OnScroll event 9-4
OnSend event 37-8, 37-10
OnSetText event 23-15
OnStartDrag event 19-26
OnStartPage method 42-2
OnStartup event 24-17
OnStateChange event 19-4,

20-9, 22-4
OnSummaryChange event 20-9
OnTerminate event 11-7
OnTitleClick event 19-26
OnTranslate event 30-7
OnUpdateData event 19-4, 28-8,

28-9
OnUpdateError event 14-25,

24-32, 24-37 to 24-38, 27-22,
28-11

OnUpdateRecord event 24-32,
24-35 to 24-37, 24-39, 24-45

OnValidate event 23-15
OnWillConnect event 21-5, 25-7
open arrays 13-17

temporary 13-18
Open method

connection components 21-3
datasets 22-4
queries 22-47
server sockets 37-7
sessions 24-18

Open Tools API See Tools API
OPENARRAY macro 13-19
OpenDatabase method 24-18,

24-19
OpenSession method 24-28,

24-29
operating system environment

strings, changing
permanently A-11

operators
assignment 13-6
bitwise

signed integers A-4
optimizing system

resources 45-4
optional parameters 27-15, 28-6
options

mutually exclusive 8-45
Options property 9-15

data grids 19-24
decision grids 20-12
providers 28-5 to 28-6
TSQLClientDataSet 27-16

Oracle drivers
deploying 17-9

Oracle tables 24-12
Oracle8

limits on creating
tables 22-39

ORB 31-1, 31-5
initializing 31-3
ORB_init 31-7

ORDER BY clause 22-26
Orientation property

data grids 19-28
track bars 9-5

Origin property 10-28, 23-11
osagent 31-2, 31-3
outer objects 38-9
outlines, drawing 10-5
out-of-process servers 38-7

ASP 42-7
output parameters 22-50, 27-26
Overload property 24-12
overloaded stored

procedures 24-12
overriding

methods 51-4, 51-5, 55-12
virtual methods 13-11

owned objects 54-6 to 54-8
initializing 54-7

Owner property 45-16
owner-draw controls 4-19, 6-11

declaring 6-12
drawing 6-13, 6-14
list boxes 9-9, 9-10
sizing 6-14

OwnerDraw property 6-12

P
package argument 13-29
Package Collection Editor 15-14
package collection files 15-13
package files 17-3

packages 15-1 to 15-15, 52-19
collections 15-13
compiler directives 15-11
compiling 15-10 to 15-12
components 15-8, 52-19
Contains list 15-6, 15-7, 15-8,

15-10, 52-19
creating 7-10, 15-6 to 15-12
custom 15-4
default settings 15-7
deploying applications 15-13
design-only option 15-7
design-time 15-1, 15-5 to

15-6
distributing to other

developers 15-13
DLLs 15-1, 15-2, 15-11
duplicate references 15-10
dynamically loading 15-4
editing 15-7
file name extensions 15-1,

15-8, 15-12
installing 15-5 to 15-6
internationalizing 16-11,

16-12
linker switches 15-12
missing 52-19
naming 15-9
options 15-7
project options files 15-8
Requires list 15-6, 15-7, 15-8,

15-9, 52-19
runtime 15-1, 15-3 to 15-4,

15-7
source files 15-2, 15-8
using 7-11
using in applications 15-3 to

15-4
weak packaging 15-11

PacketRecords property 14-25,
24-32, 27-25

page controls 9-13
adding pages 9-13

page dispatchers 34-9, 34-34
page modules 34-2, 34-4
page producers 33-13 to 33-17,

34-2, 34-4, 34-6 to 34-7, B-1
chaining 33-16
Content method 33-14
ContentFromStream

method 33-14
ContentFromString

method 33-14
converting templates 33-15
data-aware 29-36 to 29-40,

33-18

I n d e x I-31

event handling 33-15, 33-16
templates 34-4
types 34-10

PageSize property 9-5
paint boxes 9-17
Paint method 50-6, 54-9, 54-10
paintboxes 5-6
PaintRequest method 51-14
palette bitmap files 52-4
PaletteChanged method 50-5,

51-14
palettes 50-5

default behavior 50-5
specifying 50-5

PanelHeight property 19-28
panels

adding speed buttons 8-44
attaching to form tops 8-43
beveled 9-17
speed buttons 9-7

Panels property 9-14
PanelWidth property 19-28
panes 9-6

resizing 9-6
Paradox tables 24-3, 24-5

accessing data 24-9
adding records 22-19
batch moves 24-51
DatabaseName 24-3
directories 24-23 to 24-24
local transactions 24-31
network control files 24-23
password protection 24-21 to

24-23
renaming 24-7
retrieving indexes 22-26

parallel processes
threads 11-1

ParamBindMode
property 24-11

ParamByName method
queries 22-45
stored procedures 22-52

ParamCheck property 22-44,
26-11

parameter collection
editor 22-44, 22-50

parameterized queries 22-42,
22-43 to 22-46

creating
at design time 22-44
at runtime 22-45

parameters
binding modes 24-11
classes as 46-10

client datasets 27-26 to 27-28
filtering records 27-28

dual interfaces 41-15
event handlers 48-7, 48-9
from XML brokers 29-34
HTML tags 33-13
input 22-50
input/output 22-50
messages 51-3, 51-5, 51-7,

51-9
mouse events 10-24, 10-25
output 22-50, 27-26
passing by reference 48-3
property settings 47-6

array properties 47-8
result 22-50
TXMLTransformClient 30-9

Parameters property 25-19
TADOCommand 25-19
TADOQuery 22-44
TADOStoredProc 22-50

ParamName property 29-38
Params property

client datasets 27-26, 27-27
queries 22-44, 22-45
stored procedures 22-50
TDatabase 24-14
TSQLConnection 26-4
XML brokers 29-34

ParamType property 22-45,
22-51

ParamValues property 22-45
Parent property 45-16
ParentColumn property 19-23
ParentConnection

property 29-28
ParentShowHint property 9-15
partial keys

searching 22-29
setting ranges 22-32

pascalimplementation
argument 13-29

passthrough SQL 24-30, 24-30
to 24-31

passwords
dBASE tables 24-21 to 24-23
implicit connections

and 24-13
Paradox tables 24-21 to 24-23

PasteFromClipboard
method 6-9

data-aware memo
controls 19-9

graphics 19-10
PathInfo property 33-6

pathnames
Linux 14-14

paths (URLs) 32-3
patterns 10-9
.pce files 15-13
pdoxusrs.net 24-23
Pen property 10-4, 10-5, 50-3
PenPos property 10-4, 10-7
pens 10-5, 54-6

brushes 10-5
changing 54-8
colors 10-6
default settings 10-5
drawing modes 10-29
getting position of 10-7
position, setting 10-7, 10-25
style 10-6
width 10-6

penwin.dll 15-11
Perform method 51-9
perror function A-10
persistent columns 19-15, 19-17

creating 19-17 to 19-21
deleting 19-16, 19-18, 19-19
inserting 19-18
reordering 19-19

persistent fields 19-15, 23-3 to
23-16

ADT fields 23-24
array fields 23-25
creating 23-4 to 23-5, 23-5 to

23-10
creating tables 22-38
data packets and 28-4
data types 23-6
dataset fields 22-36
defining 23-5 to 23-10
deleting 23-10
listing 23-4, 23-5
naming 23-5
ordering 23-5
properties 23-10 to 23-15
special types 23-5, 23-6
switching to dynamic 23-3

persistent subscriptions 40-15
per-user subscriptions 40-15
PickList property 19-20, 19-21
picture objects 10-3, 50-4
Picture property 9-17, 10-17

in frames 8-15
pictures 10-17, 50-3 to 50-5

changing 10-20
loading 10-19
replacing 10-20
saving 10-20

I-32 D e v e l o p e r ’ s G u i d e

Pie method 10-4
Pixel property 10-4, 50-3
pixels

reading and setting 10-9
Pixels property 10-5, 10-9
pmCopy constant 10-29
pmNotXor constant 10-29
pointers

casting to integer A-5
classes 46-10
default property

values 47-12
dereferenced 13-6
exception handling 12-5
integer types A-5
NULL A-7
VCL implications 13-5

Polygon method 10-4, 10-11
polygons 10-11

drawing 10-11
PolyLine method 10-4, 10-10
polylines 10-10

drawing 10-10
pop-up menus 6-10 to 6-11

displaying 8-36
drop-down menus and 8-34

PopupMenu component 8-30
PopupMenu property 6-10
Port property 37-7

TSocketConnection 29-24
porting applications

to Linux 14-2 to 14-19
porting code 14-15 to 14-19
ports 37-5

client sockets 37-6
multiple connections 37-5
server sockets 37-7
services and 37-2

Position property 9-5, 9-14
position-independent code

(PIC) 14-8, 14-18
Post method 22-20

Edit and 22-18
PostMessage method 51-10
#pragma package 52-19
Precision property

fields 23-11
parameters 22-45, 22-51

preexisting controls 45-4
Prepared property

queries 22-47
stored procedures 22-52
unidirectional datasets 26-8

Preview tab 34-2
primary indexes

batch moves and 24-49

PRIMARY KEY constraint 28-13
printers A-2
printing 4-25
Prior method 22-7
priorities

using threads 11-1, 11-2
Priority property 11-3
private properties 47-5
PrivateDir property 24-24
problem tables 24-51
ProblemCount property 24-51
ProblemTableName

property 24-51
ProcedureName property 22-49
procedures

naming 49-2
programming templates 7-3
progress bars 9-14
project files

changing 2-2
distributing 2-5

Project Manager 8-3
project options 7-3

default 7-3
Project Options dialog box 7-3
project templates 7-25
Project Updates dialog 31-9
project wizards 58-3
projects

adding forms 8-1 to 8-4
PROP_PAGE macro 43-15
properties 3-2, 47-1 to 47-13

accessing 47-5 to 47-7
adding to ActiveX

controls 43-9 to 43-10
adding to interfaces 41-9
array 47-2, 47-8
as classes 47-2
changing 52-7 to 52-12, 53-3,

53-4
COM 38-2, 39-8

Write By Reference 39-8
COM interfaces 39-8
common dialog boxes 57-2
declaring 47-3, 47-3 to 47-7,

47-12, 48-8, 54-4
user-defined types 54-4

default values 47-7, 47-11 to
47-12

redefining 53-3, 53-4
editing

as text 52-8
events and 48-1, 48-2
HTML tables 33-19
inherited 47-3, 54-3, 55-3

internal data storage 47-4,
47-6

loading 47-13
nodefault 47-7
overview 45-6
providing help 52-4
published 55-3
read and write 47-5
reading values 52-9
read-only 46-7, 47-7, 56-3
redeclaring 47-11, 48-5
setting 5-2 to 5-3
specifying values 47-11, 52-9
storing 47-12
storing and loading

unpublished 47-13 to 47-15
subcomponents 47-9
types 47-2, 47-8, 52-9, 54-4
updating 45-7
viewing 52-9
wrapper components 57-4
write-only 47-6
writing values 47-6, 52-9

properties, memo and rich edit
controls 9-2

property editors 5-2, 47-2, 52-7
to 52-12

as derived classes 52-7
attributes 52-10
dialog boxes as 52-9
registering 52-11 to 52-12

__property keyword 13-26
Property Page wizard 43-13 to

43-14
property pages 43-13 to 43-15

ActiveX controls 40-7, 43-3,
43-15

adding controls 43-14 to
43-15

associating with ActiveX
control properties 43-14

creating 43-13 to 43-15
imported controls 40-4
updating 43-14
updating ActiveX

controls 43-15
property settings

reading 47-8
writing 47-8

PROPERTYPAGE_IMPL
macro 43-13

Proportional property 10-3
protected

directive 48-5
events 48-5
keyword 47-3, 48-5

I n d e x I-33

part of classes 46-6
protocols

choosing 29-9 to 29-11
connection components 29-9

to 29-11, 29-22
Internet 32-3, 37-1
network connections 24-15

Provider property 25-4
ProviderFlags property 28-5,

28-10
ProviderName property 18-12,

27-24, 28-3, 29-22, 29-34, 30-9
providers 28-1 to 28-13, 29-3

applying updates 28-4, 28-8,
28-11

associating with
datasets 28-2

associating with XML
documents 28-2, 30-8

client datasets and 27-24 to
27-31

client-generated
events 28-12

data constraints 28-12
error handling 28-11
external 18-11, 27-18, 27-24,

28-1
internal 27-18, 27-24, 28-1
local 27-24, 28-3
remote 27-25, 28-3, 29-6
screening updates 28-11
supplying data to XML

documents 30-9 to 30-10
using update objects 24-11
XML 30-8

providing 28-1, 29-3
proxy 38-7, 38-8

event interfaces 40-5
transactional objects 44-2

public
keyword 48-5
part of classes 46-7
properties 47-11

published 47-3
directive 47-3, 57-4
keyword 48-5
part of classes 46-7
properties 47-11, 47-12

example 54-3, 55-3
__published keyword 13-27
putenv function A-11
PVCS Version Manager 2-5

Q
QApplication_postEvent

method 51-15
QCustomEvent_create

function 51-15
QEvent 51-12
QKeyEvent 51-13
QMouseEvent 51-13
QReport page (Component

palette) 5-8
Qt events

messages 51-15
Qt widget

creating 14-11
queries 22-23, 22-41 to 22-48

BDE-based 24-2, 24-8 to
24-11

concurrent 24-17
live result sets 24-10

bi-directional cursors 22-48
executing 22-47 to 22-48
filtering vs. 22-13
heterogeneous 24-9 to 24-10
HTML tables 33-20
master/detail

relationships 22-46 to 22-47
optimizing 22-47, 22-48
parameterized 22-42
parameters 22-43 to 22-46

binding 22-44
from client datasets 27-28
master/detail

relationships 22-46 to
22-47

named 22-44
properties 22-44 to 22-45
setting at design

time 22-44
setting at runtime 22-45
unnamed 22-44

preparing 22-47
result sets 22-48
specifying 22-42 to 22-43,

26-6
specifying the

database 22-41
unidirectional cursors 22-48
update objects 24-46 to 24-47
Web applications 33-20

Query Builder 22-43
query part (URLs) 32-3
Query property

update objects 24-46
QueryInterface method 38-4

aggregation 38-9

R
radio buttons 9-8, 19-2

data-aware 19-13 to 19-14
grouping 9-12
selecting 19-14

radio groups 9-12
RaiseException function 12-12
raising exceptions 12-12
ranges 22-30 to 22-34

applying 22-34
boundaries 22-33
canceling 22-34
changing 22-33
filters vs. 22-30
indexes and 22-30
null values 22-31, 22-32
specifying 22-30 to 22-33

raster operations 50-6
RC files 8-42
RDBMS 18-3, 29-1
RDSConnection property 25-16
Read method

TFileStream 4-2
read method 47-6
read reserved word 47-8, 54-5
ReadBuffer method

TFileStream 4-2
ReadCommitted 21-9
reading property settings 47-6
README document 17-15
read-only

datasets, updating 18-10
fields 19-5
properties 46-7, 47-7, 56-3
tables 22-37

ReadOnly property 9-2, 56-3,
56-9, 56-10

data grids 19-20, 19-25
data-aware controls 19-5
data-aware memo

controls 19-8
data-aware rich edit

controls 19-9
fields 23-12
tables 22-37

Real type 13-23
Real48 type 13-23
realizing palettes 50-5
realloc function A-10
ReasonString property 33-11
rebars 8-42, 8-47
ReceiveBuf method 37-8
Receiveln method 37-8
RecNo property

client datasets 27-2

I-34 D e v e l o p e r ’ s G u i d e

Reconcile method 14-25, 24-32
RecordCount property

TBatchMove 24-50
records

adding 22-18 to 22-19, 22-21
appending 22-19, 24-8, 24-48,

24-49
batch operations 24-8, 24-48,

24-49
copying 24-8, 24-49
deleting 22-19 to 22-20,

22-40, 24-8, 24-49
displaying 19-27
fetching 26-8, 27-25 to 27-26

asynchronous 25-11
filtering 22-12 to 22-16
finding 22-10 to 22-12, 22-27

to 22-30
iterating through 22-8
marking 22-9 to 22-10
moving through 19-28, 22-5

to 22-8, 22-16
operations 24-8
posting 19-6, 22-20

data grids 19-25
when closing

datasets 22-20
reconciling updates 27-22
refreshing 19-6, 27-30
repeating searches 22-29
search criteria 22-10, 22-11
sorting 22-26 to 22-27
synchronizing current 22-40
Type Library editor 39-10,

39-16 to 39-17
updating 22-21 to 22-22,

24-8, 24-49, 28-8, 29-35 to
29-36

client datasets 27-19 to
27-24

delta packets 28-8, 28-9
from XML

documents 30-10
identifying tables 28-11
multiple 28-6
queries and 24-11
screening updates 28-11

RecordSet property 25-18
Recordset property 25-10
RecordsetState property 25-10
RecordStatus property 25-12,

25-13
Rectangle method 10-5, 10-11,

50-3

rectangles
drawing 10-11, 54-10

redrawing images 50-7
reference counting

COM objects 38-4
reference fields 23-22, 23-26 to

23-27
displaying 19-24

references
C++ vs Object Pascal 13-5
forms 8-3

referential integrity 18-5
Refresh method 19-6, 27-30
RefreshLookupList

property 23-9
RefreshRecord method 27-30,

28-3
Register method 10-3
Register procedure 52-2
RegisterComponents

function 45-14
RegisterComponents

procedure 15-6, 52-2
RegisterConversionType

function 4-27
RegisterHelpViewer 7-36
registering

Active Server Objects 42-7 to
42-8

ActiveX controls 43-15 to
43-16

COM objects 41-16
component editors 52-18
components 45-13, 45-14
conversion families 4-26
CORBA interfaces 31-12
property editors 52-11 to

52-12
registering Help objects 7-32
RegisterNonActiveX

procedure 43-3
RegisterPooled flag 29-9
RegisterPropertyEditor

function 52-11
registers

objects and A-5
RegisterTypeLib function 38-18
RegisterViewer function 7-32
Registry 16-9
REGSERV32.EXE 17-5
relational databases 18-1
Release 7-29
Release method 38-4

TCriticalSection 11-8
release notes 17-15

releasing mouse buttons 10-25
relocatable code 14-18
remotable classes 36-4, 36-7 to

36-9
built-in 36-7
example 36-8 to 36-9
exceptions 36-14 to 36-15
lifetime management 36-8
registering 36-5

remotable type registry 36-4,
36-15

remote applications
TCP/IP 37-1

remote connections 37-2 to 37-3
multiple 37-5
opening 37-6, 37-7
sending/receiving

information 37-9
terminating 37-7

Remote Data Module
wizard 29-13 to 29-14

remote data modules 7-23, 29-3,
29-12, 29-13 to 29-16

child 29-20
COM-based 29-5, 29-20
implementation class 29-14
implementation object 29-5
multiple 29-20 to 29-21,

29-28
parent 29-20
pooling 29-8 to 29-9
stateless 29-7, 29-9, 29-19 to

29-20
threading models 29-14,

29-15
Remote Database Management

system 18-3
remote database servers 18-2
remote servers 24-9, 38-7

maintaining
connections 24-18

unauthorized access 21-4
REMOTEDATAMODULE_IMP

L macro 29-5
RemoteHost property 37-6
RemotePort property 37-6
RemoteServer property 27-24,

27-25, 29-22, 29-26, 29-32,
29-34, 30-9

remove function A-9
RemoveAllPasswords

method 24-22
RemovePassword

method 24-22
rename function A-9

I n d e x I-35

RenameFile function 4-9
renaming files A-9
repainting controls 54-8, 54-10,

55-4, 55-5
RepeatableRead 21-9
reports 18-16
Repository

See Object Repository
Request for Comment (RFC)

documents 32-3
request headers 33-9
request messages 33-2, 33-3,

42-4
action items and 33-5
contents 33-10
dispatching 33-5
header information 33-8 to

33-10
HTTP overview 32-5 to 32-6
processing 33-5
responding to 33-7 to 33-8,

33-12
types 33-9
XML brokers 29-35

request objects
header information 33-4

RequestLive property 24-10
RequestRecords method 29-35
requests

adapters 34-35
dispatching 34-33
images 34-37

Requires list (packages) 15-6,
15-7, 15-8, 15-9, 52-19

.res files 45-15
ResetEvent method 11-10
resizing controls 9-6, 17-12, 55-4

graphics 50-6
ResolveToDataSet

property 28-4
resolving 28-1, 29-4
resource dispensers 44-5

ADO 44-6
BDE 44-6

Resource DLLs
dynamic switching 16-12
wizard 16-10

resource files 8-42
loading 8-42

resource modules 16-10, 16-11
resource pooling 44-5 to 44-9
resource strings 13-20
resources 45-7, 50-1

caching 50-2
isolating 16-10

localizing 16-10, 16-11, 16-12
naming 52-4
strings 16-10
system, optimizing 45-4

resourcestring macro 13-21
response headers 33-12
response messages 33-3, 42-5

contents 33-12, 33-13 to 33-20
creating 33-10 to 33-12, 33-13

to 33-20
database information 33-17

to 33-20
header information 33-11 to

33-12
sending 33-8, 33-12
status information 33-11

response templates 33-13
responses

actions 34-36
adapters 34-35
images 34-37

RestoreDefaults method 19-21
restrictions A-1
Result parameter 51-7
result parameters 22-50
Resume method 11-11
retaining aborts 25-6
retaining commits 25-6
ReturnValue property 11-9
RevertRecord method 14-25,

24-32, 27-6
RFC documents 32-3
rich edit controls 9-2
rich text controls 6-6, 19-9
role-based security 44-16
Rollback method 21-8
RollbackTrans method 21-9
root directories

Linux 14-15
rounded rectangles 10-11
rounding rules A-4
RoundRect method 10-5, 10-11
routines

null-terminated 4-23 to 4-24
RowAttributes property 33-19
RowCount property 19-12,

19-28
RowHeights property 6-14, 9-15
RowRequest method 28-3
rows 9-15

decision grids 20-11
Rows property 9-15
RowsAffected property 22-48
RPC 38-8
RTTI 46-7

C++ vs Object Pascal 13-22
invokable interfaces 36-2

rubber banding example 10-23
to 10-29

runtime interfaces 46-7
runtime library 4-1
runtime packages 15-1, 15-3 to

15-4
runtime type information 46-7

S
safe arrays 39-12
safe pointers

exception handling 12-5
safe references 44-25
SafeArray 39-12
SafeRef method 44-25
Samples page (Component

palette) 5-8
Save as Template command

(Menu designer) 8-37, 8-39
Save Attributes command 23-13
Save Template dialog box 8-40
SaveConfigFile method 24-25
SavePoint property 27-6
SaveToFile method 10-20

ADO datasets 25-14
client datasets 18-9, 27-34
graphics 50-4
strings 4-15

SaveToStream method
client datasets 27-34

scalability 18-11
ScanLine property

bitmap example 10-18
schema information 26-12 to

26-16
fields 26-14 to 26-15
indexes 26-15 to 26-16
stored procedures 26-14,

26-16
tables 26-13 to 26-14

ScktSrvr.exe 29-10, 29-13, 29-23
SCM 7-5
screen

refreshing 10-2
resolution 17-12

programming for 17-12
Screen variable 8-2, 16-8
script objects 34-32
ScriptAlias directive 17-11
scripting 34-7

server-side 34-30 to 34-33
scripts

active 34-31

I-36 D e v e l o p e r ’ s G u i d e

editing and viewing 34-32
generating in

WebSnap 34-32
URLs 32-3

scroll bars 9-4
text windows 6-7

scrollable bitmaps 10-17
ScrollBars property 6-7, 9-15

data-aware memo
controls 19-9

SDI applications 7-1 to 7-3
search lists (Help systems) 52-5
searching for files A-7
Sections property 9-13
security

databases 18-3 to 18-4, 21-4
to 21-5, 24-21 to 24-23

DCOM 29-33
local tables 24-21 to 24-23
multi-tiered

applications 29-2
registering socket

connections 29-10
SOAP connections 29-25
transactional data

modules 29-7, 29-9
transactional objects 44-16
Web connections 29-10,

29-24
Seek method

ADO datasets 22-27
Select Menu command (Menu

designer) 8-37
Select Menu dialog box 8-38
SELECT statements 22-42
SelectAll method 9-3
SelectCell method 55-14, 56-4
Selecting 34-10
Selection property 9-15
SelectKeyword 7-31
selectors

Help 7-32
SelEnd property 9-5
SelLength property 6-8, 9-2
SelStart property 6-8, 9-2, 9-5
SelText property 6-8, 9-2
SendBuf method 37-8
Sender parameter 5-5

example 10-7
sending messages 51-8 to 51-10
Sendln method 37-8
SendMessage method 51-9
SendStream method 37-8
separator bars (menus) 8-33

sequential values, assigning to
constants 10-12

server applications
architecture 29-5
COM 38-5 to 38-9, 41-1 to

41-17
CORBA 31-2, 31-4 to 31-13
interfaces 37-2
multi-tiered 29-5 to 29-11,

29-12 to 29-17
registering 29-11, 29-21,

31-12 to 31-13
OAD 31-3

services 37-1
Web Services 36-9 to 36-16

server connections 37-2, 37-3
port numbers 37-5

server sockets 37-7 to 37-8
accepting client

requests 37-7, 37-9
error messages 37-8
event handling 37-9
socket objects 37-7
specifying 37-6

server types 34-8
ServerGUID property 29-22
ServerName property 29-22
servers

Internet 32-1 to 32-11
Web application

debugger 34-8
Servers page (Component

palette) 5-8
server-side scripting 34-7, 34-30

to 34-33, B-1 to B-38
global objects B-14 to B-18
JScript examples B-19 to B-38
object types B-1 to B-13

service applications 7-4 to 7-9
debugging 7-9
example 7-7
example code 7-5, 7-7

Service Control Manager 7-5,
7-9

Service Start name 7-9
service threads 7-7
services 7-4 to 7-9

CORBA 31-1
directory 31-2, 31-3
example 7-7
example code 7-5, 7-7
implementing 37-1 to 37-2,

37-7
installing 7-5
name properties 7-9

network servers 37-1
ports and 37-2
requesting 37-6
Tools API 58-2, 58-7 to 58-14
uninstalling 7-5

Session variable 24-3, 24-16
SessionName property 24-3,

24-12, 24-27 to 24-28, 33-17
sessions 24-16 to 24-29

activating 24-17 to 24-18
associated databases 24-20 to

24-21
closing 24-18
closing connections 24-19
creating 24-26 to 24-27, 24-28
current state 24-17
databases and 24-12 to 24-13
datasets and 24-3 to 24-4
default 24-3, 24-12, 24-16 to

24-17
default connection

properties 24-18
getting information 24-26
implicit database

connections 24-13
managing aliases 24-24
managing connections 24-19

to 24-21
methods 24-13
multiple 24-13, 24-26, 24-28

to 24-29
multi-threaded

applications 24-13, 24-28 to
24-29

naming 24-27 to 24-28, 33-17
opening connections 24-19
passwords 24-21
restarting 24-18
Web applications 33-17

Sessions property 24-29
sessions service 34-9, 34-25,

34-26
Sessions variable 24-17, 24-28
set types 47-2
SetAbort method 44-5, 44-9,

44-12
SetBrushStyle method 10-8
SetComplete method 29-17,

44-5, 44-9, 44-12
SetData method 23-16
SetEvent method 11-10
SetFields method 22-21
SetFloatValue method 52-9
SetKey method 22-28

EditKey vs. 22-29

I n d e x I-37

SetMethodValue method 52-9
SetOptionalParam

method 27-15
SetOrdValue method 52-9
SetPenStyle method 10-7
SetProvider method 27-24
SetRange method 22-32
SetRangeEnd method 22-31

SetRange vs. 22-32
SetRangeStart method 22-31

SetRange vs. 22-32
sets 47-2
SetSchemaInfo method 26-12
SetStrValue method 52-9
SetUnhandledExceptionFilter

function 12-7
SetValue method 52-9
Shape property 9-17
shapes 9-17, 10-11 to 10-12,

10-14
drawing 10-11, 10-14
filling 10-8
filling with bitmap

property 10-9
outlining 10-5

shared object files See .so files
shared property groups 44-6
Shared Property Manager 44-6

to 44-9
example 44-7 to 44-9

sharing forms and dialogs 7-24
to 7-26

shell scripts
Linux 14-13

Shift states 10-24
ShortCut property 8-33
Show method 8-6, 8-7
ShowAccelChar property 9-4
ShowButtons property 9-10
ShowColumnHeaders

property 9-11
ShowFocus property 19-28
ShowHint property 9-15, 19-30
ShowHintChanged

method 51-14
ShowLines property 9-11
ShowModal method 8-5
ShowRoot property 9-11
ShutDown 7-28, 7-29
signal function A-8
signalling events 11-10
signals

Linux 14-14
responding to (CLX) 51-10 to

51-12

Simple Object Access Protocol
See SOAP

simple types 47-2
single document interface 7-1 to

7-3
single-tiered applications 18-3,

18-9, 18-12
file-based 18-9

Size property
fields 23-12
parameters 22-45, 22-51

sizeof operator 13-17, A-7
skeletons 31-2, 31-2, 31-6

delegation and 31-8
marshaling 31-2

slow processes
using threads 11-1

Smart Agents 31-2, 31-3
locating 31-3

.so files 14-8, 14-13
SOAP 36-1

application wizard 36-11
connecting to application

servers 29-25
connections 29-11, 29-25
data modules 29-6
fault packets 36-14
multi-tiered

applications 29-11
SOAP Data Module

wizard 29-15 to 29-16
socket components 37-5 to 37-8
socket connections 29-9 to

29-10, 29-23, 37-2 to 37-3
closing 37-7
endpoints 37-3, 37-5
multiple 37-5
opening 37-6, 37-7
sending/receiving

information 37-9
types 37-2

socket dispatcher
application 29-10, 29-13, 29-23

socket objects 37-5
client sockets 37-6
clients 37-6
server sockets 37-7

sockets 37-1 to 37-10
accepting client

requests 37-3
assigning hosts 37-4
describing 37-3
error handling 37-8
event handling 37-8 to 37-9,

37-10

implementing services 37-1
to 37-2, 37-7

network addresses 37-3, 37-4
providing information 37-4
reading from 37-10
reading/writing 37-9 to

37-10
writing to 37-10

SoftShutDown 7-28
software license

requirements 17-15
sort order 16-9

client datasets 27-7
descending 27-8
setting 22-27
TSQLTable 26-7

Sorted property 9-9, 19-11
SortFieldNames property 26-7
source code

editing 2-2
optimizing 10-15
reusing
viewing

specific event
handlers 5-4

source datasets, defined 24-47
source files A-7

changing 2-2
packages 15-2
sharing (Linux) 14-12

SourceXml property 30-6
SourceXmlDocument

property 30-6
SourceXmlFile property 30-6
Spacing property 9-7
SparseCols property 20-9
SparseRows property 20-9
speed buttons 9-7

adding to toolbars 8-43 to
8-45

assigning glyphs 8-44
centering 8-44
engaging as toggles 8-45
event handlers 10-13
for drawing tools 10-13
grouping 8-45
initial state, setting 8-44
operational modes 8-43

spin edit controls 9-5
splitters 9-6
SPX/IPX 24-15
SQL 18-2, 24-8

executing commands 21-10
to 21-11

local 24-9

I-38 D e v e l o p e r ’ s G u i d e

standards 28-12
Decision Query editor

and 20-6
SQL Builder 22-43
SQL client datasets 27-21 to

27-22
SQL Explorer 24-53, 29-3

defining attribute sets 23-13
SQL Links 17-8, 24-1

deploying 17-9
driver files 17-9
drivers 24-9, 24-15, 24-30
license requirements 17-15

SQL Monitor 24-53
SQL property 22-42 to 22-43

changing 22-47
SQL queries 22-42 to 22-43

copying 22-43
executing 22-47 to 22-48
loading from files 22-43
modifying 22-43
optimizing 22-48
parameters 22-43 to 22-46,

24-41 to 24-42
binding 22-44
master/detail

relationships 22-46 to
22-47

setting at design
time 22-44

setting at runtime 22-45
preparing 22-47
result sets 22-48
update objects 24-45

SQL servers
logging in 18-4

SQL statements
client-supplied 27-31, 28-6
decision datasets 20-4, 20-5
executing 26-9 to 26-10
generating

providers 28-4, 28-9 to
28-10

TSQLDataSet 26-8
parameters 21-11
passthrough SQL 24-30
provider-generated 28-11
update objects and 24-40 to

24-43
SQLConnection property 26-2,

26-17
SQLPASSTHRUMODE 24-30
squares, drawing 54-10
standard components 5-6 to 5-8
standard events 48-4

customizing 48-5
Standard page (Component

palette) 5-7
StartTransaction method 21-7
state information

communicating 28-7, 28-8,
29-19 to 29-20

managing 44-5
mouse events 10-24
shared properties 44-6
transactional objects 44-12

State property 9-7
datasets 22-3, 23-8
grid columns 19-16
grids 19-15, 19-17

stateless objects 44-12
static binding

COM 38-17
CORBA 31-13

static text control 9-3
status bars 9-14

internationalizing 16-8
owner draw 6-11

status information 9-14
StatusCode property 33-11
StatusFilter property 14-25,

24-32, 25-12, 27-6, 27-19, 28-8
StdConvs unit 4-25, 4-26, 4-28
Step property 9-14
StepBy method 9-14
StepIt method 9-14
storage class specifiers

register A-5
stored procedures 18-5, 22-24,

22-48 to 22-53
BDE-based 24-2, 24-11 to

24-12
parameter binding 24-11

creating 26-11
dbExpress 26-7 to 26-8
executing 22-53
listing 21-14
overloaded 24-12
parameters 22-50 to 22-52

design time 22-50 to 22-51
from client datasets 27-28
properties 22-51
runtime 22-52

preparing 22-52 to 22-53
specifying the

database 22-49
StoredProcName

property 22-49
StrByteType 4-21
streams 4-2

copying data 4-3
position 4-3
reading and writing data 4-2
seeking 4-3
size 4-3
storage media 4-3

strerror function A-11
Stretch property 19-10
StretchDraw method 10-5, 50-3,

50-6
string fields

size 23-6
string grids 9-15, 9-16
String List editor

displaying 19-10
string lists 4-15 to 4-19

adding to 4-18
associated objects 4-19
copying 4-19
creating 4-16 to 4-17
deleting strings 4-19
finding strings 4-18
iterating through 4-18
loading from files 4-15
long-term 4-16
moving strings 4-18
owner-draw controls 6-12 to

6-13
persistent 4-14
position in 4-18
saving to files 4-15
short-term 4-16
sorting 4-18
substrings 4-18

strings 4-19, 47-2, 47-8
2-byte conversions 16-3
associating graphics 6-12
changing permanently A-11
declaring and

initializing 4-25
HTML templates 33-14
null-terminated 4-23 to 4-24
returning 47-8
routines

case sensitivity 4-21
Multi-byte character

support 4-21
runtime library 4-19

size 6-8
sorting 16-9
starting position 6-8
translating 16-2, 16-8, 16-10
truncating 16-3

Strings property 4-18
StrNextChar function

I n d e x I-39

Linux 14-16
structured exceptions 12-6
Structured Query Language

 See SQL
structures A-5
stubs 31-2, 31-6, 31-14 to 31-15

COM 38-8
global variables and 31-15
marshaling 31-2
transactional objects 44-2

Style property 6-12, 9-9
brushes 9-17, 10-8
combo boxes 9-10, 19-11
list boxes 9-9
pens 10-5
tool buttons 8-47
Web items 29-38

style sheets 29-38
StyleChanged method 51-14
StyleRule property 29-38
styles

TApplication 14-6
Styles property 29-38
StylesFile property 29-38
subclassing Windows

controls 45-4
subcomponents

properties 47-9
submenus 8-34
subscriber objects 40-15
Subtotals property 20-12
summary values

crosstabs 20-2, 20-3
decision cubes 20-19
decision graphs 20-15
maintained aggregates 27-13

support options 1-3
SupportCallbacks

property 29-17
Suspend method 11-11
switch statements

case values A-6
Sybase driver

deploying 17-9
Synchronize method 11-4
synchronizing data

on multiple forms 19-4
system events

customizing 51-15
system notifications 51-10 to

51-15
System page (Component

palette) 5-7
system resources,

conserving 45-4

T
tab controls 9-13

owner-draw 6-11
tab sets 9-13
Table HTML tag

(<TABLE>) 33-14
table producers 33-18 to 33-20
TableAttributes property 33-19
TableName property 22-25,

22-38, 26-7
TableOfContents 7-31
tables 22-23, 22-25 to 22-41

BDE-based 24-2, 24-4 to 24-8
access rights 24-6
appending records 24-8
batch operations 24-7 to

24-8
binding 24-5
closing 24-5
copying records 24-8
deleteing records 24-8
exclusive locks 24-6
index-based

searches 22-27
updating records 24-8

creating 22-37 to 22-39
indexes 22-38
persistent fields 22-38

dbExpress 26-6 to 26-7
defining 22-38
deleting 22-40
displaying in grids 19-16
emptying 22-40
field and index

definitions 22-38
preloading 22-39

indexes 22-26 to 22-37
inserting records 22-18 to

22-19, 22-21
listing 21-13
master/detail

relationships 22-34 to 22-37
nested 22-36 to 22-37
non-database grids 9-15
ranges 22-30 to 22-34
read-only 22-37
searching 22-27 to 22-30
sorting 22-26, 26-7
specifying the

database 22-25
synchronizing 22-41

TableType property 22-38, 24-5
to 24-6

tabs
draw-item events 6-15

Tabs property 9-13
TabStopChanged method 51-14
tabular display (grids) 9-15
tabular grids 19-27
TAction 8-20
TActionClientItem 8-22
TActionList 8-18, 8-19
TActionMainMenuBar 8-17,

8-18, 8-19, 8-20, 8-21, 8-22
TActionManager 8-17, 8-19
TActionToolBar 8-17, 8-18, 8-19,

8-20, 8-21, 8-22
TActiveForm 43-3, 43-6
TAdapterDispatcher 34-34
TAdapterPageProducer 34-32
TADOCommand 25-2, 25-7,

25-9, 25-16 to 25-19
TADOConnection 18-8, 21-1,

25-2, 25-2 to 25-8, 25-9
connecting to data

stores 25-3 to 25-4
TADODataSet 25-2, 25-8, 25-9,

25-15 to 25-16
TADOQuery 25-2, 25-8, 25-9

SQL command 25-16
TADOStoredProc 25-2, 25-8,

25-9
TADOTable 25-2, 25-8, 25-9
Tag property 23-12
TApplication 7-27, 7-34

Styles 14-6
system events 51-12

TApplicationEvents 8-2
TASM code

Linux 14-16
TASPObject 42-2
TAutoDriver 40-5, 40-12, 40-13
TBatchMove 24-47 to 24-51

error handling 24-51
TBCDField

default formatting 23-15
TBDEClientDataSet 24-2
TBDEDataSet 22-2
TBevel 9-17
TBitmap 50-4
TBrush 9-17
tbsCheck constant 8-47
TByteDynArray 36-4
TCalendar 55-1
TCanvas

using 4-19
TCharProperty type 52-8
TClassProperty type 52-8

I-40 D e v e l o p e r ’ s G u i d e

TClientDataSet 27-18
TClientDataset 7-23
TClientSocket 37-6
TColorProperty type 52-8
TComInterface 40-5, 40-12
TComponent 3-4, 3-7, 45-5

defined 3-5
interfaces and 13-4, 13-5

TComponentClass 45-13
TComponentProperty type 52-8
TControl 3-8, 45-4, 48-4, 48-5

defined 3-5
TConvType values 4-26
TConvTypeInfo 4-30
TCoolBand 9-8
TCoolBar 8-43
TCP/IP 24-15, 37-1

clients 37-6
connecting to application

server 29-23
multi-tiered

applications 29-9 to 29-10
servers 37-7

TCRemoteDataModule 29-14
TCurrencyField

default formatting 23-15
TCustomADODataSet 22-2
TCustomClientDataSet 22-2
TCustomContentProducer

33-13
TCustomControl 45-4
TCustomEdit 14-7
TCustomGrid 55-1, 55-3
TCustomIniFile 4-11
TCustomizeDlg 8-22
TCustomListBox 45-3
TDatabase 18-8, 21-1, 24-3,

24-12 to 24-16
DatabaseName

property 24-3
temporary instances 24-19

dropping 24-20
TDataSet 22-1

descendants 22-2 to 22-3
TDataSetProvider 28-1, 28-2
TDataSetTableProducer 33-20
TDataSource 19-3 to 19-5
TDateField

default formatting 23-15
TDateTime type 55-6
TDateTimeField

default formatting 23-15
TDBChart 18-15
TDBCheckBox 19-2, 19-13

TDBComboBox 19-2, 19-10,
19-10 to 19-11

TDBCtrlGrid 19-2, 19-27 to
19-28

properties 19-28
TDBEdit 19-2, 19-8
TDBGrid 19-2, 19-15 to 19-27

events 19-26
properties 19-20

TDBGridColumns 19-15
TDBImage 19-2, 19-9 to 19-10
TDBListBox 19-2, 19-10, 19-10 to

19-11
TDBLookupComboBox 19-2,

19-10, 19-11 to 19-12
TDBLookupListBox 19-2, 19-10,

19-11 to 19-12
TDBMemo 19-2, 19-8 to 19-9
TDBNavigator 19-2, 19-28 to

19-31, 22-5, 22-6
TDBRadioGroup 19-2, 19-13 to

19-14
TDBRichEdit 19-2, 19-9
TDBText 19-2, 19-8
TDCOMConnection 29-23
TDecisionCube 20-1, 20-4, 20-7

to 20-8
events 20-7

TDecisionDrawState 20-12
TDecisionGraph 20-1, 20-2,

20-13 to 20-18
TDecisionGrid 20-1, 20-2, 20-10

to 20-13
events 20-12
properties 20-12

TDecisionPivot 20-1, 20-2, 20-9
to 20-10

properties 20-10
TDecisionQuery 20-1, 20-4, 20-6
TDecisionSource 20-1, 20-9

events 20-9
properties 20-9

TDefaultEditor 52-15
TDependency_object 7-9
TDragObject 6-3
TDragObjectEx 6-3
TDrawingTool 10-12
technical support 1-3
TEdit 9-1
temperature units 4-28
templates 7-24, 7-25

component 8-12
decision graphs 20-16
deleting 8-38
HTML 33-13 to 33-17

menus 8-30, 8-37, 8-38
page producers 34-4
programming 7-3
Web Broker

applications 33-2
temporary files A-10
temporary objects 50-6
TEnumProperty type 52-8
terminate function 12-5
Terminate method 11-6
Terminated property 11-6
termination block 12-13
test server, Web Application

Debugger 34-8
testing

components 45-16, 45-18,
57-6 to 57-7

values 47-7
TEvent 11-10
TEventDispatcher 40-14
text

copying, cutting, pasting 6-9
deleting 6-9
in controls 6-6
internationalizing 16-8
owner-draw controls 6-11
printing 9-3
reading right to left 16-6
searching for 9-3
selecting 6-8, 6-8
working with 6-6 to 6-11

text controls 9-1 to 9-3
Text property 9-2, 9-3, 9-10, 9-14
text streams A-9
TextChanged method 51-14
TextHeight method 10-5, 50-3
TextOut method 10-5, 50-3
TextRect method 10-5, 50-3
TextWidth method 10-5, 50-3
TField 22-1, 23-1 to 23-27

events 23-15 to 23-16
methods 23-16
properties 23-1, 23-10 to

23-15
runtime 23-12

TFieldDataLink 56-5
TFiler 4-3
TFileStream 4-2, 4-5

file I/O 4-5 to 4-7
TFloatField

default formatting 23-15
TFloatProperty type 52-8
TFMTBcdField

default formatting 23-15
TFontNameProperty type 52-8

I n d e x I-41

TFontProperty type 52-8
TForm

scroll-bar properties 9-4
TFrame 8-13
TGraphic 50-4
TGraphicControl 45-4, 54-3
THandleComponent 51-11
The 11-6
THeaderControl 9-13
thin client applications 29-2,

29-29
this argument 45-16
thread classes

defining 11-1
thread function 11-4
__thread modifier 11-5
thread objects 11-1

defining 11-2
initializing 11-2
limitations 11-2

Thread Status box 11-12
thread variables 11-5

CORBA 31-11
thread-aware objects 11-4
ThreadID property 11-12
threading models 41-5 to 41-8

ActiveX controls 43-5
Automation objects 41-4
COM objects 41-3
remote data modules 29-14
system registry 41-6
transactional data

modules 29-15
transactional objects 44-18 to

44-19
thread-local variables 11-5

OnTerminate event 11-7
threads 11-1 to 11-13

activities 44-19
avoiding simultaneous

access 11-7
BDE and 24-13
blocking execution 11-7
converting unnamed to

named 11-12
coordinating 11-4, 11-7 to

11-11
CORBA 31-11 to 31-12
creating 11-11
critical sections 11-8
data access components 11-4
exceptions 11-6
executing 11-11
freeing 11-2, 11-3
graphics objects 11-5

ids 11-12
initializing 11-2
ISAPI/NSAPI

programs 33-2, 33-17
limits on number 11-11
locking objects 11-7
message loop and 11-4
naming 11-12 to 11-13
priorities 11-1, 11-2

overriding 11-11
process space 11-4
returning values 11-9
service 7-7
stopping 11-11
terminating 11-6
using lists 11-5
VCL thread 11-4
waiting for 11-9

multiple 11-10
waiting for events 11-10

thread-safe objects 11-4
three-tiered applications See

multi-tiered applications
throw statement 12-1, 12-2,

12-17
THTMLTableAttributes 33-18
THTMLTableColumn 33-19
THTTPRio 36-16
THTTPSoapCppInvoker 36-9,

36-11
THTTPSoapDispatcher 36-9,

36-11
TIBCustomDataSet 22-2
TIBDatabase 18-8, 21-1
TickMarks property 9-5
TickStyle property 9-5
TIcon 50-4
tie classes 31-8 to 31-9

VCL and 31-8
tiers 29-1
TiledDraw method 50-6
TImage

in frames 8-15
TImageList 8-46
time A-11

internationalizing 16-9
time conversion 4-27
time fields

formatting 23-14
time formats A-11
__TIME__ macro A-7
timeout events 11-11
timers 5-6
times

entering 9-11

TIniFile 4-10
TIntegerProperty type 52-8
TInterfacedObject 13-4, 13-5
TInvokableClass 36-12
Title property

data grids 19-20
TKeyPressEvent 48-3
TLabel 9-3, 45-4
.TLB files 38-17, 39-2, 39-19
TLCDNumber 9-1
TLIBIMP command-line

tool 38-18, 40-2, 40-6, 41-14
TListBox 45-3
TLocalConnection 27-24, 29-5
TMainMenu 8-19
TMaskEdit 9-1
TMemIniFile 4-10, 14-6
TMemo 9-1
TMemoryStream 4-2
TMessage 51-5, 51-7
TMetafile 50-4
TMethod type 51-11
TMethodProperty type 52-8
TMTSASPObject 42-2
TMtsDll 44-4, 44-25
TMultiReadExclusiveWriteSync

hronizer 11-8
TNestedDataSet 22-36
TNotifyEvent 48-7
TObject 3-4, 13-9, 13-23, 13-28,

46-4
defined 3-5

ToCommon 4-30
toggles 8-45, 8-47
TOleContainer 40-15 to 40-16

Active Documents 38-14
TOleControl 40-6, 40-7
TOleServer 40-6
tool buttons 8-46

adding images 8-46
disabling 8-46
engaging as toggles 8-47
getting help with 8-48
grouping/ungrouping 8-47
in multiple rows 8-46
initial state, setting 8-46
wrapping 8-46

toolbars 8-42, 9-8
action lists 8-18
adding 8-45 to 8-47
adding panels as 8-43 to 8-45
context menus 8-48
creating 8-19
default drawing tool 8-45
defined 8-17

I-42 D e v e l o p e r ’ s G u i d e

designing 8-42 to 8-49
disabling buttons 8-46
hiding 8-49
inserting buttons 8-43 to

8-45, 8-46
owner-draw 6-11
setting margins 8-44
speed buttons 9-7
transparent 8-46, 8-48

Tools API 58-1 to 58-24
creating files 58-14 to 58-18
creators 58-3, 58-14 to 58-18
debugging 58-11
editors 58-3, 58-12 to 58-14
modules 58-3, 58-12 to 58-14
notifiers 58-3
services 58-2, 58-7 to 58-14
wizards 58-3, 58-3 to 58-7

ToolsAPI unit 58-2
tool-tip help 9-15
Top property 8-4, 8-44
TopRow property 9-15
TOrdinalProperty type 52-8
TPageControl 9-13
TPageDispatcher 34-34
TPageProducer 33-13
TPaintBox 9-17
TPanel 8-42, 9-12
TPersistent 13-7

defined 3-5
tpHigher constant 11-3
tpHighest constant 11-3
TPicture type 50-4
tpIdle constant 11-3
tpLower constant 11-3
tpLowest constant 11-3
tpNormal constant 11-3
TPopupMenu 8-48
-Tpp linker option 15-12
TPrinter 4-25

using 3-4
TPropertyAttributes 52-10
TPropertyEditor class 52-7
TPropertyPage 43-13
tpTimeCritical constant 11-3
TQuery 24-2, 24-8 to 24-11

decision datasets and 20-5
TQueryTableProducer 33-20
track bars 9-5
transaction attributes

setting 44-11
transactional data

modules 29-15
transaction isolation level 21-9

to 21-10

local transactions 24-31
specifying 21-10

transaction parameters
isolation level 21-10

Transactional Data Module
wizard 29-14 to 29-15

transactional data modules 29-6
to 29-8

database connections 29-6,
29-8

pooling 29-7
implementation class 29-14
interface 29-17
security 29-9
threading models 29-15
transaction attributes 29-15

Transactional Object
wizard 44-17 to 44-20

transactional objects 38-10,
38-14 to 38-15, 44-1 to 44-28

activities 44-19 to 44-20
administering 38-15, 44-28
callbacks 44-25 to 44-26
characteristics 44-2 to 44-3
creating 44-17 to 44-20
deactivation 44-5
debugging 44-26
dual interfaces 44-3
installing 44-27
managing resources 44-3 to

44-9
marshaling 44-3
object contexts 44-4
pooling database

connections 44-6
releasing resources 44-9
requirements 44-3
security 44-16
sharing properties 44-6 to

44-9
stateless 44-12
transactions 44-5, 44-10 to

44-16
type libraries 44-3

transactions 18-4 to 18-5, 21-6 to
21-10

ADO 25-6, 25-8
retaining aborts 25-6
retaining commits 25-6

applying updates 21-6, 29-17
atomicity 18-4, 44-10
attributes 44-11 to 44-12
automatic 44-13
BDE 24-29 to 24-31

controlling 24-30 to 24-31

implicit 24-29
cached updates 24-33
client-controlled 44-13 to

44-14
committing 21-8
composed of multiple

objects 44-10
consistency 18-4, 44-10
durability 18-4, 44-10
ending 21-8 to 21-9, 44-12 to

44-13
IAppServer 29-18
isolation 18-4, 44-10

levels 21-9 to 21-10
local 24-31
local tables 21-6
MTS and COM+ 44-10 to

44-16
multi-tiered

applications 29-17 to 29-18
nested 21-7

committing 21-8
object contexts 44-10
overlapped 21-7
rolling back 21-8 to 21-9
server-controlled 44-14 to

44-15
spanning multiple

databases 44-10
starting 21-6 to 21-7
timeouts 44-15 to 44-16,

44-26
transaction components 21-7
transactional data

modules 29-7, 29-15, 29-17
to 29-18

transactional objects 44-5,
44-10 to 44-16

using SQL commands 21-6,
24-30

transfer records 57-2
transformation files 30-1 to 30-6

TXMLTransform 30-7
TXMLTransformClient 30-9
TXMLTransformProvider

30-8
user-defined nodes 30-5,

30-7 to 30-8
TransformGetData

property 30-9
TransformRead property 30-8
TransformSetParams

property 30-9
TransformWrite property 30-8
transient subscriptions 40-15

I n d e x I-43

TransIsolation property 21-10
local transactions 24-31

translating character
strings 16-2, 16-8, 16-10

2-byte conversions 16-3
translation 16-8
translation tools 16-1
Transliterate property 23-12,

24-48
transparent backgrounds 16-9
Transparent property 9-4
transparent toolbars 8-46, 8-48
TReader 4-3
tree views 9-10

owner-draw 6-11
TRegIniFile 14-6
TRegistry 4-10
TRegistryIniFile 4-10, 4-11
TRegSvr 17-5, 38-18, 38-19
TRemotable 36-7
TRemoteDataModuleRegistrar

29-9
triangles 10-11
TRichEdit 9-1
triggers 18-5
try block 12-1, 12-2
__try keyword 12-7
try statement 12-10
TScrollBox 9-4, 9-12
TSearchRec 4-7
TServerSocket 37-7
TService_object 7-9
TSession 24-16 to 24-29

adding 24-27, 24-28
TSetElementProperty type 52-8
TSetProperty type 52-8
TSharedConnection 29-28
TSocketConnection 29-23
TSpinEdit control 9-5
TSQLClientDataSet 26-2
TSQLConnection 18-8, 21-1,

26-2 to 26-5
binding 26-3 to 26-5
monitoring messages 26-17

TSQLDataSet 26-2, 26-6, 26-7
TSQLMonitor 26-17
TSQLQuery 26-2, 26-6
TSQLStoredProc 26-2, 26-7
TSQLTable 26-2, 26-7
TSQLTimeStampField

default formatting 23-15
TStoredProc 24-2, 24-11 to 24-12
TStream 4-2
TStringList 4-15 to 4-19, 7-30
TStringProperty type 52-8

TStrings 4-15 to 4-19
TTabControl 9-13
TTable 24-2, 24-4 to 24-8

decision datasets and 20-5
TTextBrowser 9-1
TTextViewer 9-1
TThread 11-2
TThreadList 11-5, 11-7
TTimeField

default formatting 23-15
TToolBar 8-19, 8-43, 8-45
TToolButton 8-43
TTreeView 9-10
TUpdateSQL 24-39 to 24-47

providers and 24-11
tutorial

WebSnap 34-11 to 34-22
TWebActionItem 33-3
TWebAppDataModule 34-2
TWebAppPageModule 34-2
TWebConnection 29-24
TWebContext 34-33
TWebDataModule 34-2
TWebDispatcher 34-34, 34-38
TWebPageModule 34-2
TWebResponse 33-3
TWidgetControl 14-5

defined 3-5
TWinControl 3-9, 13-8, 13-11,

14-5, 16-8, 45-4, 48-5
defined 3-5

TWMMouse type 51-7
two-phase commit 29-17
two-tiered applications 18-3,

18-9, 18-12
TWriter 4-3
TWSDLHTMLPublish 36-10,

36-15
TWSDLHTMLPublisher 36-11
TXMLDocument 35-3 to 35-4,

35-8
TXMLTransform 30-6 to 30-8

source documents 30-6
TXMLTransformClient 30-9 to

30-10
parameters 30-9

TXMLTransformProvider 28-1,
28-2, 30-8

type declarations
enumerated types 10-12,

10-13
properties 54-4

type definitions
Type Library editor 39-9 to

39-10

type information 38-16, 39-1
dispinterfaces 41-12
Help 39-8
IDispatch interface 41-13
importing 40-2 to 40-6

type libraries 38-11, 38-12, 38-16
to 38-18, 39-1 to 39-19

_TLB unit 38-23, 39-2, 39-13,
40-2, 40-5 to 40-6, 41-14

accessing 38-17 to 38-18,
39-13, 40-2 to 40-6

Active Server Objects 42-3
ActiveX controls 43-3
adding

methods 39-14 to 39-15
properties 39-14 to 39-15

adding interfaces 39-13
benefits 38-18
browsers 38-18
browsing 38-19
contents 38-16, 39-1, 40-5 to

40-6
creating 38-17, 39-12 to 39-13
deploying 39-19
exporting as IDL 39-19
generated by wizards 39-1
IDL and ODL 38-17
importing 40-2 to 40-6
including as resources 39-19,

43-3
interfaces 38-18
modifying interfaces 39-14

to 39-15
opening 39-13
optimizing

performance 39-8
registering 38-18, 38-19,

39-18
registering objects 38-18
saving 39-18
tools 38-18
transactional objects 44-3
uninstalling 38-18
unregistering 38-18, 38-19
valid types 39-11 to 39-12
when to use 38-17

Type Library editor 38-17, 39-2
to 39-19

adding interfaces 39-13
aliases 39-10

adding 39-16
application servers 29-16
binding attributes 43-12
CoClasses 39-9

adding 39-15 to 39-16

I-44 D e v e l o p e r ’ s G u i d e

COM+ page 44-5, 44-9
dispinterfaces 39-9
elements 39-8 to 39-10

common
characteristics 39-8

enumerated types 39-9 to
39-10

adding 39-16
error messages 39-5, 39-7
interfaces 39-8 to 39-9

modifying 39-14 to 39-15
methods

adding 39-14 to 39-15
modules 39-10

adding 39-17
Object list pane 39-4 to 39-5
opening libraries 39-13
parts 39-2 to 39-7
properties

adding 39-14 to 39-15
records and unions 39-10

adding 39-16 to 39-17
saving and registering type

information 39-17 to 39-19
selecting elements 39-5
status bar 39-5
text page 39-7, 39-14
toolbar 39-3 to 39-4
type definitions 39-9 to 39-10
type information pages 39-5

to 39-7
updating 39-18

type reserved word 10-12
typedef, Object Pascal to

C++ 13-15
types

Automation 41-14 to 41-15
C++ vs Object Pascal 13-19
Char 16-3
event handlers 48-3
holder classes 36-6
message-record 51-7
MIME 10-22
naming 10-12
properties 47-2, 47-8, 52-9
type libraries 39-11 to 39-12
unspecified 13-16
user-defined 54-4
Web Services 36-3 to 36-9

U
UCS standard 14-19
UDP protocol 37-1
Unassociate Attributes

command 23-14

underflow range errors
math functions and A-8

undocking controls 6-6
UndoLastChange method 27-5
unexpected function 12-4
unhandled exceptions 12-6
UnhandledExceptionFilter

function 12-7
Unicode characters 16-3, 16-4

strings 4-20
unidirectional cursors 22-48
unidirectional datasets 26-1 to

26-18
binding 26-5 to 26-8
connecting to servers 26-2
editing data 26-10
executing commands 26-9 to

26-10
fetching data 26-8
fetching metadata 26-12 to

26-16
limitations 26-1
preparing 26-8
types 26-2

UniDirectional property 22-48
unindexed datasets 22-19, 22-21
unions

accessing A-4
members with different

types A-4
Type Library editor 39-10,

39-16 to 39-17
units

adding components 45-12
C++Builder 45-11
CLX 14-9 to 14-11
existing

adding a
component 45-12

VCL 14-9 to 14-11
units, in conversion 4-27
Unlock method 11-7
UnlockList method 11-7
unmapped types 13-23
UnRegisterTypeLib

function 38-18
update errors

resolving 27-20, 27-22 to
27-24, 28-8, 28-11

response messages 29-36
update objects 24-39 to 24-47,

27-18
executing 24-45 to 24-46
parameters 24-41 to 24-42,

24-45, 24-46 to 24-47

providers and 24-11
queries 24-46 to 24-47
SQL statements 24-40 to

24-43
using multiple 24-43 to 24-46

Update SQL editor 24-40 to
24-41

Options page 24-40
SQL page 24-41

UPDATE statements 24-39,
24-43, 28-9

UpdateBatch method 14-25,
25-12, 25-13

UpdateCalendar method 56-4
UpdateMode property 28-10

client datasets 27-21
UpdateObject method 43-14,

43-15
UpdateObject property 24-11,

24-32, 24-39, 24-44
UpdatePropertyPage

method 43-14
UpdateRecordTypes

property 14-25, 24-32, 27-18
UpdateRegistry method 29-8
UpdatesPending

property 14-25, 24-32
UpdateStatus property 14-25,

24-32, 25-12, 27-18, 28-9
UpdateTarget method 8-28
up-down controls 9-5
URI vs.URL 32-4
URL property 29-24, 29-25,

33-9, 36-16
URLs 32-3

host names 37-4
IP addresses 37-4
javascript libraries 29-32,

29-33
SOAP connections 29-25
vs. URIs 32-4
Web browsers 32-5
Web connections 29-24

Use CORBA Object
wizard 31-14

user interfaces 8-1, 18-15 to
18-16

forms 8-1 to 8-4
isolating 18-6
layout 8-4
multi-record 19-14
organizing data 19-7 to 19-8,

19-14 to 19-15
single record 19-7

user list service 34-9, 34-25

I n d e x I-45

user-defined messages 51-6,
51-8

user-defined types 54-4
uses clause

adding data modules 7-23
uuid argument 13-2

V
validating data entry 23-15
Value property

aggregates 27-13
fields 23-17
parameters 22-45, 22-51

ValueChecked property 19-13
values 47-2

Boolean 47-2, 47-12, 56-4
default data 19-10
default property 47-7, 47-11

to 47-12
redefining 53-3, 53-4

sequential 10-12
testing 47-7

Values property
radio groups 19-14

ValueUnchecked
property 19-13

var parameters 13-16
VCL 7-12, 45-1 to 45-2

C++ language support
for 13-1 to 13-29

CLX vs. 14-5 to 14-7
exception classes 12-16
exception handling 12-15
main thread 11-4
object construction 13-9
overview 3-1 to 3-2
TComponent branch 3-7
TControl branch 3-8
TObject branch 3-5
TPersistent branch 3-6
TWinControl branch 3-9
units 14-9 to 14-11

VCL applications
porting to Linux 14-2 to

14-14
vcl60.bpl 15-1, 15-9, 17-6

penwin.dll 15-11
VCLCONTROL_IMPL

macro 43-3, 43-5
VCL-style classes 13-1

inheritance 13-2
VendorLib property 26-3
version control 2-5
version information

ActiveX controls 43-5

type information 39-8
vertical track bars 9-5
VertScrollBar 9-4
video casettes 10-32
video clips 10-29, 10-31
viewing scripts 34-32
ViewStyle property 9-11
virtual

class methods 13-15
functions 13-12
keyword 46-9
method table 46-9
methods 49-3

properties as 47-2
property editors 52-8 to

52-9
Visible property 3-2

cool bars 8-49
fields 23-12
menus 8-41
toolbars 8-49

VisibleButtons property 19-29,
19-30

VisibleChanged method 51-14
VisibleColCount property 9-15
VisibleRowCount property 9-15
VisualCLX

defined 14-5
packages 15-9

VisualSpeller Control 17-5
vtables 38-4

COM interface pointer 38-4
component wrappers 40-6
creator classes and 40-5,

40-12
dual interfaces 41-12
type libraries and 38-17
vs dispinterfaces 39-9

W
W3C 35-2
WaitFor method 11-9, 11-10
WantReturns property 9-3
WantTabs property 9-3

data-aware memo
controls 19-8

data-aware rich edit
controls 19-9

.wav files 10-32
wchar_t character constant A-4
wchar_t widechar 14-19
weak packaging 15-11
Web application debugger 32-9,

33-2, 34-8

Web application modules 34-2,
34-3

Web application object 33-3
Web applications

ActiveX 38-13, 43-1, 43-16 to
43-18

multi-tiered clients 29-30
ASP 38-13, 42-1
database 29-28 to 29-40
deploying 17-10

Web Broker 7-17
Web Broker server

applications 32-1 to 32-3, 33-1
to 33-20

accessing databases 33-17
adding to projects 33-3
architecture 33-3
creating 33-1 to 33-3
creating responses 33-7
event handling 33-5, 33-7,

33-8
managing database

connections 33-17
overview 33-1 to 33-4
posting data to 33-10
querying tables 33-20
response templates 33-13
sending files 33-12
templates 33-2
Web dispatcher 33-4

Web browsers
URLs 32-5

Web connections 29-10 to 29-11,
29-24

Web data modules 34-2, 34-3,
34-4 to 34-5

structure 34-5
Web deployment 43-16 to 43-18

multi-tiered
applications 29-30

Web Deployment Options
dialog box 43-17

Web dispatcher
auto-dispatching

objects 29-35
handling requests 33-3

Web items 29-37
properties 29-37 to 29-38

Web modules 33-2, 33-4, 34-2,
34-2 to 34-5

adding database
sessions 33-17

DLLs and, caution 33-3
types 34-2

Web page editor 29-37

I-46 D e v e l o p e r ’ s G u i d e

Web page modules 34-2, 34-4
Web pages 32-5

InternetExpress page
producer 29-36 to 29-40

Web scripting 34-7
Web server applications 7-16,

7-17, 32-1 to 32-11
ASP 42-1
debugging 32-9 to 32-11
multi-tiered 29-31 to 29-40
overview 32-6 to 32-11
resource locations 32-3
standards 32-3
types 32-6

Web servers 29-30, 32-1 to
32-11, 42-6

client requests and 32-5
debugging 33-2
types 34-8

Web Service Definition
Language See WSDL

Web Services 36-1 to 36-17
adding 36-12 to 36-13
clients 36-16 to 36-17
complex types 36-3 to 36-9
data context 36-8
enumerated types 36-6
exceptions 36-14 to 36-15
holder classes 36-6
implementation

classes 36-12 to 36-13
importing 36-13 to 36-14
namespaces 36-3
registering implementation

classes 36-12
scalar types 36-3
servers 36-9 to 36-16
wizard 36-11 to 36-14
writing servers 36-10 to

36-15
Web Services importer 36-13
WebDispatch property 29-35,

36-11
WebPageItems property 29-36
WebServices page (Component

palette) 29-2
WebServices page (New Items

dialog) 29-2
WebSnap 32-1 to 32-3

access rights 34-28 to 34-30
global script objects B-14
login pages 34-26 to 34-28
login support 34-24 to 34-30
requiring logins 34-28

server-side scripting 34-30 to
34-33, B-1 to B-38

server-side scripting
examples B-19

tutorial 34-11 to 34-22
wide character constants A-4
wide characters 16-3
widechar 14-19
widestrings 14-19
WidgetDestroyed

property 51-14
widgets 3-9

creating 14-11
Windows controls vs. 14-5

Width property 8-4, 9-14
data grid columns 19-16
data grids 19-20
pens 10-5, 10-6

Win 3.1 page (Component
palette) 5-8

WIN32 14-17
Win32 exception handling 12-6
Win32 page (Component

palette) 5-7
WIN64 14-17
Win-CGI applications 32-5,

32-6, 32-7
.ini files 32-7
creating 33-2, 34-8

window
class 45-4
controls 45-3
handles 45-3, 45-4, 45-5
message handling 55-4
procedures 51-3

Windows
API functions 45-3, 50-1, 51-2
common dialog boxes 57-1

creating 57-2
executing 57-5

controls, subclassing 45-4
device contexts 45-7, 50-1
events 48-4
Graphics Device Interface

(GDI) 10-1
messages 51-3
messaging 51-1 to 51-10

windows
resizing 9-6

wininet.dll 29-24, 29-25
wizards 7-24

Active Server Object 38-21,
42-2 to 42-3

ActiveForm 38-21, 43-6 to
43-7

ActiveX controls 38-21, 43-4
to 43-5

ActiveX library 38-21
Automation object 38-20,

41-4 to 41-8
COM 38-19 to 38-23, 41-1
COM object 38-20, 39-12,

41-2 to 41-4, 41-5 to 41-8
COM+ Event object 38-21,

44-22 to 44-23
COM+ Event subscriber

object 44-23
Component 45-9
Console Wizard 7-4
CORBA client 31-13
CORBA Object 31-6, 31-13
CORBA Server 31-5
creating 58-2, 58-3 to 58-7
debugging 58-11
installing 58-7, 58-22 to 58-24
Property Page 43-13 to 43-14
property page 38-21
Remote Data Module 29-13

to 29-14
Resource DLL 16-10
responding to IDE

events 58-18
SOAP Data Module 29-15 to

29-16
Tools API 58-3
Transactional Data

Module 29-14 to 29-15
transactional object 38-21,

44-17 to 44-20
Type Library 38-21, 39-12 to

39-13
types 58-3
Use CORBA Object 31-14
Web Services 36-11 to 36-14
XML Data Binding 35-5 to

35-9
WM_APP constant 51-6
WM_KEYDOWN message 56-9
WM_LBUTTONBUTTON

message 56-9
WM_MBUTTONDOWN

message 56-9
WM_PAINT messages 10-2
WM_RBUTTONDOWN

message 56-9
WM_SIZE message 55-4
WndProc method 51-3, 51-5
word alignment A-5, A-6
word wrapping 6-7
WordWrap property 6-7, 9-3

I n d e x I-47

data-aware memo
controls 19-9

WParam parameter 51-9
Wrap property 8-46
Wrapable property 8-46
wrappers 45-4, 57-2

 See also component wrappers
initializing 57-3

Write By Reference
COM interface

properties 39-8
Write method

TFileStream 4-2
write method 47-6
write reserved word 47-8, 54-5
WriteBuffer method

TFileStream 4-2
write-only properties 47-6
WSDL 36-2

files 36-15
importing 36-3, 36-13 to

36-14, 36-16
publishing 36-15 to 36-16

WSDL administrator 36-15
WSDL publisher 36-11
WSDLIMP 36-14

X
XDR file 35-2
Xerox Network System

(XNS) 37-1
.xfm files 14-2
XML 30-1, 35-1

database applications 30-1 to
30-10

document type
declaration 35-2

mappings 30-2 to 30-3
defining 30-4

parsers 35-2
processing instructions 35-1
SOAP and 36-1

XML brokers 29-32, 29-34 to
29-36

HTTP messages 29-35
XML Data Binding wizard 35-5

to 35-9
XML documents 30-1, 35-1 to

35-9
attributes 30-5, 35-5
child nodes 35-5
components 35-3 to 35-4,

35-8

converting to data
packets 30-1 to 30-8

generating interfaces
for 35-6

mapping nodes to fields 30-2
nodes 35-2, 35-4 to 35-5
properties for nodes 35-6
publishing database

information 30-9
root node 35-4, 35-6, 35-9
transformation files 30-1

XML files 25-14
XML schemas 35-2
XMLBroker property 29-38
XMLDataFile property 28-2,

30-8
XMLDataSetField

property 29-38
XMLMapper 30-2, 30-4 to 30-6
XSD file 35-2
XSLPageProducer 34-4

Y
Year property 55-6

Z
zero-length files A-9

I-48 D e v e l o p e r ’ s G u i d e

	Developer’s Guide
	Contents
	Tables
	Figures
	Introduction
	What’s in this manual?
	Manual conventions
	Developer support services
	Ordering printed documentation

	Part I: Programming with C++Builder
	Ch 2: Developing applications with C++Builder
	Integrated development environment
	Designing applications
	Creating projects
	Editing code
	Compiling applications
	Debugging applications
	Deploying applications

	Ch 3: Using the class libraries
	Understanding the class libraries
	Properties, methods, and events
	Properties
	Methods
	Events
	User events
	System events

	Objects, components, and controls
	TObject branch
	TPersistent branch
	TComponent branch
	TControl branch
	TWinControl/TWidgetControl branch

	Ch 4: Using BaseCLX
	Using streams
	Using streams to read or write data
	Stream methods for reading and writing
	Reading and writing components

	Copying data from one stream to another
	Specifying the stream position and size
	Seeking to a specific position
	Using Position and Size properties

	Working with files
	Approaches to file I/O
	Using file streams
	Creating and opening files using file streams
	Using the file handle

	Manipulating files
	Deleting a file
	Finding a file
	Renaming a file
	File date-time routines
	Copying a file

	Working with ini files and the system Registry
	Using TIniFile and TMemIniFile
	Using TRegistryIniFile
	Using TRegistry

	Working with lists
	Common list operations
	Adding list items
	Deleting list items
	Accessing list items
	Rearranging list items

	Persistent lists

	Working with string lists
	Loading and saving string lists
	Creating a new string list
	Short-term string lists
	Long-term string lists

	Manipulating strings in a list
	Counting the strings in a list
	Accessing a particular string
	Locating items in a string list
	Iterating through strings in a list
	Adding a string to a list
	Moving a string within a list
	Deleting a string from a list
	Associating objects with a string list

	Working with strings
	Wide character routines
	Commonly used routines for AnsiStrings
	Commonly used routines for null-terminated strings

	Printing
	Converting measurements
	Performing conversions
	Performing simple conversions
	Performing complex conversions

	Adding new measurement types
	Creating a simple conversion family and adding units
	Declare variables
	Register the conversion family
	Register measurement units
	Use the new units

	Using a conversion function
	Declare variables
	Register the conversion family
	Register the base unit
	Write methods to convert to and from the base unit
	Register the other units
	Use the new units

	Using a class to manage conversions
	Creating the conversion class
	Declare variables
	Register the conversion family and the other units
	Use the new units

	Creating drawing spaces

	Ch 5: Working with components
	Setting component properties
	Setting properties at design time
	Using property editors

	Setting properties at runtime

	Calling methods
	Working with events and event handlers
	Generating a new event handler
	Generating a handler for a component’s default event
	Locating event handlers
	Associating an event with an existing event handler
	Using the Sender parameter
	Displaying and coding shared events

	Associating menu events with event handlers
	Deleting event handlers

	Cross-platform and non-cross-platform components
	Adding custom components to the Component palette

	Ch 6: Working with controls
	Implementing drag and drop in controls
	Starting a drag operation
	Accepting dragged items
	Dropping items
	Ending a drag operation
	Customizing drag and drop with a drag object
	Changing the drag mouse pointer

	Implementing drag and dock in controls
	Making a windowed control a docking site
	Making a control a dockable child
	Controlling how child controls are docked
	Controlling how child controls are undocked
	Controlling how child controls respond to drag-and-dock operations

	Working with text in controls
	Setting text alignment
	Adding scroll bars at runtime
	Adding the clipboard object
	Selecting text
	Selecting all text
	Cutting, copying, and pasting text
	Deleting selected text
	Disabling menu items
	Providing a pop-up menu
	Handling the OnPopup event

	Adding graphics to controls
	Indicating that a control is owner-drawn
	Adding graphical objects to a string list
	Adding images to an application
	Adding images to a string list
	Drawing owner-drawn items

	Sizing owner-draw items
	Drawing owner-draw items

	Ch 7: Building applications, components, and libraries
	Creating applications
	GUI applications
	User interface models
	SDI applications
	MDI applications
	Setting IDE, project, and compilation options

	Programming templates
	Console applications
	Using the VCL and CLX in console applications

	Service applications
	Service threads
	Service name properties
	Debugging service applications

	Creating packages and DLLs
	When to use packages and DLLs

	Using DLLs in C++Builder
	Creating DLLs in C++Builder
	Creating DLLs containing VCL and CLX components
	Linking DLLs
	Writing database applications
	Distributing database applications

	Creating Web server applications
	Using Web Broker
	Creating WebSnap applications
	Using InternetExpress
	Creating Web Services applications

	Writing applications using COM
	Using COM and DCOM
	Using MTS and COM+

	Using data modules
	Creating and editing standard data modules
	Naming a data module and its unit file
	Placing and naming components
	Using component properties and events in a data module
	Creating business rules in a data module

	Accessing a data module from a form
	Adding a remote data module to an application server project

	Using the Object Repository
	Sharing items within a project
	Adding items to the Object Repository
	Sharing objects in a team environment
	Using an Object Repository item in a project
	Copying an item
	Inheriting an item
	Using an item

	Using project templates
	Modifying shared items
	Specifying a default project, new form, and main form

	Enabling Help in applications
	Help system interfaces
	Implementing ICustomHelpViewer
	Communicating with the Help Manager
	Asking the Help Manager for information
	Displaying keyword-based Help
	Displaying tables of contents
	Implementing IExtendedHelpViewer
	Implementing IHelpSelector
	Registering Help system objects
	Registering Help viewers
	Registering Help selectors

	Using Help in a VCL Application
	How TApplication processes VCL Help
	How VCL controls process Help

	Using Help in a CLX Application
	How TApplication processes CLX Help
	How CLX controls process Help

	Calling a Help system directly
	Using IHelpSystem
	Customizing the IDE Help system

	Ch 8: Developing the application user interface
	Controlling application behavior
	Working at the application level
	Handling the screen

	Setting up forms
	Using the main form
	Hiding the main form
	Adding forms
	Linking forms

	Managing layout

	Using forms
	Controlling when forms reside in memory
	Displaying an auto-created form
	Creating forms dynamically
	Creating modeless forms such as windows
	Creating a form instance using a local variable

	Passing additional arguments to forms
	Retrieving data from forms
	Retrieving data from modeless forms
	Retrieving data from modal forms

	Reusing components and groups of components
	Creating and using component templates
	Working with frames
	Creating frames
	Adding frames to the Component palette
	Using and modifying frames
	Sharing frames

	Developing dialog boxes
	Using open dialog boxes

	Organizing actions for toolbars and menus
	What is an action?
	Setting up action bands
	Creating toolbars and menus
	Adding color, patterns, or pictures to menus, buttons, and toolbars
	Adding icons to menus and toolbars
	Creating toolbars and menus that users can customize
	Hiding unused items and categories in action bands

	Using action lists
	Setting up action lists
	What happens when an action fires
	Responding with events
	How actions find their targets

	Updating actions
	Predefined action classes
	Writing action components
	Registering actions

	Creating and managing menus
	Opening the Menu Designer
	Building menus
	Naming menus
	Naming the menu items
	Adding, inserting, and deleting menu items
	Adding separator bars
	Specifying accelerator keys and keyboard shortcuts

	Creating submenus
	Creating submenus by demoting existing menus
	Moving menu items
	Adding images to menu items
	Viewing the menu

	Editing menu items in the Object Inspector
	Using the Menu Designer context menu
	Commands on the context menu
	Switching between menus at design time

	Using menu templates
	Saving a menu as a template
	Naming conventions for template menu items and event handlers

	Manipulating menu items at runtime
	Merging menus
	Specifying the active menu: Menu property
	Determining the order of merged menu items: GroupIndex property

	Importing resource files

	Designing toolbars and cool bars
	Adding a toolbar using a panel component
	Adding a speed button to a panel
	Assigning a speed button’s glyph
	Setting the initial condition of a speed button
	Creating a group of speed buttons
	Allowing toggle buttons

	Adding a toolbar using the toolbar component
	Adding a tool button
	Assigning images to tool buttons
	Setting tool button appearance and initial conditions
	Creating groups of tool buttons
	Allowing toggled tool buttons

	Adding a cool bar component
	Setting the appearance of the cool bar

	Responding to clicks
	Assigning a menu to a tool button

	Adding hidden toolbars
	Hiding and showing toolbars

	Ch 9: Types of controls
	Text controls
	Edit controls
	Edit control properties
	Memo and rich edit controls

	Text viewing controls (CLX only)
	Labels

	Specialized input controls
	Scroll bars
	Track bars
	Up-down controls (VCL only)
	Spin edit controls (CLX only)
	Hot key controls (VCL only)
	Splitter controls

	Buttons and similar controls
	Button controls
	Bitmap buttons
	Speed buttons
	Check boxes
	Radio buttons
	Toolbars
	Cool bars (VCL only)

	List controls
	List boxes and check-list boxes
	Combo boxes
	Tree views
	List views
	Date-time pickers and month calendars (VCL only)

	Grouping controls
	Group boxes and radio groups
	Panels
	Scroll boxes
	Tab controls
	Page controls
	Header controls

	Display controls
	Status bars
	Progress bars
	Help and hint properties

	Grids
	Draw grids
	String grids

	Value list editors (VCL only)
	Graphic controls
	Images
	Shapes
	Bevels
	Paint boxes
	Animation control (VCL only)

	Ch 10: Working with graphics and multimedia
	Overview of graphics programming
	Refreshing the screen
	Types of graphic objects
	Common properties and methods of Canvas
	Using the properties of the Canvas object
	Using pens
	Using brushes
	Reading and setting pixels

	Using Canvas methods to draw graphic objects
	Drawing lines and polylines
	Drawing shapes

	Handling multiple drawing objects in your application
	Keeping track of which drawing tool to use
	Changing the tool with speed buttons
	Using drawing tools

	Drawing on a graphic
	Making scrollable graphics
	Adding an image control

	Loading and saving graphics files
	Loading a picture from a file
	Saving a picture to a file
	Replacing the picture

	Using the clipboard with graphics
	Copying graphics to the clipboard
	Cutting graphics to the clipboard
	Pasting graphics from the clipboard

	Rubber banding example
	Responding to the mouse
	Responding to a mouse-down action
	Adding a field to a form object to track mouse actions
	Refining line drawing

	Working with multimedia
	Adding silent video clips to an application
	Example of adding silent video clips

	Adding audio and/or video clips to an application
	Example of adding audio and/or video clips (VCL only)

	Ch 11: Writing multi-threaded applications
	Defining thread objects
	Initializing the thread
	Assigning a default priority
	Indicating when threads are freed

	Writing the thread function
	Using the main VCL/CLX thread
	Using thread-local variables
	Checking for termination by other threads
	Handling exceptions in the thread function

	Writing clean-up code

	Coordinating threads
	Avoiding simultaneous access
	Locking objects
	Using critical sections
	Using the multi-read exclusive-write synchronizer
	Other techniques for sharing memory

	Waiting for other threads
	Waiting for a thread to finish executing
	Waiting for a task to be completed

	Executing thread objects
	Overriding the default priority
	Starting and stopping threads

	Debugging multi-threaded applications
	Naming a thread
	Converting an unnamed thread to a named thread
	Assigning separate names to similar threads

	Ch 12: Exception handling
	C++ exception handling
	Exception handling syntax
	The try block
	The throw statement
	The catch statement

	Rethrowing exceptions
	Exception specifications
	Unwinding exceptions
	Safe pointers

	Constructors in exception handling
	Handling uncaught and unexpected exceptions

	Structured exceptions under Win32
	Syntax of structured exceptions
	Handling structured exceptions
	Exception filters
	Mixing C++ with structured exceptions
	C-based exceptions in C++ program example

	Defining exceptions
	Raising exceptions
	Termination blocks
	C++Builder exception handling options

	VCL/CLX exception handling
	Differences between C++ and VCL/CLX exception handling
	Handling operating system exceptions
	Handling VCL and CLX exceptions
	VCL and CLX exception classes
	Portability considerations

	Ch 13: C++ language support for the VCL and CLX
	C++ and Object Pascal object models
	Inheritance and interfaces
	Using interfaces instead of multiple inheritance
	Declaring interface classes
	IUnknown and IInterface
	Creating classes that support IUnknown
	Interfaced classes and lifetime management

	Object identity and instantiation
	Distinguishing C++ and Object Pascal references
	Copying objects
	Objects as function arguments

	Object construction for C++Builder VCL/CLX classes
	C++ object construction
	Object Pascal object construction
	C++Builder object construction

	Calling virtual methods in base class constructors
	Object Pascal model
	C++ model
	C++Builder model
	Example: calling virtual methods
	Constructor initialization of data members for virtual functions

	Object destruction
	Exceptions thrown from constructors
	Virtual methods called from destructors

	AfterConstruction and BeforeDestruction
	Class virtual functions

	Support for Object Pascal data types and language concepts
	Typedefs
	Classes that support the Object Pascal language
	C++ language counterparts to the Object Pascal language
	Var parameters
	Untyped parameters

	Open arrays
	Calculating the number of elements
	Temporaries
	array of const
	OPENARRAY macro
	EXISTINGARRAY macro
	C++ functions that take open array arguments

	Types defined differently
	Boolean data types
	Char data types

	Delphi interfaces
	Resource strings
	Default parameters
	Runtime type information
	Unmapped types
	6-byte Real types
	Arrays as return types of functions

	Keyword extensions
	__classid
	__closure
	__property
	__published

	The __declspec keyword extension
	__declspec(delphiclass)
	__declspec(delphireturn)
	__declspec(delphirtti)
	__declspec(dynamic)
	__declspec(hidesbase)
	__declspec(package)
	__declspec(pascalimplementation)
	__declspec(uuid)

	Ch 14: Developing cross-platform applications
	Creating cross-platform applications
	Porting Windows applications to Linux
	Porting techniques
	Platform-specific ports
	Cross-platform ports
	Windows emulation ports

	Porting your application
	CLX versus VCL
	What CLX does differently
	Look and feel
	Styles
	Variants
	Registry
	Other differences

	Missing in CLX
	Features that will not port directly
	CLX and VCL unit comparison
	Differences in CLX object constructors
	Handling system and widget events
	Sharing source files between Windows and Linux
	Environmental differences between Windows and Linux
	Directory structure on Linux
	Writing portable code
	Using conditional directives
	Emitting messages
	Including inline assembler code

	Programming differences on Linux

	Cross-platform database applications
	dbExpress differences
	Component-level differences
	User interface-level differences
	Porting database applications to Linux
	Updating data in dbExpress applications

	Cross-platform Internet applications
	Porting Internet applications to Linux

	Ch 15: Working with packages and components
	Why use packages?
	Packages and standard DLLs

	Runtime packages
	Using packages in an application
	Dynamically loading packages
	Deciding which runtime packages to use
	Custom packages

	Design-time packages
	Installing component packages

	Creating and editing packages
	Creating a package
	Editing an existing package
	Package source files and project options files
	Packaging components

	Understanding the structure of a package
	Naming packages
	Requires list
	Contains list

	Building packages
	Package-specific compiler directives
	Using the command-line compiler and linker
	Package files created by building

	Deploying packages
	Deploying applications that use packages
	Distributing packages to other developers
	Package collection files

	Ch 16: Creating international applications
	Internationalization and localization
	Internationalization
	Localization

	Internationalizing applications
	Enabling application code
	Character sets
	OEM and ANSI character sets
	Multibyte character sets
	Wide characters
	Including bi-directional functionality in applications
	BiDiMode property
	Locale-specific features

	Designing the user interface
	Text
	Graphic images
	Formats and sort order
	Keyboard mappings

	Isolating resources
	Creating resource DLLs
	Using resource DLLs
	Dynamic switching of resource DLLs

	Localizing applications
	Localizing resources

	Ch 17: Deploying applications
	Deploying general applications
	Using installation programs
	Identifying application files
	Application files
	Package files
	Merge modules
	ActiveX controls
	Helper applications
	DLL locations

	Deploying CLX applications
	Deploying database applications
	Deploying dbExpress database applications
	Deploying BDE applications
	Borland Database Engine
	SQL Links

	Deploying multi-tiered database applications (DataSnap)

	Deploying Web applications
	Deploying to Apache servers

	Programming for varying host environments
	Screen resolutions and color depths
	Considerations when not dynamically resizing
	Considerations when dynamically resizing forms and controls
	Accommodating varying color depths

	Fonts
	Operating systems versions

	Software license requirements
	DEPLOY
	README
	No-nonsense license agreement
	Third-party product documentation

	Part II: Developing database applications
	Ch 18: Designing database applications
	Using databases
	Types of databases
	Database security
	Transactions
	Referential integrity, stored procedures, and triggers

	Database architecture
	General structure
	The user interface form
	The data module

	Connecting directly to a database server
	Using a dedicated file on disk
	Connecting to another dataset
	Connecting a client dataset to another dataset in the same application
	Using a multi-tiered architecture

	Combining approaches

	Designing the user interface
	Analyzing data
	Writing reports

	Ch 19: Using data controls
	Using common data control features
	Associating a data control with a dataset
	Changing the associated dataset at runtime
	Enabling and disabling the data source
	Responding to changes mediated by the data source

	Editing and updating data
	Enabling editing in controls on user entry
	Editing data in a control

	Disabling and enabling data display
	Refreshing data display
	Enabling mouse, keyboard, and timer events

	Choosing how to organize the data
	Displaying a single record
	Displaying data as labels
	Displaying and editing fields in an edit box
	Displaying and editing text in a memo control
	Displaying and editing text in a rich edit memo control
	Displaying and editing graphics fields in an image control
	Displaying and editing data in list and combo boxes
	Handling Boolean field values with check boxes
	Restricting field values with radio controls

	Displaying multiple records

	Viewing and editing data with TDBGrid
	Using a grid control in its default state
	Creating a customized grid
	Understanding persistent columns
	Creating persistent columns
	Deleting persistent columns
	Arranging the order of persistent columns
	Setting column properties at design time
	Defining a lookup list column
	Putting a button in a column
	Restoring default values to a column

	Displaying ADT and array fields
	Setting grid options
	Editing in the grid
	Controlling grid drawing
	Responding to user actions at runtime

	Creating a grid that contains other data-aware controls
	Navigating and manipulating records
	Choosing navigator buttons to display
	Hiding and showing navigator buttons at design time
	Hiding and showing navigator buttons at runtime

	Displaying fly-over help
	Using a single navigator for multiple datasets

	Ch 20: Using decision support components
	Overview
	About crosstabs
	One-dimensional crosstabs
	Multidimensional crosstabs

	Guidelines for using decision support components
	Using datasets with decision support components
	Creating decision datasets with TQuery or TTable
	Creating decision datasets with the Decision Query editor

	Using decision cubes
	Decision cube properties and events
	Using the Decision Cube editor
	Viewing and changing dimension settings
	Setting the maximum available dimensions and summaries
	Viewing and changing design options

	Using decision sources
	Properties and events

	Using decision pivots
	Decision pivot properties

	Creating and using decision grids
	Creating decision grids
	Using decision grids
	Opening and closing decision grid fields
	Reorganizing rows and columns in decision grids
	Drilling down for detail in decision grids
	Limiting dimension selection in decision grids

	Decision grid properties

	Creating and using decision graphs
	Creating decision graphs
	Using decision graphs
	The decision graph display
	Customizing decision graphs
	Setting decision graph template defaults
	Customizing decision graph series

	Decision support components at runtime
	Decision pivots at runtime
	Decision grids at runtime
	Decision graphs at runtime

	Decision support components and memory control
	Setting maximum dimensions, summaries, and cells
	Setting dimension state
	Using paged dimensions

	Ch 21: Connecting to databases
	Using implicit connections
	Controlling connections
	Connecting to a database server
	Disconnecting from a database server

	Controlling server login
	Managing transactions
	Starting a transaction
	Ending a transaction
	Ending a successful transaction
	Ending an unsuccessful transaction

	Specifying the transaction isolation level

	Sending commands to the server
	Working with associated datasets
	Closing all datasets without disconnecting from the server
	Iterating through the associated datasets

	Obtaining metadata
	Listing available tables
	Listing the fields in a table
	Listing available stored procedures
	Listing available indexes
	Listing stored procedure parameters

	Ch 22: Understanding datasets
	Using TDataSet descendants
	Determining dataset states
	Opening and closing datasets
	Navigating datasets
	Using the First and Last methods
	Using the Next and Prior methods
	Using the MoveBy method
	Using the Eof and Bof properties
	Eof
	Bof

	Marking and returning to records
	The Bookmark property
	The GetBookmark method
	The GotoBookmark and BookmarkValid methods
	The CompareBookmarks method
	The FreeBookmark method
	A bookmarking example

	Searching datasets
	Using Locate
	Using Lookup

	Displaying and editing a subset of data using filters
	Enabling and disabling filtering
	Creating filters
	Setting the Filter property
	Writing an OnFilterRecord event handler
	Switching filter event handlers at runtime

	Setting filter options
	Navigating records in a filtered dataset

	Modifying data
	Editing records
	Adding new records
	Inserting records
	Appending records

	Deleting records
	Posting data
	Canceling changes
	Modifying entire records

	Calculating fields
	Types of datasets
	Using table type datasets
	Advantages of using table type datasets
	Sorting records with indexes
	Obtaining information about indexes
	Specifying an index with IndexName
	Creating an index with IndexFieldNames

	Using Indexes to search for records
	Executing a search with Goto methods
	Executing a search with Find methods
	Specifying the current record after a successful search
	Searching on partial keys
	Repeating or extending a search

	Limiting records with ranges
	Understanding the differences between ranges and filters
	Specifying ranges
	Modifying a range
	Applying or canceling a range

	Creating master/detail relationships
	Making the table a detail of another dataset
	Using nested detail tables

	Controlling Read/write access to tables
	Creating and deleting tables
	Creating tables
	Deleting tables

	Emptying tables
	Synchronizing tables

	Using query-type datasets
	Specifying the query
	Specifying a query using the SQL property
	Specifying a query using the CommandText property

	Using parameters in queries
	Supplying parameters at design time
	Supplying parameters at runtime

	Establishing master/detail relationships using parameters
	Preparing queries
	Executing queries that don’t return a result set
	Using unidirectional result sets

	Using stored procedure-type datasets
	Working with stored procedure parameters
	Setting up parameters at design time
	Using parameters at runtime

	Preparing stored procedures
	Executing stored procedures that don’t return a result set
	Fetching multiple result sets

	Ch 23: Working with field components
	Dynamic field components
	Persistent field components
	Creating persistent fields
	Arranging persistent fields
	Defining new persistent fields
	Defining a data field
	Defining a calculated field
	Programming a calculated field
	Defining a lookup field
	Defining an aggregate field

	Deleting persistent field components
	Setting persistent field properties and events
	Setting display and edit properties at design time
	Setting field component properties at runtime
	Creating attribute sets for field components
	Associating attribute sets with field components
	Removing attribute associations
	Controlling and masking user input
	Using default formatting for numeric, date, and time fields
	Handling events

	Working with field component methods at runtime
	Displaying, converting, and accessing field values
	Displaying field component values in standard controls
	Converting field values
	Accessing field values with the default dataset property
	Accessing field values with a dataset’s Fields property
	Accessing field values with a dataset’s FieldByName method

	Setting a default value for a field
	Working with constraints
	Creating a custom constraint
	Using server constraints

	Using object fields
	Displaying ADT and array fields
	Working with ADT fields
	Using persistent field components
	Using the dataset’s FieldByName method
	Using the dateset’s FieldValues property
	Using the ADT field’s FieldValues property
	Using the ADT field’s Fields property

	Working with array fields
	Using persistent fields
	Using the array field’s FieldValues property
	Using the array field’s Fields property

	Working with dataset fields
	Displaying dataset fields
	Accessing data in a nested dataset

	Working with reference fields
	Displaying reference fields
	Accessing data in a reference field

	Ch 24: Using the Borland Database Engine
	BDE-based architecture
	Using BDE-enabled datasets
	Associating a dataset with database and session connections
	Caching BLOBs
	Obtaining a BDE handle

	Using TTable
	Specifying the table type for local tables
	Controlling read/write access to local tables
	Specifying a dBASE index file
	Renaming local tables
	Importing data from another table

	Using TQuery
	Creating heterogeneous queries
	Obtaining an editable result set
	Updating read-only result sets

	Using TStoredProc
	Binding parameters
	Working with Oracle overloaded stored procedures

	Connecting to databases with TDatabase
	Associating a database component with a session
	Understanding database and session component interactions
	Identifying the database
	Opening a connection using TDatabase
	Using database components in data modules

	Managing database sessions
	Activating a session
	Specifying default database connection behavior
	Managing database connections
	Working with password-protected Paradox and dBASE tables
	Specifying Paradox directory locations
	Working with BDE aliases
	Retrieving information about a session
	Creating additional sessions
	Naming a session
	Managing multiple sessions

	Using transactions with the BDE
	Using passthrough SQL
	Using local transactions

	Using the BDE to cache updates
	Enabling BDE-based cached updates
	Applying BDE-based cached updates
	Applying cached updates using a database
	Applying cached updates with dataset component methods
	Creating an OnUpdateRecord event handler
	Handling cached update errors

	Using update objects to update a dataset
	Creating SQL statements for update components
	Using multiple update objects
	Executing the SQL statements

	Using TBatchMove
	Creating a batch move component
	Specifying a batch move mode
	Appending records
	Updating records
	Appending and updating records
	Copying datasets
	Deleting records

	Mapping data types
	Executing a batch move
	Handling batch move errors

	The Data Dictionary
	Tools for working with the BDE

	Ch 25: Working with ADO components
	Overview of ADO components
	Connecting to ADO data stores
	Connecting to a data store using TADOConnection
	Accessing the connection object

	Fine-tuning a connection
	Forcing asynchronous connections
	Controlling time-outs
	Indicating the types of operations the connection supports
	Specifying whether the connection automatically initiates transactions

	Accessing the connection’s commands
	ADO connection events
	Events when establishing a connection
	Events when disconnecting
	Events when managing transactions
	Other events

	Using ADO datasets
	Connecting an ADO dataset to a data store
	Working with record sets
	Filtering records based on bookmarks
	Fetching records asynchronously
	Using batch updates
	Loading data from and saving data to files
	Using TADODataSet

	Using Command objects
	Specifying the command
	Using the Execute method
	Canceling commands
	Retrieving result sets with commands
	Handling command parameters

	Ch 26: Using unidirectional datasets
	Types of unidirectional datasets
	Connecting to the database server
	Setting up TSQLConnection
	Identifying the driver
	Specifying connection parameters
	Naming a connection description
	Using the Connection Editor

	Specifying what data to display
	Representing the results of a query
	Representing the records in a table
	Representing a table using TSQLDataSet
	Representing a table using TSQLTable

	Representing the results of a stored procedure

	Fetching the data
	Preparing the dataset
	Fetching multiple datasets

	Executing commands that do not return records
	Specifying the command to execute
	Executing the command
	Creating and modifying server metadata

	Setting up master/detail linked cursors
	Accessing schema information
	Fetching metadata into a unidirectional dataset
	Fetching data after using the dataset for metadata
	The structure of metadata datasets

	Debugging dbExpress applications
	Using TSQLMonitor to monitor SQL commands
	Using a callback to monitor SQL commands

	Ch 27: Using client datasets
	Working with data using a client dataset
	Navigating data in client datasets
	Limiting what records appear
	Editing data
	Undoing changes
	Saving changes

	Constraining data values
	Specifying custom constraints

	Sorting and indexing
	Adding a new index
	Deleting and switching indexes
	Using indexes to group data

	Representing calculated values
	Using internally calculated fields in client datasets

	Using maintained aggregates
	Specifying aggregates
	Aggregating over groups of records
	Obtaining aggregate values

	Copying data from another dataset
	Assigning data directly
	Cloning a client dataset cursor

	Adding application-specific information to the data

	Using a client dataset to cache updates
	Overview of using cached updates
	Choosing the type of dataset for caching updates
	Indicating what records are modified
	Updating records
	Applying updates
	Intervening as updates are applied
	Reconciling update errors

	Using a client dataset with a provider
	Specifying a provider
	Requesting data from the source dataset or document
	Incremental fetching
	Fetch-on-demand

	Getting parameters from the source dataset
	Passing parameters to the source dataset
	Sending query or stored procedure parameters
	Limiting records with parameters

	Handling constraints from the server
	Refreshing records
	Communicating with providers using custom events
	Overriding the source dataset

	Using a client dataset with file-based data
	Creating a new dataset
	Loading data from a file or stream
	Merging changes into data
	Saving data to a file or stream

	Ch 28: Using provider components
	Determining the source of data
	Using a dataset as the source of the data
	Using an XML document as the source of the data

	Communicating with the client dataset
	Choosing how to apply updates using a dataset provider
	Controlling what information is included in data packets
	Specifying what fields appear in data packets
	Setting options that influence the data packets
	Adding custom information to data packets

	Responding to client data requests
	Responding to client update requests
	Editing delta packets before updating the database
	Influencing how updates are applied
	Screening individual updates
	Resolving update errors on the provider
	Applying updates to datasets that do not represent a single table

	Responding to client-generated events
	Handling server constraints

	Ch 29: Creating multi-tiered applications
	Advantages of the multi-tiered database model
	Understanding provider-based multi-tiered applications
	Overview of a three-tiered application
	The structure of the client application
	The structure of the application server
	The contents of the remote data module
	Using transactional data modules
	Pooling remote data modules

	Choosing a connection protocol
	Using DCOM connections
	Using Socket connections
	Using Web connections
	Using SOAP connections

	Building a multi-tiered application
	Creating the application server
	Setting up the remote data module
	Configuring the remote data module when it is not transactional
	Configuring a transactional remote data module
	Configuring TSoapDataModule

	Extending the application server’s interface
	Adding callbacks to the application server’s interface
	Extending a transactional application server’s interface

	Managing transactions in multi-tiered applications
	Supporting master/detail relationships
	Supporting state information in remote data modules
	Using multiple remote data modules

	Registering the application server
	Creating the client application
	Connecting to the application server
	Specifying a connection using DCOM
	Specifying a connection using sockets
	Specifying a connection using HTTP
	Specifying a connection using SOAP
	Brokering connections

	Managing server connections
	Connecting to the server
	Dropping or changing a server connection

	Calling server interfaces
	Connecting to an application server that uses multiple data modules

	Writing Web-based client applications
	Distributing a client application as an ActiveX control
	Creating an Active Form for the client application

	Building Web applications using InternetExpress
	Building an InternetExpress application
	Using the javascript libraries
	Granting permission to access and launch the application server

	Using an XML broker
	Fetching XML data packets
	Applying updates from XML delta packets

	Creating Web pages with an InternetExpress page producer
	Using the Web page editor
	Setting Web item properties
	Customizing the InternetExpress page producer template

	Ch 30: Using XML in database applications
	Defining transformations
	Mapping between XML nodes and data packet fields
	Using XMLMapper
	Loading an XML schema or data packet
	Defining mappings
	Generating transformation files

	Converting XML documents into data packets
	Specifying the source XML document
	Specifying the transformation
	Obtaining the resulting data packet
	Converting user-defined nodes

	Using an XML document as the source for a provider
	Using an XML document as the client of a provider
	Fetching an XML document from a provider
	Applying updates from an XML document to a provider

	Part III: Writing Internet applications
	Ch 31: Writing CORBA applications
	Overview of a CORBA application
	Understanding stubs and skeletons
	Using Smart Agent
	Activating server applications
	Binding interface calls dynamically

	Writing CORBA servers
	Defining object interfaces
	Using the CORBA Server Wizard
	Generating stubs and skeletons from an IDL file
	Using the CORBA Object Implementation Wizard
	Instantiating CORBA objects
	Using the delegation model
	Viewing and editing changes

	Implementing CORBA Objects
	Guarding against thread conflicts

	Changing CORBA interfaces
	Registering server interfaces

	Writing CORBA clients
	Using stubs
	Using the dynamic invocation interface

	Testing CORBA servers
	Setting up the testing tool
	Recording and running test scripts

	Ch 32: Creating Internet server applications
	About Web Broker and WebSnap
	Terminology and standards
	Parts of a Uniform Resource Locator
	URI vs. URL

	HTTP request header information

	HTTP server activity
	Composing client requests
	Serving client requests
	Responding to client requests

	Types of Web server applications
	ISAPI and NSAPI
	CGI stand-alone
	Win-CGI stand-alone
	Apache
	Web App Debugger
	Converting Web server application target types

	Debugging server applications
	Using the Web Application Debugger
	Launching your application with the Web Application Debugger
	Converting your application to another type of Web server application

	Debugging Web applications that are DLLs
	User rights necessary for DLL debugging

	Ch 33: Using Web Broker
	Creating Web server applications with Web Broker
	The Web module
	The Web Application object

	The structure of a Web Broker application
	The Web dispatcher
	Adding actions to the dispatcher
	Dispatching request messages

	Action items
	Determining when action items fire
	The target URL
	The request method type
	Enabling and disabling action items
	Choosing a default action item

	Responding to request messages with action items
	Sending the response
	Using multiple action items

	Accessing client request information
	Properties that contain request header information
	Properties that identify the target
	Properties that describe the Web client
	Properties that identify the purpose of the request
	Properties that describe the expected response
	Properties that describe the content

	The content of HTTP request messages

	Creating HTTP response messages
	Filling in the response header
	Indicating the response status
	Indicating the need for client action
	Describing the server application
	Describing the content

	Setting the response content
	Sending the response

	Generating the content of response messages
	Using page producer components
	HTML templates
	Specifying the HTML template
	Converting HTML-transparent tags
	Using page producers from an action item
	Chaining page producers together

	Using database information in responses
	Adding a session to the Web module
	Representing database information in HTML
	Using dataset page producers
	Using table producers
	Specifying the table attributes
	Specifying the row attributes
	Specifying the columns
	Embedding tables in HTML documents
	Setting up a dataset table producer
	Setting up a query table producer

	Ch 34: Creating Web Server applications using WebSnap
	Fundamental WebSnap components
	Web modules
	Web application module types
	Web page modules
	Web data modules

	Adapters
	Fields
	Actions
	Errors
	Records

	Page producers

	Creating Web server applications with WebSnap
	Selecting a server type
	Specifying application module components
	Selecting Web application module options

	WebSnap tutorial
	Create a new application
	Step 1. Start the WebSnap application wizard
	Step 2. Save the generated files and project
	Step 3. Specify the application title

	Create a CountryTable page
	Step 1. Add a new Web page module
	Step 2. Save the new Web page module

	Add data components to the CountryTable module
	Step 1. Add data-aware components
	Step 2. Specify a key field
	Step 3. Add an adapter component

	Create a grid to display the data
	Step 1. Add a grid
	Step 2. Add editing commands to the grid

	Add an edit form
	Step 1. Add a new Web page module
	Step 2. Save the new module
	Step 3. Make CountryTableU accessible to the new module
	Step 4. Add input fields
	Step 5. Add buttons
	Step 6. Link form actions to the grid page
	Step 7. Link grid actions to the form page

	Run the completed application
	Add error reporting
	Step 1. Add error support to the grid
	Step 2. Add error support to the form
	Step 3. Test the error-reporting mechanism

	Advanced HTML design
	Manipulating server-side script in HTML files

	Login support
	Adding login support
	Using the sessions service
	Login pages
	Setting pages to require logins
	User access rights
	Dynamically displaying fields as edit or text boxes
	Hiding fields and their contents
	Preventing page access

	Server-side scripting in WebSnap
	Active scripting
	Script engine
	Script blocks
	Creating script
	Wizard templates
	TAdapterPageProducer

	Editing and viewing script
	Including script in a page
	Script objects

	Dispatching requests and responses
	Dispatcher components
	Adapter dispatcher operation
	Using adapter components to generate content
	Receiving adapter requests and generating responses
	Image request
	Image response

	Dispatching action items
	Page dispatcher operation

	Ch 35: Working with XML documents
	Using the Document Object Model
	Working with XML components
	Using TXMLDocument
	Working with XML nodes
	Working with a node’s value
	Working with a node’s attributes
	Adding and deleting child nodes

	Abstracting XML documents with the Data Binding wizard
	Using the XML Data Binding wizard
	Using code that the XML Data Binding wizard generates

	Ch 36: Using Web Services
	Understanding invokable interfaces
	Using nonscalar types in invokable interfaces
	Registering nonscalar types
	Registering typedef’ed types and enumerated types
	Using remotable objects
	Remotable object example

	Writing servers that support Web Services
	Building a Web Service server
	Using the SOAP application wizard
	Adding new Web Services
	Editing the generated code
	Using a different base class

	Using the Web Services Importer
	Creating custom exception classes for Web Services
	Generating WSDL documents for a Web Service application

	Writing clients for Web Services
	Importing WSDL documents
	Calling invokable interfaces

	Ch 37: Working with sockets
	Implementing services
	Understanding service protocols
	Communicating with applications

	Services and ports

	Types of socket connections
	Client connections
	Listening connections
	Server connections

	Describing sockets
	Describing the host
	Choosing between a host name and an IP address

	Using ports

	Using socket components
	Getting information about the connection
	Using client sockets
	Specifying the desired server
	Forming the connection
	Getting information about the connection
	Closing the connection

	Using server sockets
	Specifying the port
	Listening for client requests
	Connecting to clients
	Closing server connections

	Responding to socket events
	Error events
	Client events
	Server events
	Events when listening
	Events with client connections

	Reading and writing over socket connections
	Non-blocking connections
	Reading and writing events

	Blocking connections

	Part IV: Developing COM-based applications
	Ch 38: Overview of COM technologies
	COM as a specification and implementation
	COM extensions
	Parts of a COM application
	COM interfaces
	The fundamental COM interface, IUnknown
	COM interface pointers

	COM servers
	CoClasses and class factories
	In-process, out-of-process, and remote servers
	The marshaling mechanism
	Aggregation

	COM clients

	COM extensions
	Automation servers
	Active Server Pages
	ActiveX controls
	Active Documents
	Transactional objects
	COM+ Event and event subscriber objects
	Type libraries
	The content of type libraries
	Creating type libraries
	When to use type libraries
	Accessing type libraries
	Benefits of using type libraries
	Using type library tools

	Implementing COM objects with wizards
	Code generated by wizards

	Ch 39: Working with type libraries
	Type Library editor
	Parts of the Type Library editor
	Toolbar
	Object list pane
	Status bar
	Pages of type information

	Type library elements
	Interfaces
	Dispinterfaces
	CoClasses
	Type definitions
	Modules

	Using the Type Library editor
	Valid types
	Creating a new type library
	Opening an existing type library
	Adding an interface to the type library
	Modifying an interface using the type library
	Adding properties and methods to an interface or dispinterface
	Adding a CoClass to the type library
	Adding an interface to a CoClass
	Adding an enumeration to the type library
	Adding an alias to the type library
	Adding a record or union to the type library
	Adding a module to the type library
	Saving and registering type library information
	Saving a type library
	Refreshing the type library
	Registering the type library
	Exporting an IDL file

	Deploying type libraries

	Ch 40: Creating COM clients
	Importing type library information
	Using the Import Type Library dialog
	Using the Import ActiveX dialog
	Code generated when you import type library information

	Controlling an imported object
	Using component wrappers
	ActiveX wrappers
	Automation object wrappers

	Using data-aware ActiveX controls
	Example: Printing a document with Microsoft Word
	Step 1: Prepare C++Builder for this example
	Step 2: Import the Word type library
	Step 3: Use a VTable or dispatch interface object to control Microsoft Word
	Step 4: Clean up the example

	Writing client code based on type library definitions
	Connecting to a server
	Controlling an Automation server using a dual interface
	Controlling an Automation server using a dispatch interface
	Handling events in an automation controller

	Creating clients for servers that do not have a type library

	Ch 41: Creating simple COM servers
	Overview of creating a COM object
	Designing a COM object
	Using the COM object wizard
	Using the Automation object wizard
	Choosing a threading model
	Writing an object that supports the free threading model
	Writing an object that supports the apartment threading model
	Writing an object that supports the neutral threading model

	Specifying ATL options
	Defining a COM object’s interface
	Adding a property to the object’s interface
	Adding a method to the object’s interface
	Exposing events to clients
	Managing events in your Automation object

	Automation interfaces
	Dual interfaces
	Dispatch interfaces
	Custom interfaces

	Marshaling data
	Automation compatible types
	Type restrictions for automatic marshaling
	Custom marshaling

	Registering a COM object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the application

	Ch 42: Creating an Active Server Page
	Creating an Active Server Object
	Using the ASP intrinsics
	Application
	Request
	Response
	Session
	Server

	Creating ASPs for in-process or out-of-process servers

	Registering an Active Server Object
	Registering an in-process server
	Registering an out-of-process server

	Testing and debugging the Active Server Page application

	Ch 43: Creating an ActiveX control
	Overview of ActiveX control creation
	Elements of an ActiveX control
	VCL control
	ActiveX wrapper
	Type library
	Property page

	Designing an ActiveX control
	Generating an ActiveX control from a VCL control
	Generating an ActiveX control based on a VCL form
	Licensing ActiveX controls
	Customizing the ActiveX control’s interface
	Adding additional properties, methods, and events
	Adding properties and methods
	Adding events

	Enabling simple data binding with the type library

	Creating a property page for an ActiveX control
	Creating a new property page
	Adding controls to a property page
	Associating property page controls with ActiveX control properties
	Updating the property page
	Updating the object

	Connecting a property page to an ActiveX control

	Registering an ActiveX control
	Testing an ActiveX control
	Deploying an ActiveX control on the Web
	Setting options

	Ch 44: Creating MTS or COM+ objects
	Understanding transactional objects
	Requirements for a transactional object

	Managing resources
	Accessing the object context
	Just-in-time activation
	Resource pooling
	Database resource dispensers
	Shared property manager
	Releasing resources

	Object pooling

	MTS and COM+ transaction support
	Transaction attributes
	Setting the transaction attribute

	Stateful and stateless objects
	Influencing how transactions end
	Initiating transactions
	Setting up a transaction object on the client side
	Setting up a transaction object on the server side

	Transaction time-out

	Role-based security
	Overview of creating transactional objects
	Using the Transactional Object wizard
	Choosing a threading model for a transactional object
	Activities

	Generating events under COM+
	Using the Event Object wizard
	Using the COM+ Event Subscription object wizard
	Firing events using a COM+ event object

	Passing object references
	Using the SafeRef method
	Callbacks

	Debugging and testing transactional objects
	Installing transactional objects
	Administering transactional objects

	Part V: Creating custom components
	Ch 45: Overview of component creation
	Class libraries
	Components and classes
	How do you create components?
	Modifying existing controls
	Creating windowed controls
	Creating graphic controls
	Subclassing Windows controls
	Creating nonvisual components

	What goes into a component?
	Removing dependencies
	Setting properties, methods, and events
	Properties
	Events
	Methods

	Encapsulating graphics
	Registering components

	Creating a new component
	Creating a component with the Component wizard
	Creating a component manually
	Creating a unit file
	Deriving the component
	Declaring a new constructor
	Registering the component

	Creating a bitmap for a component

	Testing uninstalled components
	Testing installed components
	Installing a component on the Component palette
	Making source files available
	Adding the component

	Ch 46: Object-oriented programming for component writers
	Defining new classes
	Deriving new classes
	To change class defaults to avoid repetition
	To add new capabilities to a class

	Declaring a new component class

	Ancestors, descendants, and class hierarchies
	Controlling access
	Hiding implementation details
	Defining the component writer’s interface
	Defining the runtime interface
	Defining the design-time interface

	Dispatching methods
	Regular methods
	Virtual methods
	Overriding methods

	Abstract class members
	Classes and pointers

	Ch 47: Creating properties
	Why create properties?
	Types of properties
	Publishing inherited properties
	Defining properties
	The property declaration
	Internal data storage
	Direct access
	Access methods
	The read method
	The write method

	Default property values
	Specifying no default value

	Creating array properties
	Creating properties for subcomponents
	Storing and loading properties
	Using the store-and-load mechanism
	Specifying default values
	Determining what to store
	Initializing after loading
	Storing and loading unpublished properties
	Creating methods to store and load property values
	Overriding the DefineProperties method

	Ch 48: Creating events
	What are events?
	Events are closures
	Events are properties
	Event types are closure types
	Event handlers have a return type of void

	Event handlers are optional

	Implementing the standard events
	Identifying standard events
	Standard events for all controls
	Standard events for standard controls

	Making events visible
	Changing the standard event handling

	Defining your own events
	Triggering the event
	Two kinds of events

	Defining the handler type
	Simple notifications
	Event-specific handlers
	Returning information from the handler

	Declaring the event
	Event names start with “On”

	Calling the event

	Ch 49: Creating methods
	Avoiding dependencies
	Naming methods
	Protecting methods
	Methods that should be public
	Methods that should be protected

	Making methods virtual
	Declaring methods

	Ch 50: Using graphics in components
	Overview of graphics
	Using the canvas
	Working with pictures
	Using a picture, graphic, or canvas
	Loading and storing graphics
	Handling palettes
	Specifying a palette for a control

	Off-screen bitmaps
	Creating and managing off-screen bitmaps
	Copying bitmapped images

	Responding to changes

	Ch 51: Handling messages and system notifications
	Understanding the message-handling system
	What’s in a Windows message?
	Dispatching messages
	Tracing the flow of messages

	Changing message handling
	Overriding the handler method
	Using message parameters
	Trapping messages

	Creating new message handlers
	Defining your own messages
	Declaring a message identifier
	Declaring a message-structure type

	Declaring a new message-handling method
	Sending messages
	Broadcasting a message to all controls in a form
	Calling a control’s message handler directly
	Sending a message using the Windows message queue
	Sending a message that does not execute immediately

	Responding to system notifications using CLX
	Responding to signals
	Assigning custom signal handlers

	Responding to system events
	Commonly used events
	Overriding the EventFilter method
	Generating Qt events

	Ch 52: Making components available at design time
	Registering components
	Declaring the Register function
	Writing the Register function
	Specifying the components
	Specifying the palette page
	Using the RegisterComponents function

	Adding palette bitmaps
	Providing Help for your component
	Creating the Help file
	Creating the entries
	Making component help context-sensitive
	Adding component help files

	Adding property editors
	Deriving a property-editor class
	Editing the property as text
	Displaying the property value
	Setting the property value

	Editing the property as a whole
	Specifying editor attributes
	Registering the property editor

	Property categories
	Registering one property at a time
	Registering multiple properties at once
	Specifying property categories
	Using the IsPropertyInCategory function

	Adding component editors
	Adding items to the context menu
	Specifying menu items
	Implementing commands

	Changing the double-click behavior
	Adding clipboard formats
	Registering the component editor

	Compiling components into packages
	Troubleshooting custom components

	Ch 53: Modifying an existing component
	Creating and registering the component
	Modifying the component class
	Overriding the constructor
	Specifying the new default property value

	Ch 54: Creating a graphic control
	Creating and registering the component
	Publishing inherited properties
	Adding graphic capabilities
	Determining what to draw
	Declaring the property type
	Declaring the property
	Writing the implementation method

	Overriding the constructor and destructor
	Changing default property values

	Publishing the pen and brush
	Declaring the data members
	Declaring the access properties
	Initializing owned classes
	Setting owned classes’ properties

	Drawing the component image
	Refining the shape drawing

	Ch 55: Customizing a grid
	Creating and registering the component
	Publishing inherited properties
	Changing initial values
	Resizing the cells
	Filling in the cells
	Tracking the date
	Storing the internal date
	Accessing the day, month, and year
	Generating the day numbers
	Selecting the current day

	Navigating months and years
	Navigating days
	Moving the selection
	Providing an OnChange event
	Excluding blank cells

	Ch 56: Making a control data aware
	Creating a data browsing control
	Creating and registering the component
	Making the control read-only
	Adding the ReadOnly property
	Allowing needed updates

	Adding the data link
	Declaring the data member
	Declaring the access properties
	An example of declaring access properties
	Initializing the data link

	Responding to data changes

	Creating a data editing control
	Changing the default value of FReadOnly
	Handling mouse-down and key-down messages
	Responding to mouse-down messages
	Responding to key-down messages

	Updating the field data link class
	Modifying the Change method
	Updating the dataset

	Ch 57: Making a dialog box a component
	Defining the component interface
	Creating and registering the component
	Creating the component interface
	Including the form unit files
	Adding interface properties
	Adding the Execute method

	Testing the component

	Ch 58: Extending the IDE
	Overview of the Tools API
	Writing a wizard class
	Implementing the wizard interfaces
	Simplifying implementing interfaces
	Installing the wizard package

	Obtaining Tools API services
	Using native IDE objects
	Using the INTAServices interface
	Adding an image to the image list
	Adding an action to the action list
	Deleting toolbar buttons

	Debugging a wizard
	Interface version numbers

	Working with files and editors
	Using module interfaces
	Using editor interfaces

	Creating forms and projects
	Creating modules

	Notifying a wizard of IDE events
	Installing a wizard DLL
	Using a DLL without runtime packages

	App A: ANSI implementation-specific standards
	App B: WebSnap server-side scripting reference
	Object types
	Adapter type
	Properties

	AdapterAction type
	Properties
	Methods

	AdapterErrors type
	Properties

	AdapterField type
	Properties
	Methods

	AdapterFieldValues type
	Properties
	Methods

	AdapterFieldValuesList type
	Properties
	Methods

	AdapterHiddenFields type
	Properties
	Methods

	AdapterImage type
	Properties

	Module type
	Properties

	Page type
	Properties

	Global objects
	Application object
	Properties
	Methods

	EndUser object
	Properties

	Modules object
	Page object
	Pages object
	Producer object
	Properties
	Methods

	Request object
	Properties

	Response object
	Properties
	Methods

	Session object
	Properties

	JScript Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13
	Example 14
	Example 15
	Example 16
	Example 17
	Example 18
	Example 19
	Example 20
	Example 21
	Example 22

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

